ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ, 2021, № 11, с. 45–50

УДК 538.9:539.3

ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И МЕХАНИЧЕСКИЕ СВОЙСТВА ДВУХКОМПОНЕНТНЫХ ТИТАНОВЫХ СПЛАВОВ ПОСЛЕ ТЕРМООБРАБОТКИ В ДВУХФАЗНОЙ ОБЛАСТИ (а + ИНТЕРМЕТАЛЛИД) И КРУЧЕНИЯ ПОД ВЫСОКИМ ДАВЛЕНИЕМ

© 2021 г. А. С. Горнакова^{*a*, *}, Б. Б. Страумал^{*a*, *b*, **, Ю. И. Головин^{*c*}, Н. С. Афоникова^{*a*}, Т. С. Пирожкова^{*c*}, А. И. Тюрин^{*c*}}

^{*а}Институт физики твердого тела имени Ю.А. Осипьяна РАН, Черноголовка, 142432 Россия* ^{*b*}Черноголовский научный центр РАН, Черноголовка, 142432 Россия ^{*c*}Научно-исследовательский институт "Нанотехнологии и наноматериалы" ТГУ им. Г.Р. Державина,</sup>

аучно-исследовательскии институт "Нанотехнологии и наноматериалы" 11 у им. 1.Р. Державина, Тамбов, 392000 Россия

e-mail: alenahas@issp.ac.ru* *e-mail: straumal@issp.ac.ru* Поступила в редакцию 19.04.2021 г. После доработки 20.06.2021 г. Принята к публикации 25.06.2021 г.

Были измерены нанотвердость (*H*) и модуль Юнга (*E*) для трех сплавов: Ti-2.5 мас. % Ni, Ti-2 мас. % Cr и Ti-2.2 мас. % Fe, предварительно отожженных в двухфазной области фазовой диаграммы (α Ti + интерметаллид) и подвергнутых затем кручению под высоким давлением. Титановый сплав с добавлением никеля показал самые высокие значения *H* и *E*, они изменяются равномерно от центра к краю образца, и сплав после кручения под высоким давлением содержит две фазы: α и ω . Нанотвердость сплава Ti-2.5 мас. % Ni вдоль радиуса образца по поверхности меняется незначительно – от минимального 4.8 до максимального значения 5.2 ГПа, как и модуль Юнга (от 121 до 155 ГПа). Максимумы значений *H* и *E* приходятся на середину радиуса образца. Сплав Ti-2.2 мас. % Fe ведет себя подругому: наличие в нем четырех фаз – α , β , ω и TiFe – приводит к сильному разбросу измеряемых значений *H* и *E*: от 4.4 до 2.0 ГПа и от 131 до 12 ГПа соответственно. Обработка диаграмм *P*-*h* позволила связать нанотвердость материала с его ползучестью.

Ключевые слова: титановые сплавы, интерметаллиды, кручение под высоким давлением, наноиндентирование, модуль Юнга, нанотвердость, режим термообработки. **DOI:** 10.31857/S102809602111008X

введение

Интерес к титану и его сплавам не уменьшается [1–6]. Благодаря удачному сочетанию механических и технологических характеристик эти материалы имеют широкий спектр применения [7, 8]. Наномеханические свойства материалов очень важны для анализа процессов трения и абразивного износа. Однако закономерности фазовых превращений в двухкомпонентных сплавах на основе α -титана, упрочненных частицами интерметаллических соединений, таких как TiFe, Ti₂Ni, TiCr₂, под воздействием сдвиговой деформации под высоким давлением в настоящее время изучены слабо и представляют большой интерес. Наличие в системе интерметаллидов, их свойства и структура обусловлены положением компонентов в периодической системе элементов, а также их атомными радиусами [9]. Атомы никеля, железа и хрома могут замещать атомы титана и образовывать с ним ограниченные твердые растворы. В работе [10] был подробно исследован интерметаллид TiFe, который занимает особое место среди гидридообразующих сплавов, так как он способен образовывать гидриды, характеризующиелавлением диссоциации, близким ся Κ атмосферному при комнатной температуре. Интерметаллическое соединение ТіFe обладает кубической структурой. Благодаря сильному упрочняющему действию железо используется в некоторых титановых сплавах как легирующая добавка обычно в количествах 0.5-1.5%, хотя известен сплав на основе β-фазы, содержащий 5%

Рис. 1. Диаграммы P-h (P – величина нагрузки, h – глубина отпечатка) для: а – центра R_0 ; б – середины радиуса $R_{1/2}$; в – края R_1 образцов сплавов Ti–2.5 мас. % Ni (1), Ti–2.2 мас. % Fe (2) и Ti–2 мас. % Cr (3).

Fe [11]. Интерес к интерметаллидам в системе Ti-Ni вызван их многими полезными технологическими свойствами, такими как пластичность, деформируемость в широком интервале температур, высокая механическая прочность и эффект памяти формы [12]. В системе Ti-Ni существуют три интерметаллида: TiNi, Ti₂Ni и TiNi₃ [13]. Интерметаллид Ti₂Ni образуется по перитектической реакции и имеет кубическую структуру. Упрочняющий эффект легирования титана никелем при комнатной температуре невелик [11]. По влиянию на полиморфное превращение титана хром относится к сильным β-стабилизаторам. Растворимость хрома в α-титане не превышает 0.5%. Хром обеспечивает в сплавах с титаном высокую прочность при хорошей пластичности и повышает эффективность упрочняющей термообработки [11]. Однако при повышенных температурах происходит эвтектоидный распад β-фазы, сопровождающийся выделением TiCr₂ и вследствие этого потерей пластичности. При температурах ниже 1150°C TiCr₂ имеет гранецентрированную кубическую решетку. Интерметаллид TiCr₂ отличается высокой хрупкостью. Присутствие его в сплавах, даже в небольших количествах, резко снижает их пластичность. Целью работы было исследовать влияние кручения под высоким давлением и доли интерметаллида на фазовые превращения, нанотвердость и модуль Юнга в сплавах Ti-2.5 мас. % Ni, Ti-2 мас. % Cr и Ті-2.2 мас. % Fe.

МЕТОДЫ

Двухкомпонентные титановые сплавы Ti-2.5 мас. % Ni, Ti-2 мас. % Cr и Ti-2.2 мас. % Fe были получены из титана марки TИ-1 (иодидный титан 99.98%), хрома (99.99%), железа (99.97%) и никеля (99.95%). Сплавы были приготовлены в индукционной печи в атмосфере чистого аргона.

Полученные слитки сплавов были структурно и химически однородными по всей длине и толщине. Из цилиндрических слитков сплавов диаметром 10 мм были нарезаны шайбы толщиной 0.7 мм. Затем образцы запаивали в кварцевые ампулы и отжигали в вакууме при остаточном давлении 4 \times 10⁻⁴ Па. После отжига образцы закаливали в воде вместе с ампулой. Отжиг сплавов Ti-Ni и Ti-Cr проводился при температуре 600°C (2774 ч), а сплава Ті-Fe – при 470°С (673 ч). Полученные образцы подвергали кручению под высоким давлением (КВД) при комнатной температуре при 7 ГПа, скорости деформации 1 об./мин и 5 об. плунжера. После КВД толщина образцов составила 0.35 мм. Нанотвердость поверхности образцов измеряли на приборе TI-950 Triboindenter, оснашенном индентором Берковича. Измерения проводили в центре (R_0), на середине радиуса ($R_{1/2}$) и около края (R_1) образцов, скорость нагружения была постоянной: dP/dt = 40 мH/с. Перед измерениями поверхность образцов полировали алмазной пастой с зернистостью 1 мкм. Численные значения нанотвердости (Н) и модуля Юнга (Е) исследованных образцов рассчитывали по методике Оливера-Фарра [14-16] на основе характерных диаграмм P-h (рис. 1), где P – величина нагрузки, *h* – глубина отпечатка. Исследования проводили при комнатной температуре и постоянной максимальной нагрузке, прикладываемой к индентору: $P_{\rm max} = 200$ мН. Значения *H* и *E* получали путем усреднения результатов, полученных по 12 независимым экспериментам. Фазовый анализ образцов проводили с использованием рентгеновского дифрактометра Siemens D-500 (Си $K_{\alpha 1}$ -излучение). Параметры решетки рассчитывали с помощью программы PowderCell для Windows V.2.4.08.03.2000. Для определения химического состава образцов был использован растровый электронный микроскоп высокого разрешения Supra 50VP с системой микроанализа INCA Energy+, оснащенный при-

Сплав	Область фазовой диаграммы	αΤί	i	TiMe	
		объемная доля, %	а, с, нм	объемная доля, %	а, нм
Ti-2.5 мас. % Ni	$\alpha Ti + Ti_2Ni$	96	0.2944, 0.4688	4	1.1318
Ті−2 мас. % Cr	$\alpha Ti + TiCr_2$	98	0.2950, 0.4689	2	0.6933
Ti-2.2 мас. % Fe	$\alpha Ti + TiFe$	97	0.2950, 0.4687	3	0.2978
Чистый Ті	—	—	0.2955, 0.4686	—	—

Таблица 1. Параметры решеток, фазы и их содержание в сплавах после термообработки в области αTi + интерметаллид

Примечание. Me = Ni, Cr, Fe.

Таблица 2. Параметры решеток, фазы и их содержание в сплавах после термообработки и кручения под высоким давлением

Сплав	αΤί		βΤί		ωΤί		Ti <i>Me</i>	
	объемная доля, %	а, с, нм	объемная доля, %	а, нм	объемная доля, %	а, с, нм	объемная доля, %	а, нм
Ti-2.5 мас. % Ni	37	0.2951, 0.4688	_	_	63	0.4625, 0.2812	_	_
Ті-2 мас. % Cr	43	0.2950, 0.4690	_	—	55	0.4628, 0.2813	2 (TiCr ₂)	0.6943
Ті-2.2 мас. % Fe	8	0.2950, 0.4690	16	0.3255	76	0.4626, 0.2814	≥2 (TiFe)	0.2979
Чистый Ті	_	0.2959, 0.4690	—	_	_	0.4627, 0.2830	_	_

Примечание. