УДК 621.039.7

АНАЛИЗ ПРИЧИН НЕРАВНОМЕРНОСТИ РАСПРЕДЕЛЕНИЯ РАДИОНУКЛИДА ³⁶СІ В ОБЛУЧЕННОМ ЯДЕРНОМ ГРАФИТЕ

© 2020 г. Е. В. Беспала^{а,} *, А. О. Павлюк^b, С. Г. Котляревский^b, И. Ю. Новоселов^{c,} **

^aΦГУП "Горно-химический комбинат", Железногорск, 636039 Россия ^bAO "Опытно-демонстрационный центр вывода из эксплуатации уран-графитовых ядерных реакторов", Северск, 636000 Россия ^cНациональный исследовательский Томский политехнический университет, Томск, 634050 Россия *e-mail: bespala_evgeny@mail.ru **e-mail: inovoselov@tpu.ru Поступила в редакцию 26.03.2019 г. После доработки 18.04.2019 г.

Принята к публикации 22.04.2019 г.

Работа посвящена анализу процессов накопления в облученном графите уран-графитовых ядерных реакторов долгоживущего радионуклида ³⁶Cl, который является одним из наиболее значимых радионуклидов при оценке безопасности захоронения РАО. Проведен анализ так называемого эффекта "самородка" (Nugget effect), обусловленного существенной неравномерностью содержания ³⁶Cl в пробах облученного графита ядерных реакторов. Различия в концентрациях ³⁶Cl в одних и тех же графитовых элементах достигают 100 раз независимо от эксплуатационных факторов (поток нейтронов, температура). Рассмотрены основные процессы, которые могут влиять на формирование загрязнения ³⁶Cl в облученном графите. Особое внимание уделено определению формы нахождения ³⁶Cl в графите с учетом особенностей его изготовления, включая термодинамическое моделирование равновесного состава продуктов реакции при очистке необлученного графита в газовой среде.

Ключевые слова: облученный графит, эффект "самородка", хлор, вывод из эксплуатации, радионуклид, неравномерность.

DOI: 10.31857/S1028096020020053

введение

В процессе эксплуатации уран-графитовых ядерных реакторов и после их окончательной остановки образуются графитовые радиоактивные отходы (РАО), количество которых на сегодняшний день только в Российской Федерации составляет ≈60000 тонн.

Период потенциальной опасности $\approx 90\%$ графитовых РАО определяется (главным образом) наличием в составе деталей графитовых кладок долгоживущих радионуклидов ¹⁴C, ³⁶Cl и их удельным содержанием. Период полураспада ¹⁴C составляет 5370 лет, его удельная активность в графите отечественных уран-графитовых реакторах (УГР) составляет 10^3-10^6 Бк/г, для ³⁶Cl – 3.1×10^5 лет и $10^1-2 \times 10^3$ Бк/г соответственно [1].

Главным условием при обосновании вариантов обращения с графитовыми РАО является обеспечение изоляции содержащихся в них радионуклидов на весь период сохранения ими потенциальной опасности. По оценкам ³⁶Cl по истечении характерного периода $\approx 10^4 - 10^5$ лет будет определять основные параметры потенциального влияния облученного графита на окружающую среду и население при захоронении. Более того данный радионуклид практически не задерживается природными материалами при миграции, в то время как долгоживущие актиниды эффективно сорбируются барьерными материалами и материалами вмещающих пород.

Очевидно, что гарантия изоляции радионуклидов на период потенциальной опасности при захоронении или временном хранении графитовых РАО будет определяться не только величиной активности долгоживущих радионуклидов, но и показателями, определяющими прочность фиксации радионуклидов в самом графите. Учитывая тот факт, что графит является практически "неокисляемым" материалом при нормальных температурных условиях, то выход радионуклидов (в том числе ³⁶Cl) из графитовых РАО будет определяться параметрами их селективного выщелачивания, которые, в свою очередь, зависят от

БЕСПАЛА и др.

Страна	Расположение	Тип реактора	Активность ³⁶ Сl, Бк/г
Франция	Маркуль G2	UNGG	100-700
Франция	Шинон АЗ	UNGG	7-70
Франция	Сен-Лоран А1	UNGG	3-10
Франция	Сен-Лоран А2	UNGG	37-100
Франция	Бюже 1	UNGG	83-850
Великобритания	Хантерстон А	Magnox	132–1775
Великобритания	Олдбари	Magnox	≈425
США	Хэнфорд	Реактор В	≈2460
США	Хэнфорд	Реактор С	≈705
США	Хэнфорд	Реактор D	≈1990
США	Хэнфорд	Реактор DR	≈1530
США	Хэнфорд	Реактор F	≈1940
США	Хэнфорд	Реактор КЕ	≈1998
США	Хэнфорд	Реактор KW	≈1920
Россия	ПО Маяк	AB-1	<13500*
Россия	ПО Маяк	AB-2	<10800*
Россия	ПО Маяк	AB-3	<10800*
Россия	ПО Маяк	АИ	<5600
Россия	АО "ОДЦ УГР"	И-1	54-110
Испания	Вандельос	UNGG	14-25
Украина	ЧАЭС (блок № 2)	РБМК-1000	700–1500
Литва	ИгАЭС (блок № 1)	РБКМ-1500	≈2600
Швейцария	Дайорит (PSI)	PHWR	22-414
Швейцария	Протеус (PSI)	Исследовательский	0.003-0.031
Дания	Risoe National Lab.	DR-2	0.18-40
Германия	АЭC THTR-300	THTR-300	23-370
Германия	Юлих	AVR	≈800

Таблица 1. Удельная активность ³⁶Cl в различных образцах облученного графита [2–9]

Примечание. * – Из результатов расчета.

формы нахождения и энергии связи долгоживущих радионуклидов со структурой графита. Следовательно, эти данные будут являться определяющими при выполнении прогнозного моделирования миграции радионуклидов, результаты которого являются определяющими при обосновании вариантов захоронения графитовых РАО.

В настоящее время в качестве перспективного подхода к решению проблемы обращения с облученным графитом рассматривается способ приповерхностного захоронения графитовых РАО с предварительной их обработкой. Реализация данного подхода возможна при условии успешного решения задачи селективного удаления доли ¹⁴С и ³⁶Cl, характеризуемой более низкой прочностью фиксации в структуре графита. Такой подход может обеспечить снижение потенциальной опасности графита при захоронении и, как следствие, снизить требования к способу и технологии захоронения, что влечет за собой существенное снижение стоимости всего процесса. Эффективность использования данного подхода также определяется формами нахождения и энергией связи долгоживущих радионуклидов со структурой графита.

Таким образом, целью данной работы является оценка возможных соединений, в которых может находиться радионуклид ³⁶Cl, а также анализ причин его образования и накопления в облученном ядерном графите.

АНАЛИЗ НЕРАВНОМЕРНОСТИ СОДЕРЖАНИЯ ³⁶СІ В ГРАФИТЕ УГР

Обобщенная информация об удельной активности радионуклида 36 Cl в облученном графите, отобранном из кладок различных УГР, представлена в табл. 1.

В настоящей работе проведена оценка содержания 36 Cl в графите некоторых промышленных

Расположение	Тип реактора	Тип графитовых деталей	Активность ³⁶ Cl, Бк/г
ФГУП ПО "Маяк"	AB-1	Блоки	250-890
ФГУП ПО "Маяк"	AB-2	Блоки	80-400
АО "ОДЦ УГР"	И-1	Втулки	90-450
АО "ОДЦ УГР"	АДЭ-3	Втулки	240-670
АО "ОДЦ УГР"	АДЭ-4, АДЭ-5	Блоки	10-1100
Ленинградская АЭС-2	РБМК-1000	Смесь крошки из графитовых блоков	570
Курская АЭС	РБМК-1000	Кольца КТК	260-920

Таблица 2. Результаты оценки содержания ³⁶СІ в графите российских УГР [10]

УГР (ПУГР) и реакторов типа РБМК-1000. Результаты сведены в табл. 2.

Результаты настоящих исследований, а также ряда других свидетельствуют о достаточно широком разбросе значений содержания микропримесей, приводящих к образованию радионуклида ³⁶Cl, а также удельной активности ³⁶Cl в графите УГР (табл. 1, 2), полученных как при расчетных оценках, так и при экспериментальном определении. На рис. 1 представлены полученные в ходе настоящей работы результаты определения удельной активности ³⁶Сl и ¹⁴С (для сравнения) блочного графита в трех точках по высоте двух ячеек графитовой кладки ПУГР и по толщине стенок графитовых блоков в точках отбора. Нейтронно-физические и термодинамические параметры эксплуатации графита в обеих ячейках одинаковы.

