УДК 629.7:067:537.2:621.38

ФОРМИРОВАНИЕ МИКРОТРЕЩИН НА ПОВЕРХНОСТИ СТЕКЛА, ОБЛУЧЕННОГО ПРОТОНАМИ С ЭНЕРГИЕЙ 30 кэВ

© 2020 г. Р. Х. Хасаншин^{а, b,} *, Л. С. Новиков^с, Д. А. Применко^b

^аАкционерное общество "Композит", Королев, Московская область, 141070 Россия ^bМосковский государственный технический университет им. Н.Э. Баумана, Москва, 105005 Россия ^cМосковский государственный университет им. М.В. Ломоносова, HИИ ядерной физики им. Д.В. Скобельцына, Москва, 119991 Россия *e-mail: rhkhas@mail.ru Поступила в редакцию 02.12.2019 г.

Поступила в редакцию 02.12.2019 г. После доработки 22.01.2020 г. Принята к публикации 25.01.2020 г.

Методами атомно-силовой микроскопии исследованы структурные изменения поверхности образцов стекла K-208, облученных протонами с энергией 20 и 30 кэВ в вакууме (10^{-4} Па). Установлено, что на поверхности стекла K-208, облученного протонами с энергией 30 кэВ при плотности потока $\varphi_p = 4.5 \times 10^{10}$ см⁻² · c⁻¹ и флуенсах $\Phi_p = (1.1 \times 10^{15} - 6.6 \times 10^{15})$ см⁻², образуются микротрещины, размеры которых растут с увеличением флуенса. Авторы полагают, что образование микротрещин обусловлено: появлением в поверхностном слое растягивающих напряжений в результате перестройки микроструктуры стекла, вызванной миграцией ионов натрия в поле внедренного заряда; формированием газонаполненных пузырьков; переносом массы к облучаемой поверхности и, возможно, выходом к облучаемой поверхности перколяционных каналов натрия и кислорода. Показано, что при тех же значениях φ_p и Φ_p облучение стекла K-208 протонами с энергией 20 кэВ не приводит к образованию микротрещин.

Ключевые слова: протонное облучение, стекло К-208, уплотнение стекла, атомно-силовая микроскопия, микротрещина, структура поверхности, полевая миграция ионов, газонаполненные пузырьки.

DOI: 10.31857/S1028096020090113

введение

В настоящее время силикатные стекла часто используют в условиях повышенных радиационных нагрузок, обусловленных воздействием потоков заряженных частиц. В качестве примеров могут служить стекла, применяемые в космических аппаратах и подвергающиеся воздействию неэкранированного космического излучения [1–3]. Такие стекла используются в различных детекторах, линзах и призмах, а также в качестве защитных покрытий элементов солнечных батарей и терморадиаторов.

Для придания силикатному стеклу необходимых свойств в его состав вводят оксиды щелочных металлов. Например, добавление оксида натрия (Na₂O) снижает температуру варки, ускоряет процесс стеклования и способствует осветлению стекла. Оксид калия (K₂O) вводят для снижения склонности стекла к кристаллизации, улучшения светопропускания и придания ему блеска. Облучение стекла способно изменить его состав [4–6], морфологию облучаемой поверхности [7–10], плотность [11–13] и микроструктуру стекла, привести к образованию в нем газонаполненных пузырьков [13–16], к генерации радиационных центров окраски, к аккумулированию инжектированных зарядов [17, 18], а также сопровождаться другими, часто взаимосвязанными, процессами.

Образование молекулярного кислорода, наблюдаемое в боросиликатных стеклах, облученных как электронами [13–16], так и ионами Не [19], Ar [20], Kr [21] и Xe [22], можно объяснить миграцией ионов щелочных металлов (Li⁺, Na⁺ и К⁺) в поле инжектированного заряда. Их полевая миграция играет ключевую роль в перестройке микроструктуры стекла и высвобождении атомов не мостикового кислорода. В частности, в [13] показано, что облучение электронами с энергией 50 кэВ приводит к уплотнению стекла, содержащего Na и K, во всем исследованном диапазоне значений флуенса от 1.3×10^{17} до 1.99×10^{20} см⁻². Установлено, что уплотнению стекла, как и образованию пузырьков с О2, предшествовало перераспределение ионов Na⁺. Кроме того, превращение боратов тетрагональной группы (BO₄) в бораты тригональный группы (BO₃) также рассматривается как один из механизмов, приводящих к образованию молекулярного кислорода [23]. Воздействие электронов приводит также к увеличению полимеризации в облучаемом слое стекла, к уменьшению среднего угла связи Si–O–Si [15, 16, 24–26]. Основные эффекты электронного и ионного облучения во многом связаны с перераспределением в стеклах ионов щелочных металлов [13–16, 19–26].

Формирование в облучаемом стекле механических напряжений может быть обусловлено неравномерным распределением выделенной в нем энергии воздействующего излучения, перестройкой микроструктуры стекла, образованием газонаполненных пузырьков и так далее. Так, уплотнение приповерхностного слоя стекла под действием заряженных частиц средних энергий может приводить к появлению в нем растягивающих напряжений и, когда они достигают значений, превышающих предел прочности стекла, происходит его растрескивание. В [27, 28] исследовано образование трешин в поверхностных слоях натрий-силикатного стекла под действием мощного ионного пучка. Возникновение трещин и разрушение стекла объясняют наличием в приповерхностной области растягивающих остаточных механических напряжений. Так же трактуют появление трещин на поверхности натриево-известковых стеклянных пластин толщиной 6 мм, облученных протонами с энергией 480 кэВ [29]. В настоящее время в литературе отсутствуют результаты исследований подобных эффектов при воздействии на стекло протонов с энергией, характерной для горячей магнитосферной плазмы.

Таким образом, повреждения, вызванные облучением, могут изменить как физические, так и химические свойства стекла. Понимание роли эффектов облучения в микроструктурной эволюции стекла имеет решающее значение для прогнозирования изменения его характеристик после длительного взаимодействия, например, с окружающей космической плазмой. Бомбардирующие частицы инжектируют в стекло энергию, импульс, заряд, а в случае ионного облучения и ионы атомов. Происходящие при этом изменения структуры стекла часто носят общий характер, и можно ошибочно предположить, что природа радиационно-индуцированных дефектов не зависит от конкретной характеристики излучения. Однако результаты экспериментов, представленные в настоящей работе, показывают, что изменения морфологии стекла К-208 после воздействия протонов с энергией 20 и 30 кэВ при одинаковых интенсивностях, длительности и условиях облучения могут принципиально отличаться. Эти результаты, не упоминавшиеся до настоящего времени в литературе, очень важны для прогнозирования стойкости защитных стекол космических аппаратов к воздействию горячей магнитосферной плазмы.

При испытаниях диэлектрических материалов внешних поверхностей высокоорбитальных спутников на стойкость к факторам электростатических разрядов, обусловленных действием горячей магнитосферной плазмы, образцы материалов подвергают электронно-протонному облучению с энергией частиц $E_e = 15$ кэВ и $E_p = 30$ кэВ. Для интерпретации результатов воздействия такой модельной плазмы необходимо изучить эффекты воздействия на материал ее отдельных компонентов.

МЕТОДИКА ЭКСПЕРИМЕНТА

В экспериментах в качестве образцов использовали защитные покрытия солнечных батарей космических аппаратов – стеклянные пластины размерами $40 \times 40 \times 0.17$ мм. Исследуемое стекло К-208 имеет следующий состав: SiO₂ – 69.49; B₂O₃ – 11.93; Al₂O₃ – 4.00; K₂O – 4.25; Na₂O – 10.33; CeO₂ – 2.00 мол. % (сверх 100%). Пластины нарезают из ленты, которую вытягивают через валки из расплава стекла К-208 и отжигают для снятия остаточных механических напряжений после вытяжки. Такие пластины являются удобными модельными образцами для исследования влияния радиации на структуру поверхности стекла. Это связано с тем, что технология изготовления позволяет брать для экспериментов образцы одинакового химического состава с шероховатостью поверхности порядка 1 нм (рис. 1).

Облучение проводили в вакуумной камере испытательного стенда УВ-1/2 АО "Композит" при давлении 10^{-4} Па. Для этого пластины прикрепляли к полированной поверхности металлического столика, термостатированного при температуре 20 ± 1 °С. Облучали всю поверхность образца. Распределение плотности потоков частиц по поверхности столика контролировали с помощью 25 цилиндров Фарадея. Неравномерность пучка на столике диаметром 200 мм не превышала 10%.

Поверхности образцов до и после облучения исследовали с помощью атомно-силового микроскопа (ACM) Solver P47-Multi-Technique SPM. Исследования проводились на девяти группах образцов, параметры облучения которых представлены в табл. 1. На образцы группы № 9 одновременно с протонами воздействовали еще и электроны с энергией $E_e = 5$ кэВ. При плотности потока $\varphi_e = 1.84 \times 10^{10}$ см⁻² · с⁻¹ флуенс электронов составил $\Phi_e = 9 \times 10^{14}$ см⁻².

Рис. 1. АСМ-изображение необлученного образца: а – 3D-изображение фрагмента поверхности 2.5 × 2.5 мкм; б – сечение фрагмента вдоль линии *1–1*[°].

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

При подготовке экспериментов были проведены предварительные расчеты с помощью программы GANT-4, показавшие, что при толщине стекол 170 мкм через них не проникают электроны и протоны с энергией до 0.20 и 4.5 МэВ соответственно. Следовательно, стекла такой толщины служат надежной защитой от той части протонного излучения, которая вносит основной вклад в дозовые нагрузки на материалы, используемые на поверхностях высокоорбитальных спутников.

При исследовании поверхности первых шести групп облученных образцов, помимо микровыступов (газонаполненных пузырьков), которые наблюдались на К-208 после облучения протонами с $E_p = 20$ кэВ [9, 10], были обнаружены микротрещины. В качестве иллюстрации на рис. 2 изображен фрагмент поверхности образца из второй группы с микротрещиной в центре. С увеличением флуенса протонов характер образующихся на образцах дефектов не меняется, а их линейные размеры возрастают. Это подтверждают изображения фрагментов поверхностей образцов групп № 2, 4 и 5 (рис. 2–4). Необходимо отметить, что при проведении дополнительных экспериментов микротрещины с линейными размерами до нескольких десятков микрометров наблюдались на стекле К-208, облученном протонами с $E_p = 30$ кэВ при значениях $\varphi_p = 10^{11}$ см⁻² · с⁻¹ и $\Phi_p =$ $= 1.2 \times 10^{16} \,\mathrm{cm}^{-2}$.

На рис. 5 изображен фрагмент поверхности образца из группы № 7, облученного протонами с $E_p = 20$ кэВ с той же плотностью потока и флуенсом, что и образцы второй группы. Из сравнения изображений, представленных на рис. 2 и 5, видно, что во втором случае концентрация микровыступов на образце почти в три раза больше, но они

имеют меньшие размеры, и на его поверхности нет дефектов, подобных микротрещинам.

АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

Известно, что в силикатном стекле каждый мостиковый кислород связывает два атома кремния (\equiv Si-O-Si \equiv). Однако присутствие ионов щелочных металлов приводит к локальному разрушению микроструктуры стекла и к появлению не мостиковых атомов кислорода. Такие атомы, связанные с ближайшим ионом Na⁺ (\equiv Si-O-Na⁺) или K⁺ (\equiv Si-O-K⁺), служат для поддержания локальной нейтральности заряда. Поэтому пространственное перераспределение ионов щелочных металлов сопровождается высвобождением не мостиковых атомов кислорода, которые в дальнейшем способны мигрировать и скапливаться в окрестностях дефектов сетки стекла, образуя газонаполненные пузырьки.

Таблица 1. Параметры облучения образцов

№ группы	<i>Е</i> _{<i>p</i>} , кэВ	$\varphi_p, 10^{-10} \mathrm{cm}^{-2} \cdot \mathrm{c}^{-1}$	$ \Phi_p, 10^{-15} \mathrm{сm}^{-2} $
1	30	4.50	1.1
2	30	4.50	2.2
3	30	4.50	3.3
4	30	4.50	4.4
5	30	4.50	5.5
6	30	4.50	6.6
7	20	4.50	2.2
8	20	6.75	3.3
9	20	6.34	3.1

Рис. 2. АСМ-изображение образца второй группы: а, б – 3D- и 2D-изображения фрагмента поверхности 2.5 × 2.5 мкм; в – сечения вдоль линий *1*–*1*′(*1*) и *2*–*2*′(*2*).

