УДК 621.785:669.1.08.29

СТРУКТУРА И ЭЛЕКТРОЭРОЗИОННАЯ СТОЙКОСТЬ ЭЛЕКТРОВЗРЫВНОГО НАПЫЛЕНИЯ ПОКРЫТИЯ СИСТЕМЫ ZnO-Ag

© 2020 г. Д. А. Романов^{а,} *, С. В. Московский^а, В. Е. Громов^а, К. В. Соснин^а, А. Д. Филяков^а

^аСибирский государственный индустриальный университет, Новокузнецк, 654006 Россия

*e-mail: romanov_da@physics.sibsiu.ru Поступила в редакцию 17.12.2019 г. После доработки 14.01.2020 г. Принята к публикации 14.01.2020 г.

В работе впервые получены электроэрозионно-стойкие покрытия системы ZnO–Ag методом электровзрывного напыления. Структура покрытий изучена методом атомно-силовой микроскопии и растровой электронной микроскопии. Сформированное покрытие является однородным по структуре композиционным материалом, состоящим из серебряной матрицы и расположенных в ней включений ZnO. На границе покрытие/подложка обнаружены поверхностные периодические структуры с длинной волны в среднем 3 нм. Проведены испытания напыленных покрытий на электроэрозионную стойкость в условиях дуговой эрозии. Предложен механизм образования иерархических уровней структуры электровзрывных покрытий. Механизм основан на теоретических представлениях образования и эволюции фрактальных агрегатов при диффузионно-лимитируемой и кластер-кластерной агрегациях. На основе электрических свойств серебра и оксида цинка обоснована зависимость электрического контактного сопротивления от числа циклов включений/отключений в процессе испытаний на электроэрозионную стойкость.

Ключевые слова: композиционное покрытие, серебро, оксид цинка, структура, электроэрозионная стойкость, свойства, электрический контакт.

DOI: 10.31857/S1028096020090162

введение

Безопасность работы энергосистем, снижение потерь электроэнергии и экономия материальных ресурсов во многом определяется надежностью электрических контактов. Надежность электрических контактов обуславливает эффективность эксплуатации энергетического и промышленного оборудования и в целом мировой энергосистемы. Из-за некачественных контактов происходит их нагрев, возрастают потери электроэнергии и возникают аварийные ситуации. По данным национальной ассоциации спасательных и экологических организаций 50% возгораний на промышленных предприятиях и в жилом фонде происходит из-за неисправности электроустановок, при этом 50% пожаров электрооборудования обусловлено отказами электрических контактов.

Реализовать в одном материале многообразный и противоречивый комплекс свойств, которыми должен обладать электроконтактный материал позволяет использование методов порошковой металлургии [1]. В настоящее время, разработано большое количество электроконтактных материалов для их применения в разнообразных условиях эксплуатации. В их состав входит, как правило, матрица, обладающая высокой электропроводностью, и тугоплавкий компонент (наполнитель) с высокой износо- и электроэрозионной стойкостью [2]. Наиболее перспективными для изготовления контактов являются композиционные материалы на основе серебряной, медной, медно-никелевой, алюминиевой матрицы и тугоплавкого наполнителя. К ним относят следующие системы: W-Cu, Mo-Cu, W-C-Cu, Mo-C-Cu, Ti-B-Cu, TiB₂-Cu, TiB₂-Al, W-Ni-Cu, Mo-Ni-Cu, Cr-Cu, Cr-Cu, CdO-Ag, SnO₂-Ag, CuO-Ag, ZnO-AgW-Ag, Mo-Ag, W-C-Ад и Мо-С-Ад и др. [3-8].

Поскольку процесс разрушения материала начинается с его поверхности, для ряда практических применений, например, упрочнения контактных поверхностей средне- и тяжелонагруженных выключателей и коммутационных аппаратов, перспективно формирование защитных покрытий, так как в этом случае важна электроэрозионная стойкость только поверхности контакта, а не всего объема. Экономически и технически целесообразно развивать подход к созданию материалов, при котором механическая прочность детали обеспечивается применением экономичных подложек, а специальные свойства поверхности – сплошным или локальным формированием на ней композиционных покрытий, свойства которых соответствуют эксплуатационным требованиям. Экономия при таком подходе может достигать 90%. Экспертные оценки подтверждают эту тенденцию. Одним из приоритетных направлений физики конденсированного состояния является разработка методов повышения эксплуатационных характеристик различных материалов. С учетом этого упрочнение поверхности дугостойких электрических контактов, является актуальной задачей развития новых современных технологий.