Очевидно, что распределение удельной активности ³⁶Cl варьируется в широких пределах (существенно более широких, чем вариация потока нейтронов, температуры облучения и др., учитывая погрешность измерений ≈10-20%) как по объему кладки в целом (рис. 1а), так и по толщине стенок отдельных графитовых блоков (рис. 1в-1д). Не наблюдается также общих закономерностей по форме кривых высотного распределения и распределения по толщине стенок блоков. Следует отметить, что, несмотря на более сложную (по нескольким независимым каналам) схему образования, активность ¹⁴С с учетом погрешности измерений ≈20% практически равномерно распределена (рис. 1е-1з) по сечению графитового блока (существенная неравномерность распределения ¹⁴С характерна только для размеров областей графита, сопоставимых с размерами кристаллитов).

Большая вариация величины удельной активности ³⁶Cl, а также отсутствие общих закономерностей распределения ³⁶Cl по объему графитовой кладки и по сечению графитового блока, объясняются, вероятно, тем, что атомы ³⁶Cl содержатся в графите в виде локализованных областей (эффект "самородка"). Распределение данных областей обладает высокой степенью неравномерности, проявляющейся как в объемах графита с характерными размерами не менее $\approx 1-2$ мм (толщина образца), так и в объемах с характерными размерами в десятки сантиметров (размер блоков). Такое распределение можно объяснить (предположительно): 1) исходным распределением примесных материнских атомов в виде локальных образований, сформировавшихся при технологическом процессе производства графитовых блоков; 2) протеканием каких-либо более сложных процессов, способствующих формированию локальных областей скопления атомов ³⁶Cl в процессе эксплуатации.

ОСОБЕННОСТИ ОБРАЗОВАНИЯ ³⁶СІ В ГРАФИТЕ ПРИ ОБЛУЧЕНИИ НЕЙТРОННЫМ ПОТОКОМ

Долгоживущий радионуклид ³⁶Cl образуется в элементах графитовых кладок независимо от особенностей и режимов эксплуатации УГР. Это обусловлено, в первую очередь, активацией примесей, которые не удаляются при изготовлении графита или сорбируются до его загрузки в активную зону реактора. В табл. 3 представлены основные ядерные реакции, по которым образуется радионуклид 36 Cl. К основным ядерным реакциям, приводящим к накоплению радиоактивного хлора в графитовых РАО, относятся: ${}^{35}Cl(n, \gamma){}^{36}Cl$ (сечение реакции $\sigma = 43$ барн); ³⁹К(*n*, α)³⁶Cl ($\sigma =$ = 0.004 δaph); ³⁴S(n, $β^-$)³⁵Cl(n, γ)³⁶Cl (σ = 0.34 δaph). Первые две реакции являются прямыми, последняя - непрямая, период полураспада промежуточного радионуклида ³⁵S равен 87 сут. Стоит заметить, что содержание изотопа ³⁵Cl в естественной смеси составляет 34.97%, ³⁹К - 93.26%. ³⁴S – 4.21% (табл. 3).

ФОРМИРОВАНИЕ ПРИМЕСНОГО СОСТАВА ПРИ ИЗГОТОВЛЕНИИ ГРАФИТА

Рассмотрим процесс производства реакторного графита более подробно с целью определения

65

Рис. 1. Распределения удельной активности 36 Cl и 14 C в графитовой кладке ПУГР: а, б – по высоте ячеек; в–з – по толщине стенок графитовых блоков на отметках отбора (наружная поверхность блока, центр стенки блока, внутренняя поверхность отверстия в блоке).

содержания примесей (хлора, калия, серы) и глубины загрязнения графитовых конструкционных элементов.

Изготовление российского реакторного графита (марки ГР-220, ГР-280, ЭГП-6, ГРП-2, ГР-1 и др.) и европейского/американского (марки TSGBF, TSX, P3AN, PGA, H-327, H-451, IG-11, P3JHA2N и др.) базируется на использовании нефтяных коксов различной микроструктуры, которые являются наполнителем, и каменно-

Таблица 3. Ядерные реакции накопления радиоактивного хлора в графитовых РАО

Ядерная реакция	Сечение реакции σ, барн	Содержание изотопа в естественной смеси, %	
$^{35}\mathrm{Cl}(n,\gamma)^{36}\mathrm{Cl}$	43	34.97	
39 K(<i>n</i> , α) ³⁶ Cl	0.004	93.26	
$^{34}S(n, \beta^{-})^{35}Cl(n, \gamma)^{36}Cl$	0.34	4.21	

Примесь	США [19]	Великобритания [20]	Франция [21]	СССР/Россия [10]
Cl	(0.6–35)	≈2	(8.1-8.3)	(0.1–10.4)
К	(1.4–320)	(0.24–0.36) [22]	(5-50)	≈1.9
S	(10-175)	50	(5–10)	5-52

Таблица 4. Содержание примесей в различных марках реакторного графита, [ppm]

угольных пеков, служащими связующим. Вместо каменноугольного пека или вещества для пропитки графитового материала используют также синтетические фурановые смолы, которые получают методом Пааля—Кнорра путем циклизации 1,4-дикарбонильных соединений в присутствии катализаторов P_2O_5 и ZnCl₂. Несмотря на очистку связующего, в нем присутствует до 0.6% серы.

Основными технологическими этапами производства искусственного ядерного графита являются: измельчение и дробление нефтяного кокса; термическое прокаливание кокса; размол и фракционирование; подготовка связующего; дозирование и смешение кокса со связующими веществами; формование необожженных заготовок; высокотемпературный обжиг; графитация; создание конструкционных элементов УГР. Практически на каждом этапе изготовления происходит накопление различных микропримесей, которые активируются при эксплуатации графита в ядерном реакторе.

Формирование структуры и свойств углеграфитовых материалов происходит в процессе термического прокаливания кокса. В Европе и США этот процесс проводят при температуре ≈1300°C [11], в России (ранее в СССР) нефтяной кокс обрабатывают при диапазоне температур 1100-1300°С без доступа воздуха [12, 13]. Повышение температуры прокаливания с одной стороны повышает упорядоченность структуры двухмерных кристаллов, с другой – увеличивает адсорбционную способность коксов. Это приводит к накоплению микропримесей в материале после извлечения из печи, а также в процессе формования необожженных заготовок. Средняя концентрация калия в необожженных заготовках перед процессом высокотемпературной очистки составляет ≈6.08 мкг/г [14].

Наибольшее количество микропримесей в материале накапливается непосредственно при графитации, а также после завершения процесса при извлечении графита из электрических печей сопротивления [15]. Известно, что в печи пространство между заготовками заполняют пересыпкой, которая состоит из литейного кокса, содержащего 0.45–0.50 мас. % серы [16]. В процессе графитации атомы углерода, имеющие на границе обрыва свободные связи, способны присоединять различные элементы (в том числе Cl). Некоторые атомы способны замещать атомы углерода в узлах кристаллической решетки. Отдельные молекулы могут внедряться между слоями графита, образуя хлориды редкоземельных и переходных металлов. Молекулы хлора способны образовывать ковалентную связь с атомами углерода, калий может находиться в графите в виде твердого раствора замещения, а сера — в свободном состоянии.

Удаление микропримесей после графитации, как правило, проводят путем выдержки полученных графитовых образцов в газовой среде или в вакууме при температуре $2500-3000^{\circ}$ C [18]. Очистка в газовой среде характерна для отечественного марок графита. В качестве газа используют хлор и фтор или соединения их содержащие. Некоторый графит очищают с помощью фреона-12 (дифтордихлорметана, CCl₂F₂), гексафторида серы (SF₆) и фреона-10 (тетрахлорметана, CCl₄) [19]. Таким образом, очистка графитовых заготовок приводит, с одной стороны, к удалению большей части микропримесей, а, с другой стороны, к накоплению хлор- и серосодержащих соединений.

Обобщенные данные по содержанию микропримесей, приводящих к образованию радионуклида ³⁶Cl, в необлученных графитовых элементах представлены в табл. 4.

Как видно из табл. 4, содержание микропримесей, приводящих к образованию радионуклида ³⁶Cl, отличается для различных марок реакторного графита. По некоторым данным разброс превышает 100 раз.