Рис. 3. АСМ-изображение образца четвертой группы: а, 6 - 3D- и 2D-изображения фрагмента поверхности 2.5 × 2.5 мкм; в – сечения вдоль линий 1-I'(1) и 2-2'(2).

Рис. 4. АСМ-изображение образца пятой группы: а, 6 - 3D- и 2D-изображения фрагмента поверхности 5×5 мкм; в – сечения вдоль линий 1-1'(1) и 2-2'(2).

Рис. 5. АСМ-изображение образца седьмой группы: а, б – 3D- и 2D-изображения фрагмента поверхности 2.5 × 2.5 мкм; в – сечения вдоль линий *1*–*1*′(*1*) и *2*–2′(*2*).

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 9 2020

№ группы	<i>L</i> , мкм	Н, нм	<i>D</i> , нм	<i>h</i> , нм
1	0.40	22	180	18
2	0.75	43	190	23
3	1.20	50	200	25
4	1.50	58	205	26
5	1.75	80	210	30
6	3.20	83	210	33
7	0	0	120	10
8	0	0	140	13
9	0	0	130	12

Таблица 2. Характерные размеры микротрещин (L и H) и микровыступов (D и h)

Для ковалентной связи Si–O по сравнению с ионной O–Na⁺ или O–K⁺ характерны высокие значения упругих постоянных при сопоставимых значениях энергии связи. Поэтому энергия активации смещения ионов Na⁺ $\Delta E_{sNa} = 0.10$ эВ [30] и K⁺ $\Delta E_{sK} = 0.35$ эВ [31] значительно меньше энергии активации смещения атомов кислорода. Ионный радиус кислорода $r_i = 1.37$ Å меньше, чем у K⁺, но больше чем у Na⁺, который изменяется от 1.00 до 1.24 Å с ростом координационного числа от 5 до 9. Минимальный радиус K⁺ равен 1.38 Å, поэтому подвижность Na⁺ в стекле больше, чем K⁺.

При взаимодействии со стеклом основная часть энергии протонов в результате столкновительной и электронной релаксации перераспределяется между атомами облучаемого слоя. Функция распределения атомов по энергии колебаний отклоняется от термодинамически равновесного состояния, что стимулирует миграционные процессы примесных атомов. Таким образом, пребывание Na⁺ и K⁺ в состоянии микроскопической неравновесности ускоряет их перераспределение под действием поля инжектированного в стекло заряда, что, в свою очередь, приводит к изменениям микроструктуры стекла.

В предыдущих исследованиях изменений морфологии стекла при электронном [8], протонном [9] и электронно-протонном [10] облучении в качестве модельных материалов также использовали покровные стекла солнечных батарей космических аппаратов. Энергия электронов варьировалась от 10 до 50 кэВ, а энергия протонов E_p составляла 20 кэВ. Результаты исследований показали, что изменения морфологии стекла при раздельном электронном и протонном облучении обусловлены в основном появлением следов электростатических разрядов в первом и образованием газонаполненных пузырей во втором случае. Образование микротрещин под воздействием на стекло протонов с $E_p = 20$ кэВ в [9] было зарегистрировано при $\varphi_p > 2.4 \times 10^{11} \text{ см}^{-2} \cdot \text{c}^{-1}$. Характер изменения структуры поверхности при электронно-протонном облучении зависел от отношения $\varphi_e \ltimes \varphi_p$ [10].

Сравнительный анализ АСМ-изображений образцов, облученных протонами с $E_p = 30$ и 20 кэВ, проведенный в настоящей работе, выявил существенную разницу в структурных изменениях поверхностей. В табл. 2 представлены характерные размеры микротрещин (L – линейный размер и H – высота) и микровыступов (D – максимальны диаметр основания и h – средняя высота) для девяти групп облученных образцов. Эти величины получены в результате усреднения соответствующих значений по трем образцам каждой группы.