Цель работы — исследование структуры, морфологии фаз электровзрывного покрытия системы ZnO—Ag методами растровой электронной (РЭМ) и атомно-силовой микроскопии (ACM), а также проведение испытаний на электроэрозионную стойкость.

МАТЕРИАЛ И МЕТОДИКИ ИССЛЕДОВАНИЯ

Объектом исследований являлись медные контакты контактора КПВ-604, на контактных поверхностях которых электровзрывным методом [9] было сформировано покрытие системы ZnO-Ag. В качестве взрываемого токопроводящего материала была использована фольга серебра массой 250 мг, на поверхность которой в область взрыва помещалась навеска порошка ZnO массой 120 мг. Время воздействия плазмы на поверхность образца ~100 мкс, поглощаемая плотность мощности на оси струи ~5.5 ГВт/м², давление в ударно-сжатом слое вблизи облучаемой поверхности ~12.5 МПа, остаточное давление газа в рабочей камере ~100 Па; температура плазмы на срезе сопла ~10⁴ K, толщина зоны термического влияния ≈50 мкм. Структуру и морфологию покрытия и прилегающего слоя подложки анализировали методами РЭМ (прибор Carl Zeiss EVO50 с приставкой для рентгеноспектрального микроанализа PCMA) и ACM (прибор Solver NEXT). Испытания на электроэрозионную стойкость покрытий в условиях дуговой эрозии проводили на контактах электромагнитных пускателей марки CJ20 при переменном токе и индуктивной нагрузке в соответствии с требованиями режима испытаний АС-3 на коммутационную износостойкость при работе в трехфазной цепи со значением низкого напряжения 400/230 В, частотой 50 Гц током 320 A, $\cos \phi = 0.35$. Число коммутационных циклов составляло 6000.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Методами РЭМ и РСМА проведены исследования структуры и элементного состава поперечного шлифа системы "покрытие/подложка", сформированной электровзрывным методом. Характерное изображение структуры поперечного сечения покрытия состава ZnO-Ag приведено на рис. 1. Анализ полученных результатов показывает, что сформированное покрытие является однородным по структуре композиционным материалом (рис. 1а, 1б). По морфологии структуры и контрасту травления формирующееся покрытие состоит из светлой серебряной матрицы и темных включений ZnO с размерами, изменяющимися в пределах от 0.3 до 0.5 мкм (рис. 1б). Элементный состав покрытия анализировали методом РСМА. Результаты исследований представлены на рис. 1в-1д. Анализируя результаты, представленные на рис. 1, можно отметить, что концентрации меди (рис. 1в), кислорода (рис. 1г) и серебра (рис. 1д) в покрытии незначительно изменяются по его толщине. Этот факт также свидетельствует о структурной однородности полученного покрытия.

Атомно-силовую микроскопию проводили в слое покрытия, расположенном на расстоянии 10 мкм (рис. 2) от поверхности покрытия, а также на границе раздела между покрытием и медной подложкой (рис. 3). Поскольку электровзрывное покрытие образовано серебряной матрицей и расположенными в ней частицами порошка ZnO, то мелкие частицы порошка ZnO могут выкрашиваться из матрицы при приготовлении шлифа. В этом случае на месте выпавших частиц образуются поры (темные области на рис. 2а, 2б) глубиной от 30 до 100 нм и шириной от 2 до 5 нм (рис. 2в). Частицы ZnO диспергируется до размеров 2-5 нм в процессе электрического взрыва при формировании импульсной плазменной струи продуктов электрического взрыва проводников.