Так, наиболее загрязненным является графит, производимый в США, а наиболее чистым – в Великобритании и России. Это объясняется тем, что американский реакторный графит исторически был произведен первым, и технология его очистки еще не была отработана. Французский графит (P3AN, 3JHA2N) имеет невысокую загрязненность, что объясняется использованием специализированных химически активных газов в процессе его очистки при производстве.

ОПРЕДЕЛЕНИЕ ФОРМЫ НАХОЖДЕНИЯ ³⁶С1

Химическая форма радионуклида ³⁶Cl в структуре графитовых РАО будет зависеть от канала образования. Все источники образования данного радионуклида можно условно разделить на две группы: источники, накапливающиеся непосредственно в процессе производства ядерного графита и после (вплоть до момента выгрузки облученного графита из реактора). В процессе производства графита образование и накопление микропримесей происходит при подготовке кокса и пека, а также в процессе высокотемпературной очистки и графитации. После изготовления графита может происходить адсорбция различных хлорсодержащих и серосодержащих соединений, находящихся в окружающей среде, на поверхности графита (например, HCl, HOCl, NaCl, оксихлориды, SO₂, H₂S, (CH₃)₂S, SO₄²⁻). Также могут адсорбироваться газообразные хлориды, нахоляшиеся в пролувочном газе вследствие неполной его очистки, при эксплуатации ядерного реактора. Для зарубежных графитовых элементов характерна их транспортировка до места эксплуатации в таре из поливинилхлорида ([-CH₂-CHCl-],), что также приводит к загрязнению поверхности необлученного графита.

СОСТАВ ПРОДУКТОВ РЕАКЦИИ ПРИ ГРАФИТАЦИИ И В ПРОЦЕССЕ УДАЛЕНИЯ МИКРОПРИМЕСЕЙ

С целью определения возможных химических соединений радионуклида ³⁶Сl нами проводилось термодинамическое моделирование равновесного состава продуктов реакции при графитации и в процессе удаления микропримесей. Критерием достижения системой состояния термодинамического равновесия является достижение максимума ее характеристической функции. Для изолированной системы такой функцией является энтропия, а максимальное значение энтропии – критерий достижения равновесного состояния [23, 24]. Для моделирования использовалась специализированная программа ТЕРРА [25]. Состав фаз и характеристики равновесного состава моделировались с использованием справочной базы данных [26]. Исходное содержание примесей в необлученном графите выбиралось согласно данным, представленным в работе [20]. Расчет проводили в системе графит-газ, где в качестве последнего рассматривались Cl_2 , CCl_2F_2 , SF_6 и CCl_4 . Результаты расчета представлены на рис. 2.

Из рис. 2 видно, что при использовании хлорсодержащих газов (рис. 2а, 2б, 2г) при очистке графитовых заготовок происходит накопление газообразного Cl₂, который проникает внутрь графита через развитую систему пор и адсорбируется на поверхности. При использовании газов Cl₂ и CCl₄ большая часть продуктов реакции, которые в процессе облучения способны образовывать радионуклид ³⁶Cl, представлены в виде хлоридов: C₂Cl₂, CCl, CCl₂, ClCN, KCl, SiCl₂, VCl₂, CaCl₂. В меньшей степени образуются соединения серы, которые, как правило, представлены в виде сероуглерода. При использовании в качестве очищающего газа дифтордихлорметана происходит одновременно два процесса: хлорирование и фторирование поверхности графита. Практически все имеющиеся примеси взаимодействуют с фтором и удаляются с очищаемой поверхности. Однако возможно образование соединений ClF и KF, которые в дальнейшем подвергаются облучению нейтронами.

Наиболее полная очистка графитовых заготовок происходит при использовании в качестве теплоносителя гексафторида серы SF_6 . Это связано с тем, что фтор взаимодействуют со всеми микропримесями и образует газообразные продукты реакции, а отсутствие хлора исключает появление хлоридов в структуре графита. При этом количество образующихся сульфатов и сульфидов незначительно. К основным соединениям, находящимся в необлученном графите после обработки гексафторидом серы можно отнести: CS_2 , K, KF, KCl.

Полученные результаты расчета справедливы только для процесса графитации и очистки. При извлечении заготовки из печей и камер может происходить взаимодействие соединений, находящихся в графитовой заготовке, с воздухом, атмосферными примесями и парами воды.