Для интерпретации экспериментальных данных проводили расчеты переноса протонов с различной энергией через стекло К-208 по программе GANT-4. Из представленных на рис. 6 результатов следует, что глубина проникновения и удельные потери энергии протонов с $E_p = 30$ кэВ больше, чем протонов с $E_p = 20$ кэВ на 23 и 19% соответственно. Одной из причин столь существенных различий структурных изменений поверхностей облученных образцов (рис. 2 и 5) могло бы быть то, что при равенстве значений ϕ_n и Φ_n инжектируемые в стекло количества энергии соотносятся как 3 : 2. Для проверки этой гипотезы на образцы группы № 8 воздействовали протонами с $E_p = 20$ кэВ. При значении $\varphi_p = 6.75 \times 10^{10}$ см⁻² · с⁻¹ флуенс составил 3.3 × 10¹⁵ см⁻². Очевидно, что в этом случае в стекло внедряется больше положительного заряда, чем в образцы второй группы. Чтобы компенсировать поле этого "избыточного" заряда, на образцы группы № 9 одновременно с протонами воздействовали еще и электронами с энергией 5 кэВ при $\phi_e = 1.84 \times 10^{10} \text{ см}^{-2} \cdot \text{c}^{-1} \text{ и } \Phi_e =$ $= 9 \times 10^{14}$ см⁻², а флуенс протонов составил 3.1 × $\times 10^{15}$ см⁻². АСМ-исследования образцов групп № 8 и 9 показали, что изменения структуры их поверхностей такие же, что и у образца седьмой группы, фрагмент поверхности которого представлен на рис. 5, т.е. микротрещины на облученных поверхностях стекол не образуются.

В экспериментах глубина проникновения протонов с $E_p = 20$ и 30 кэВ в стекло составляла около 0.4 и 0.5 мкм. Неравномерное распределение поглощенной энергии излучения и радиационно-стимулированные процессы перестройки микроструктуры в облучаемом слое стекла обуславливают неравномерное изменение его плотности, которое приводит к появлению растягивающих напряжений. В формирующееся поле механических напряжений определенный вклад вносит и образование газонаполненных пузырьков. В случае, когда величина результирующих

Рис. 6. Распределение выделенной в стекле К-208 энергии при протонном облучении с энергией 30 (*1*) и 20 кэВ (*2*).

напряжений превысит предел прочности стекла, на нем появляются микротрещины. В индуцированном облучением поле механических напряжений происходит также перенос массы к облучаемой поверхности. Этим объясняется возвышение области формирования микротрещин над периферией. Подробный анализ АСМ-изображений образцов показал, что "центрами" зарождения трещин являются микровыступы, в частности, газонаполненные пузырьки.

Анализ литературных данных и результатов выполненных экспериментов позволяет предположить, что основными взаимосвязанными процессами, вызывающими образование микротрещин на облучаемой протонами поверхности стекла К-208, являются: формирование области положительного объемного заряда; полевая миграция ионов натрия, ускоренная в облучаемом слое их присутствием в состоянии микроскопической неравновесности; появление в поверхностном слое растягивающих напряжений за счет уплотнения материала в результате перестройки микроструктуры стекла; формирование газонаполненных пузырьков, создающих дополнительные механические напряжения; перенос массы к облучаемой поверхности; а также, возможно, выход к облучаемой поверхности перколяционных каналов натрия и кислорода.

выводы

Облучение пластин стекла K-208 в вакууме 10^{-4} Па протонами с энергией $E_p = 30$ кэВ при плотности потока частиц $\varphi_p = 4.5 \times 10^{10}$ см⁻² · с⁻¹ и флуенсе в диапазоне $\Phi_p = 1.1 \times 10^{15}$ —6.6 × 10^{15} см⁻² приводит к появлению на поверхности образцов газонаполненных пузырьков и микротрещин, линейные размеры которых растут с увеличением

флуенса. При облучении аналогичных образцов протонами с $E_p = 20$ кэВ при прочих равных условиях облучения образование микротрещин не наблюдалось. Проведенный сопоставительный анализ результатов облучения стеклянных образцов протонами с энергией 30 и 20 кэВ позволяет предположить, что появление на стекле микротрещин при энергии воздействующих протонов $E_n =$ = 30 кэВ обусловлено тем, что часть пузырьков газа образуется в стекле дальше от облучаемой поверхности, и пузырьки имеют большие размеры, чем при энергии протонов $E_p = 20$ кэВ. В обоих случаях неравномерное по толщине уплотнение материала облучаемого слоя, связанное, согласно литературным данным, с перестройкой его микроструктуры за счет пространственного перераспределения Na, приводит к появлению растягивающих напряжений. Авторы полагают, что при облучении протонами с $E_p = 30$ кэВ газонаполненные пузырьки создают в стекле дополнительное давление, направленное нормально к облучаемой поверхности, что в совокупности с поверхностными растягивающими напряжениями приводит к образованию микротрещин и переносу материала к области их формирования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ferguson D.C., Wimberly S.C. The Best GEO Daytime Spacecraft Charging Index. // Proceed. 50th AIAA Aerospace Sci. Mtg. USA, 2013. P. AIAA 2013-0810. https://doi.org/10.2514/6.2013-810
- 2. *Messenger S.R., Wong F., Hoang B. et al.* // IEEE Transac. Nucl. Sci. 2014. V. 61. № 6. P. 3348. https://doi.org/10.1109/TNS.2014.2364894
- 3. *Toyoda K., Okumura T., Hosoda S., Cho M.* // J. Spacecraft Rockets. 2005. V. 42. № 5. P. 947. https://doi.org/10.2514/1.11602
- Wang Q., Geng H., Sun Ch. et al. // J. Appl. Phys. 2016.
 V. 119. P. 023103. https://doi.org/10.1063/1.4939097
- Jurek K., Gedeon O., Hulinsky V. // Mikrochim. Acta Suppl. 1998. V. 15. P. 269. https://doi.org/10.1007/978-3-7091-7506-4_36
- Gedeon O., Hulinsky V., Jurek K. // Mikrochim. Acta. 2000. V. 132. Iss. 2–4. P. 505. https://doi.org/10.1007/s006040050050
- Kowalski Z.W., Wilk J. Ion-Beam Bombardment Modification of Surfaces. // Proceed. 5th Eur. Conf. on Advanced Materials and Processes and Applications: Materials, Functionality & Design–Euromat 97. Maastricht, The Netherlands, 1997. V. 3. P. 79.
- Khasanshin R.H., Novikov L.S. // Adv. Space Res. 2016.
 V. 57. P. 2187.

https://doi.org/10.1016/j.asr.2016.02.023

- 9. Хасаншин Р.Х., Новиков Л.С. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. № 11. С. 48. https://doi.org/10.1134/S0207352818110136
- 10. Хасаншин Р.Х., Новиков Л.С., Коровин С.Б. // Поверхность. Рентген., синхротр. и нейтрон. исслед.

2017. № 9. C. 28. https://doi.org/10.7868/S0207352817090049

- Norris C.B., Eernisse E.P. // J. Appl. Phys. 1974. V. 45. Iss. 9. P. 3876. https://doi.org/10.1063/1.1663878
- Primak W., Kampwirt R. // J. Appl. Phys. 1968. V. 39. Iss. 12. P. 5651. / https://doi.org/10.1063/1.1656029
- 13. *Gavenda T., Gedeon O., Jurek K.* // Nucl. Instrum. Methods Phys. Res. B. 2014. V. 322. P. 7. https://doi.org/10.1016/j.nimb.2013.12.017
- Ollier N., Rizza G., Boizot B., Petite G. // J. Appl. Phys. 2006. V. 99. Iss. 7. P. 073511. https://doi.org/10.1063/1.2189026
- Boizot B., Petite G., Ghaleb D. et al. // J. Non-Cryst. Solids. 1999. V. 243. P. 268. https://doi.org/10.1016/S0022-3093(98)00822-9
- 16. *Chen L., Wang T.S., Zhang G.F. et al.* // Chin. Phys. B. 2013. V. 22. № 12. P. 126101.
- Alley T.G., Myers R.A., Brueck S.R.J. // J. Non Cryst. Solids. 1998. V. 242. Iss. 2–3. P. 165. https://doi.org/10.1016/S0022-3093(98)00788-1
- Masui H., Toyoda K., Cho M. // IEEE Transac. Plasma Sci. 2008. V. 36. P. 2387. https://doi.org/10.1109/TPS.2008.2003191
- Abbas A., Serruys Y., Ghaleb D. et al. // Nucl. Instrum. Methods Phys. Res. B. 2000. V. 166–167. P 445. https://doi.org/10.1016/S0168-583X(99)00695-3
- Zhang G.F., Wang T.S., Yang K.J. et al. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 316. P. 218. https://doi.org/10.1016/j.nimb.2013.09.020