Также выявляются отдельные крупные частицы различной формы с размерами от 10 до 15 нм. Эти частицы ZnO не выкрашиваются из серебряной матрицы при приготовлении шлифа, резко выделяются цветом (они более светлые по сравнению с матрицей). Данные частицы хаотически расположены в серебряной матрице. Как видно из рис. 2а, 2б, крупные частицы имеют сложное строение. Характерными структурными единицами, из которых они состоят, являются сферы (глобулы) диаметром от 2 до 5 нм (это мелкие сферические частицы, описанные выше). Соотношение серебряной матрицы, крупных и мелких частиц порошка ZnO составляет 0.6 : 0.15 : 0.25. Если учесть, что крупные частицы ZnO состоят из более мелких глобулярных частиц ZnO, то соотношение серебряной матрицы и включений по-

Рис. 1. Структура электровзрывного покрытия системы ZnO–Ag (a), (б) и профили концентрации атомов меди (в), кислорода (г) и серебра (д) вдоль линии, указанной на (а). Концентрация меди определена по характеристическому рентгеновскому излучению $K_{\alpha l}$; концентрация кислорода – по $K_{\alpha l}$; концентрация серебра – по $L_{\alpha l}$.

рошка ZnO составит 0.6 : 0.4. Это соотношение пропорционально содержанию порошка ZnO и серебряной фольги, используемых для электровзрывного напыления. Средняя шероховатость профиля поверхности покрытия системы ZnO– Ag составляет 100 нм.

Таким образом, удалось выявить важный структурный элемент – глобулу ZnO, частицу сферической формы диаметром от 2 до 5 нм. Имеет место многоуровневая иерархическая структура покрытия системы ZnO–Ag, в основе которой лежат однотипные сферические частицы ZnO диаметром от 2 до 5 нм. Единая структурная единица, из которой состоят включения ZnO, расположенные в серебряной матрице – очень важный аргумент в пользу фрактального меха-

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 9 2020

Рис. 2. Структура покрытия системы ZnO–Ag, полученная методом атомно-силовой микроскопии: а – распределение неровностей рельефа по высоте в 3*D*-формате, б – положение секущей (вид сверху), в – распределение неровности вдоль базовой длины.

низма формирования электровзрывного покрытия. Такие частицы составляют первый иерархический уровень структуры электровзрывного покрытия системы ZnO–Ag. Второй иерархический уровень составляют глобулы: крупные частицы различной формы с размерами от 10 до 15 нм, которые в свою очередь, формируют частицы микронных размеров неправильной формы, выявленные методом растровой электронной микроскопии.

На границе раздела между покрытием и медной подложкой (рис. 3а, 3б) различимы темные впадины размером от 10 до 15 нм. Из них выкрошились крупные частицы ZnO, о которых речь шла выше. Кроме того, на границе раздела покрытие/подложка в серебряной матрице возникают поверхностные периодические структуры (ППС). Секущая, проведенная перпендикулярно

данным структурным образованиям (рис 36, 3в) дает основание утверждать, что длинна волны в них составляет в среднем 3 нм. Структуры являются остаточным нанорельефом поверхности. После окончания воздействия импульсной плазменной струи продуктов электрического взрыва проводников на подложку и остывания поверхности наведенный рельеф закрепляется в виде ППС. Конкретными процессами их образования могут быть испарение, оплавление поверхности и вытеснение расплава избыточным давлением паров, термокапиллярные явления и термохимические реакции, термические деформации, возникновение и развитие различных неустойчивостей, таких как Релея-Тейлора [10], Кельвина-Гельмгольца [11], Марангони [12] и др. В целом, явление носит универсальный характер и представляет собой пример самоорганизации в системе, где

Рис. 3. Структура на границе покрытия ZnO–Ag с медной подложкой, полученная методом атомно-силовой микроскопии: а – распределение неровностей рельефа по высоте в 3*D*-формате, б – положение секущей (вид сверху), в – распределение неровности вдоль базовой длины.

изначально отсутствуют выделенные направления и структуры [13]. Энергетические режимы получения ППС соответствуют нагреву материала до температуры, примерно равной температуре плавления (нижний предел), но не выше температуры развитого испарения [13]. Именно такой режим был использован при электровзрывном напылении в настоящей работе.