СОСТАВ ПРОДУКТОВ РЕАКЦИИ ПРИ ИЗВЛЕЧЕНИИ ЗАГОТОВОК ИЗ ПЕЧЕЙ И КАМЕР

Рассмотрим основные химические реакции, описывающие такие процессы:

$$ClCN + H_2O \rightarrow HNCO + HCl,$$
 (1)

$$HNCO + H_2O \rightarrow NH_3 + CO_2, \qquad (2)$$

$$CICN + NH_3 \rightarrow H_2N-CN + HCl, \qquad (3)$$

$$4\text{ClF} + 2\text{H}_2\text{O} \rightarrow 2\text{Cl}_2 + \text{O}_2 + 4\text{HF}, \tag{4}$$

$$ClF + H_2 \rightarrow HCl + HF,$$
 (5)

$$CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2, \tag{6}$$

$$CS_2 + 2H_2O \rightarrow CO_2 + 2H_2S.$$
 (7)

Реакции (1)–(2) отражают процесс гидролиза хлорциана парами воды с образованием изоциановой кислоты, которая, в свою очередь, гидролизуется до образования аммиака и диоксида углерода. Образующийся аммиак также может взаимодействовать с ClCN, в результате чего образуется HCl. Фторид хлора, взаимодействуя с парами воды и водородом, может образовывать молекулярный хлор Cl₂ по реакции (4) и хлороводород HCl по реакции (5). Сероуглерод CS₂ способен окисляться на воздухе до SO₂ по реакции (6). При взаимодействии CS₂ с водой происходит образование сероводорода H₂S по реакции (7). Однако последняя реакция протекает при темпера-

Рис. 2. Термодинамическое моделирование равновесного состава продуктов реакции при очистке необлученного графита различными газами: $a - Cl_2$, $6 - CCl_2F_2$, $B - SF_6$, $r - CCl_4$.

туре выше 150°C, что достигается лишь при эксплуатации ядерного реактора и в случае разгерметизации технологического канала [27].

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ХИМИЧЕСКОЙ ФОРМЫ НАХОЖДЕНИЯ РАДИОНУКЛИДА ³⁶СІ В ГРАФИТЕ

В работе [28] представлены результаты определения химической формы нахождения радионуклида ³⁶Cl методом рентгеновской фотоэлектронной спектроскопии поверхности облученного ядерного графита. Показано, что хлор имеет ковалентную связь с углеродом на исследуемой поверхности. При этом происходит sp^2 и sp^3 -гибридизация атомов углерода. Вероятнее всего, что рассматриваемый радионуклид находится в молекуле Cl₂ или связан с углеродом С–Сl. С другой стороны, масс-спектрометрические исследования показывают наличие соединения HCl [29]. Исходя из этого, возможными реакциями между углеродом и хлором являются [30]:

реакция замещения водорода хлором:

$$-C-H+Cl_2 \rightarrow -C-Cl+HCl; \tag{8}$$

 реакция присоединения к сопряженным двойным связям:

$$C=C+Cl_2=ClC-CCl,$$
(9)

- реакция дегидрирования:

$$HC-CH + Cl_2 = C = C + 2HCl.$$
 (10)

В работе [31] показано, что реакция (8) является многостадийной и включает в себя хемосорбцию газообразного Cl_2 , диффузию соединений внутрь поверхности графита (в том числе поверхности пор) и образование HCl. При этом реакция замещения водорода хлором необратима, а сам хлор не удаляется при нагревании или химической очистке [32]. В процессе обработки графита при температуре 500°С происходит необратимый процесс образования ковалентной связи C–Cl, в результате чего хлор занимает положение между слоями графита.

Кроме того, экспериментально определено, что радионуклид ³⁶Cl (в меньшей степени) может находиться в соединениях: NaClO₄, NaClO₃, NaClO₂, NaCl, $[-CH_2-CHCl-]_n$, HClO, CH₃Cl, ClONO₂, HClO, HClO₂, HClO₃, ClO, ClO₂, ClO₃ [33, 34].

ЗАКЛЮЧЕНИЕ

Рассмотренные каналы образования радионуклида ³⁶Cl объясняют его локализацию в облученном графите. Это проявляется в отсутствии закономерностей его распределения как в объемах графита с характерными размерами не менее $\approx 1-2$ мм (толщина образца), так и в объемах с характерными размерами в десятки сантиметров (размер блоков). Возможно, это одно из объяснений эффекта "самородка" (Nugget effect).

Представленные результаты экспериментов качественно согласуются с результатами термодинамического моделирования равновесного состава. Таким образом, наибольшее количество примесей, из которых образуется ³⁶Cl при эксплуатации графита в ядерном реакторе, накапливается в процессе графитации, очистки в среде химически активных газов и при транспортировке готовых конструкционных элементов. При этом наиболее вероятными соединениями являются, в которых может находиться рассматриваемый радионуклид HCl, KCl и, в меньшей степени: NaClO₄, NaClO₃, NaClO₂, NaCl, $[-CH_2-CHCl-]_n$, HClO, CH₃Cl, ClONO₂, HClO, HClO₂, HClO₃, ClO, ClO₂, ClO₃.

СПИСОК ЛИТЕРАТУРЫ

- Pavliuk A.O., Kotlyarevskiy S.G., Bespala E.V. et al. // J. Environ. Radioactiv. 2018. V. 184. P. 22. https://doi.org/10.1016/j.jenvrad.2018.01.005
- 2. *Poncet B., Petit L.* // J. Radioanal. Nucl. Ch. 2013. V. 298. № 2. P. 941.
- https://doi.org/10.1007/s10967-013-2519-6
- 3. *Lansdell T., Newland M.* Magnox reactor graphite characterisation stage 2–final active analysis stage, Babcock Report TSG. 2012. V. 11(0801).
- 4. *Бушуев А.В., Кожин А.Ф., Петрова Е.В.* // Атомная энергия. 2006. Т. 101. Вып. 5. С. 359.
- Hou X., Ostergaard L.F., Nielsen S.P. // Anal. Chem. 2007. V. 79. P. 3126. https://doi.org/10.1021/ac0701000
- Narkunas E., Smaizys A., Poskas P. et al. // Prog. Nucl. Energy. 2016. V. 91. P. 265.
- 7. *Black G.* Irradiated Graphite Waste: Analysis and Modeling of Radionuclide Production with a View to Long Term Disposal. Manchester: The University of Manchester, 2014. P. 198.
- TECDOC-1647. "Progress in Radioactive Graphite Waste Management". IAEA, Vienna. 2010. URL: https://www-pub.iaea.org/books/iaeabooks/8421/ Progress-in-Radioactive-Graphite-Waste-Management.
- Technical Report 1013091. Graphite Decommissioning: Options for Graphite Treatment, Recycling or Disposal, Including a Discussion of Safety-Related Issues. EPRI. 2006.
- Бушуев А.В. и др. Радиоактивный реакторный графит: Монография. М.: НИЯУ МИФИ, 2015. 148 с.

- Ragan S., Marsh H. // J. Mater. Sci. 1983. V. 18. № 11. P. 3161. https://doi.org/10.1007/BF00544139
- 12. Валявин Г.Г., Запорин В.П., Габбасов Р.Г. и др. // Переработка нефти и газа. 2011. № 8. С. 44.
- 13. *Красюков А.Ф.* Нефтяной кокс. Москва: Гостоптехиздат, 1963. 163 с.
- Zhao H., Liang T., Zhang J., Li Z. et al. // Rare Metals. 2006. V. 25. P. 347. https://doi.org/10.1016/S1001-0521(07)60103-X
- 15. *Вяткин С.Е. и др.* Ядерный графит. М.: Атомиздат, 1967. 279 с.
- Справочник коксохимика: В 6 т. / Под ред. инж. Шелкова А.К. М.: Металлургия, 1966. 391 с.
- 17. *Авдеенко М.А., Багров Г.Н.* // Конструкционные углеграфитовые материалы. 1964. № 1. С. 34.
- Zhao H., Liang T., Zhang J. et al. // Nucl. Eng. Des. 2006. V. 236. P. 643. https://doi.org/10.1016/j.nucengdes.2005.10.023
- 19. Nightingale R.E. Nuclear Graphite. New York-Lon-

don: Academic Press, 1962. 562 p.

- Black G., Jones A.N., McDermott L. et al. // Materials Research Society Symposium Proceedings. 2012. V. 1475. P. 107. https://doi.org/10.1557/opl.2012.562
- 21. *Comte J., Guy C., Tornabene A.L. et al.* // J. Radioanal. Nucl. Ch. 2017. V. 314. № 2. P. 1245. https://doi.org/10.1007/s10967-017-5495-4
- 22. *Parry S., Cox J.* Graphite Characterisation (Stage 1-Define Characterisation Programme). Tech. Rep: UKAEA, 2010.
- Трусов Б.Г. // III Междунар. симп. по теор. и прикл. плазмохимии. Сб. матер. Т. І. Иваново, 16–21 сентября. 2002. С. 217.
- Белов Г.В., Трусов Б.Г. Термодинамическое моделирование химически реагирующих систем. М.: МГТУ имени Н.Э. Баумана, 2013. 96 с.
- 25. *Пупышев А.А.* Термодинамическое моделирование термохимических процессов. Екатеринбург: УГТУ-УПИ, 2007. 85 с.
- 26. Гурвич Л.В., Вейц И.В., Медведев В.А. Термодинамические свойства индивидуальных веществ: справочное издание в 4-х томах. М.: Наука, 1978– 1982. 328 с.
- 27. *Pavliuk A.O., Zagummenov V.S., Kotlyarevskiy S.G. et al.* // Therm. Eng. 2018. V. 65. № 1. P. 51.
- 28. Vaudey C.E., Toulhoat N., Moncoffre N., Bérerd N., Favergeon L., Pijolat M., Raimbault L., Sainsot P., Rouzaud J.N. Thermal Behaviour of Chlorine in Nuclear Graphite; Presented at 9th International Nuclear Graphite Specialists Meeting, Egmond zur Zee, The Netherlands. September 2008 (Available at IAEA International Knowledge Base on Nuclear Graphite, www.iaea.org/NuclearPower/Graphite).
- 29. *Vaudey C.E.* Effets de la Température et de la Corrosion Radiolytique sur le Comportement du Chlore dans le Graphite Nucléaire: Conséquences pour le Stockage des Graphites Irradiés des Réacteurs UNGG. Lyon: Cote B.I.U., 2010. 186 p.

e-mail: bespaia_evgeny@mail.i **e-mail: inovoselov@tpu.ru

Analysis of Causes of Irregular ³⁶Cl Radionuclide Distribution in Irradiated Nuclear Graphite E. V. Bespala^{1,} *, A. O. Pavlyuk², S. G. Kotlyarevskiy², I. Yu. Novoselov^{3,} ** ¹FNO FGUP "Mining and Chemical Combine", Zheleznogorsk, 636039 Russia ²JSC "Pilot and Demonstration Center for Decommissioning of Uranium-Graphite Nuclear Reactors", Seversk, 636000 Russia

The article is dedicated to analysis of concentration processes of long-lived radionuclide ³⁶Cl in irradiated graphite of uranium-graphite nuclear reactors. Radionuclide ³⁶Cl is one of the most essential isotopes for safety evaluation of radioactive waste disposal. Analysis of Nugget effect due to the substantial uneven ³⁶Cl content in samples of irradiated graphite of nuclear reactors is described in the article. Difference in ³⁶Cl concentration in the same graphite elements reaches 100 times regardless of operational factors (neutron flux, temperature). The paper deals with the basic processes, which can influence on ³⁶Cl contamination in irradiated graphite. Special attention is given to the determining ³⁶Cl occurrence form in graphite taking into account the features of its manufacture and to thermodynamic modeling of equilibrium compositions of reaction products during cleaning unirradiated graphite in gas environment.

Keywords: irradiated graphite, Nugget effect, chlorine, decommissioning, radionuclide, leaching, irregularity.

- Gonzales J., Ruiz M. del C., Bohé A. Et al. // Carbon. 1999. V. 37. P. 1979. https://doi.org/10.1016/S0008-6223(99)00063-9
- 31. *Pasquevich D.* // Thermochim. Acta. 1990. V. 167. P. 91. https://doi.org/10.1016/0040-6031(90)80468-E
- 32. *Tobias H., Soffer A.* // Carbon. 1985. V. 23. P. 281. https://doi.org/10.1016/0008-6223(85)90113-7
- 33. Papirer E., Lacroix R., Donnet J.B. et al. // Carbon. 1995. V. 33. P. 63. https://doi.org/10.1016/0008-6223(94)00111-C
- 34. *Soloman S.* Progress Towards a Quantitative Understanding of Antarctic Ozone Depletion // Nature. 1990. V. 347. P. 347. https://doi.org/10.1038/347347a0