- Chen L., Zhang D.F., Lv P. et al. // J. Non-Cryst. Solids. 2016. V. 448. P. 6. https://doi.org/10.1016/j.jnobcrysol.2016.06.029
- Chen L., Wang T.S., Yang K.J. et al. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 307. P. 566. https://doi.org/10.1016/j.nimb.2013.01.089
- Ollier N., Charpentier T., Boizot B., Petite G. // J. Phys.: Condens. Matt. 2004. V. 16. P. 7625. https://doi.org/10.1088/0953-8984/16/43/006
- 24. *Boizot B., Petite G., Ghaleb D., Calas G.* // J. Non-Cryst. Solids. 2001. V. 283. P. 179. https://doi.org/10.1016/S0022-3093(01)00338-6
- 25. Boizot B., Petite G., Ghaleb D. et al. // Nucl. Instrum. Methods Phys. Res. B. 2000. V. 166–167. P. 500. https://doi.org/10.1016/S0168-583X(99)00787-9
- 26. Ollier N., Boizot B., Reynard B. et al. // J. Nucl. Mater. 2005. V. 340. Iss. 2–3. P. 209. https://doi.org/10.1016/j.jnucmat.2004.11.011
- 27. Ковивчак В.С., Попов В.Е., Панова Т.К., Бурлаков Р.Б. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2003. № 4. С. 38.
- 28. *Ковивчак В.С., Панова Т.В.* // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 8. С. 59. https://doi.org/10.7868/S020735281708008X
- Jensen T., Lawn B.R., Dalglish R.L., Kelly J.C. // Rad. Eff.: Incorp. Plasma Sci. Plasma Technol. 1976. V. 28. Iss. 3–4. P. 245. https://doi.org/10.1080/00337577608237446
- 30. Shelby J.E., Day D.E. // J. Am. Ceram. Soc. 1969. V. 52. P. 169. https://doi.org/10.1111/j.1151-2916.1969.tb13358.x
- Anderson O.L., Stuart D.A. // J. Am. Ceram. Soc. 1954.
 V. 37 P. 573. https://doi.org/10.1111/j.1151-2916.1954.tb13991.x

Formation of Microcracks on the Surface of a Glass Irradiated with 30 keV Protons

R. H. Khasanshin^{1, 2, *}, L. S. Novikov³, D. A. Primenko²

¹JSC "Kompozit", Korolev, 141070 Moscow Region, Russia ²Bauman Moscow State Technical University, Moscow, 105005 Russia

³Lomonosow Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, 119991 Russia

*e-mail: rhkhas@mail.ru

Changes in the surface structure of K-208 glass irradiation with 20 and 30 keV protons in vacuum (10^{-4} Pa) are studied using atomic force microscopy. It is found that on the surface of K-208 glass irradiated with 30 keV protons at a flux density of $\varphi_p = 4.5 \times 10^{10}$ cm⁻² s⁻¹ and fluences $\Phi_p = (1.1 \times 10^{15} - 6.6 \times 10^{15})$ cm⁻², microcracks are formed, the size of which grows with increasing fluence. The authors believe that the formation of microcracks is due to: the appearance of tensile stresses in the surface layer as a result of the restructuring of the glass microstructure caused by the migration of sodium ions in the field of the introduced charge; the formation of gas-filled bubbles; mass transfer to the irradiated surface; and, possibly, access to the irradiated surface of percolation channels of sodium and oxygen. For those values of φ_p and Φ_p , irradiation of K-208 glass with 20 keV protons is shown to not lead to the formation of microcracks.

Keywords: proton irradiation, K-208 glass, compression of glass, atomic force microscopy, microcrack, surface structure, ion field migration, gas-filled bubbles.

54