Профилометрия поверхности, представленной на рис. За, показала, что параметр шероховатости электровзрывного покрытия системы ZnO—частицы Ag составляет 73 нм. Максимальный выступ профиля в этом случае достигает значения 536.85 нм, а впадина — 497.5 нм. Сравнивая параметры шероховатости на границе электровзрывного покрытия с подложкой (рис. 3) со значением параметра шероховатости в слое покрытия, расположенном на расстоянии 10 мкм (рис. 2), можно отметить, что они отличаются на 28%. На рис. За 35% фотографии занимает подложка, а 65% — покрытие. Это дает основание заключить, что шероховатость подложки ниже шероховатости покрытия. Это является закономерным, поскольку из-за выпавших из серебряной матрицы включений ZnO параметр шероховатости покрытия увеличивается.

Механизм сборки такого сложного многоуровневого ZnO в серебряной матрице можно представить следующим образом. Единый размер r_1 сферических частиц ZnO первого уровня иерархии может быть объяснен в рамках модели диффузионно-лимитированной агрегации по механизму диффузионно-лимитируемой агрегации "частица—кластер" [14]. В кластер, который превратится затем в сферу диаметром от 2 до 5 нм, собираются плазменные компоненты многофазной

Рис. 4. Характерная зависимость контактного сопротивления R от числа циклов включения/отключения N при испытаниях электровзрывных покрытий системы ZnO-Ag на электроэрозионную стойкость в условиях дуговой эрозии.

струи продуктов электрического взрыва проводников, распределенные в некотором эффективном объеме на некотором эффективном пространстве интерфейса подложки того же размера [14]. Следует отметить, что размер эффективного объема, в котором происходит образование заготовок сферических частиц первого уровня иерархии, будет зависеть от состава взрываемых проводников и температуры. Образование кластеров ZnO происходит только на начальной стадии воздействия импульсной плазменной струи на подложку. На следующей стадии роста механизм агрегации "частица-кластер" перестает действовать, но размеры кластеров увеличиваются. Рост начинается одновременно и заканчивается синхронно по исчерпании нахождения ZnO в плазменном состоянии, кластеры превращаются в частицы практически одинаковых размеров (при обсуждаемых условиях это сферы диаметром от 2 до 5 нм). Размеры частиц недостаточно велики, чтобы гравитационные силы могли доминировать. Иными словами, имеет место метастабильное состояние, в котором сферы диаметром от 2 до 5 нм поддерживаются во взвешенном состоянии в основном за счет броуновского движения и сил межмолекулярного взаимодействия с другими компонентами расплавленного металла. Под действием броуновских сил сферы продолжают хаотическое движение, которое стимулирует их агломерацию. Самосборка частиц первого иерархического уровня приводит к образованию второго иерархического уровня глобул размером r₂ от 10 до 15 нм. Образование этого иерархического уровня происходит в основном по кластер-кластерному механизму. Далее такие глобулярные частицы

могут укрупняться за счет слипания в частицы микрометрового диапазона.

Проанализируем зависимость контактного сопротивления *R* от числа циклов включения/отключения N при испытаниях покрытий системы ZnO–Ag на электроэрозионную стойкость в условиях дуговой эрозии (рис. 4). Первоначальные значения сопротивления для фаз L_1, L_2, L_3 , равны 5.6, 3.2, 4.5 мкОм при числе циклов включения/отключения 134, 152, 213 соответственно. В дальнейшем функция сопротивления увеличивается. Для фазы L₁ сопротивление возрастает от 5.6 до 9.2 мкОм при количестве циклов включения/отключения от 134 до 2178. Для фазы L₂ сопротивление возрастает от 3.2 до 6 мкОм при количестве циклов включения/отключения от 152 до 2134. Для фазы L_3 сопротивление возрастает от 4.5 до 8.2 мкОм при количестве циклов включения/отключения от 213 до 1883. После наблюдается падение сопротивления. Для фазы L_1 сопротивление снижается до 6.3 мкОм при количестве циклов 3002 раз. Для фазы L_2 сопротивление снижается до 5.4 мкОм при количестве циклов 3145 раз. Для фазы L_3 сопротивление снижается до 4.7 мкОм при количестве циклов 3211 раз. Затем показатель сопротивления снова растет и достигает максимального значения. Для фазы L₁ сопротивление возрастает до 14.1 мкОм при количестве циклов 3990 раз. Для фазы L_2 сопротивление возрастает до 12 мкОм при количестве циклов 4123 раз. Для фазы L_3 сопротивление возрастает до 13 мкОм при количестве циклов 4207 раз. Это свидетельствует о том, что на настоящем этапе эксперимента начинается интенсивное испарение легкоплавкой серебряной матрицы под воздействием электрической дуги. Поверхность контакта обогащается частицами порошка ZnO, обладающего меньшей электропроводностью (10^{-8}) См/м) сравнению с ПО серебром (62.5 МСм/м) [15]. По этой причине увеличивается контактное сопротивление на этом участке графика. В конце испытаний сопротивление снова уменьшается. Для фазы L_1 сопротивление снижается до 6.3 мкОм при количестве циклов 5997 раз. Для фазы L_2 сопротивление снижается до 4 мкОм при количестве циклов 5983 раз. Для фазы L₃ сопротивление снижается до 5.7 мкОм при количестве циклов 6123 раз. В конце испытаний значения сопротивления для фаз L_1 , L_2 , L_3 , равны 6.3, 4.0, 5.7 при числе циклов включения/отключения 5997, 5983, 6123 соответственно. Проведенные испытания показали, что сформированные покрытия системы ZnO–Ag удовлетворяют испытаниям пускателей на коммутационную износостойкость [16].

Таким образом, повышение электрического сопротивления в ходе испытаний электровзрыв-

ных покрытий системы ZnO—Ag на коммутационную износостойкость вызвано испарением легкоплавкой серебряной матрицы под воздействием электрической дуги и обогащением поверхности покрытия частицами ZnO. Электрические контакты, упрочненные электровзрывными покрытиями системы ZnO—Ag способны к механической очистке поверхности от частиц ZnO. Сформированные покрытия системы ZnO—Ag удовлетворяют испытаниям пускателей на коммутационную износостойкость.

ЗАКЛЮЧЕНИЕ

Предложен механизм образования иерархических уровней структуры электровзрывных покрытий системы ZnO–Ag. Путем сопоставления изображений атомно-силовой микроскопии поверхности слоев электровзрывных покрытий системы ZnO-Ag установлены типичные размеры первого и второго иерархических уровней структуры, которые при использованных условиях напыления варьировались от 2 до 5 нм и от 10 до 15 нм соответственно. Механизм самосборки иерархических наноструктур основан на теоретических представлениях образования и эволюции фрактальных агрегатов при диффузионно-лимитируемой и кластер-кластерной агрегациях. Такие электровзрывные покрытия используются для создания контактов переключателей мощных электрических сетей.

На границе покрытие/подложка обнаружены поверхностные периодические структуры с длинной волны в среднем 3 нм. Они представляют собой остаточный нанорельеф поверхности, возникший после окончания воздействия импульсной плазменной струи продуктов электрического взрыва проводников на подложку и остывания поверхности.

Сформированные покрытия системы ZnO–Ag удовлетворяют испытаниям пускателей на коммутационную износостойкость. Повышение электрического сопротивления в ходе испытаний электровзрывных покрытий системы ZnO–Ag на коммутационную износостойкость вызвано испарением легкоплавкой серебряной матрицы под воздействием электрической дуги и обогащением поверхности покрытия частицами ZnO. Электрические контакты, упрочненные электровзрывными покрытиями системы ZnO–Ag способны к механической очистке поверхности от частиц ZnO.

БЛАГОДАРНОСТИ

Исследование выполнено при финансовой поддержке Гранта Президента Российской Федерации для государственной поддержки молодых российских ученых – докторов наук МД-486.2020.8, а также исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-08-00044).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kondoh K.* Powder Metallurgy. Rijeka: InTech, 2012. 132 p.
- 2. *Gerard F.* Advances in Condensed Matter and Materials Research. N.Y.: Nova Science Publisners, 2005. 253 p.
- TaiasovK.A., IsupovV.P., BokhonovB.B., Gaponov Yu.A., Tolochko B.P., SharafutdinovM.R., Shatskaya S.S. // J. Materials Synthesis and Processing. 2000. V. 8. № 1. P. 21. https://doi.org/10.1023/A:1009417626848
- 4. *Russell A.M., Lee K.L.* Structure-Property Relations in Nonferrous Metals. Hoboken: John Wiley & Sons, 2005. 501 p.
- 5. *Talijan N.M.* // Zastita Materijala. 2011. V. 52. № 3. P. 173.
- Qureshi A.H., Azhar S.M., Hussain N. // J. Thermal Analysis and Calorimetry. 2010. V. 99. P. 203. https://doi.org/10.1007/s10973-009-0152-y
- Bukhanovsky V., Rudnytsky M., Grechanyuk M., Minakova R., Zhang C. // Materials and Technology. 2016. V. 50. №. 4. P. 523. https://doi.org/10.17222/mit.2015.057
- Nijssen R.P.L. Composite Materials an Introduction. Nijssen: Inholland University of Applied Sciences, 2015. 150 p.
- Романов Д.А., Будовских Е.А., Громов В.Е., Московский С.В., Перегудов О.А. Физические основы электровзрывного напыления износо- и электроэрозионностойких покрытий. Новокузнецк: Изд. центр СибГИУ, 2018. 321 с.
- 10. *Obied Allah M.H.* // General Mathematics Notes. 2014. V. 20. № 1. P. 67.
- Harding E.C., Hansen J.F., Hurricane O.A., Drake R.P., Robey H.F., Kuranz C.C., Remington B.A., Bono M.J., Grosskopf M.J., Gillespie R.S. // Phys. Rev. Lett. 2009. V. 103. P. 045005. https://doi.org/10.1103/Phys.Rev.Lett.103.045005
- Bratsun D.A., De Wit A. // Physics of Fluids. 2004.
 V. 16.P. 1082. https://doi.org/10.1063/1.1648641
- Tian W., Qi L., Chao X., Liang J., Fu M. // Composites Part B: Engineering. 2019. V. 162. P. 1. https://doi.org/10.1016/j.compositesb.2018.10.053
- Asnaghi D., Carpineti M., Giglio M., Sozzi M. // Phys. Rev. A. 1992. V. 45. № 2. P. 1018. Doi https://doi.org/10.1103/Phys.Rev.A.45.1018
- Корецкий Ю.В., Пасынков В.В., Киреев Б.М. Справочник по электротехническим материалам. Т. 3. Ленинград: Энергоатомиздат, 1988. 728 с.
- Miedzinski B., Habrych M., Wandzio J., Grechanyuk N. // IET Conference Publications. 2012. V. 2012. P. 78. https://doi.org/10.1049/cp.2012.0626

96

РОМАНОВ и др.

Structure and Electroerosion Resistance of Electro Explosion Spraying of the Coating of the ZnO-Ag System

D. A. Romanov^{1, *}, S. V. Moskovskii¹, V. E. Gromov¹, K. V. Sosnin¹, A. D. Filyakov¹

¹Siberian State Industrial University, Novokuznetsk, 654006 Kemerovo Region, Russia *e-mail: romanov da@physics.sibsiu.ru

For the first time, electroerosion-resistant coatings of the ZnO–Ag system were obtained by electro-explosive spraying. The coating structure was investigated by atomic force microscopy and scanning electron microscopy. The formed coating is a homogeneous composite material consisting of a silver matrix and ZnO inclusions located in it. Surface periodic structures with an average wavelength of 3 nm were found at the coating/substrate interface. Tests of sprayed coatings for electrical erosion resistance under arc erosion conditions were carried out. A formation mechanism of hierarchical levels of the structure of electro-explosive coatings was suggested. The mechanism is based on theoretical concepts of the formation and evolution of fractal aggregates with diffusion-limited and cluster-cluster aggregations. Based on the electrical properties of silver and copper oxide, the dependence of electrical contact resistance on the number of on/off cycles in the process of testing for electrical erosion resistance is substantiated.

Keywords: composite coating, silver, zinc oxide, structure, electrical erosion resistance, properties, electrical contact.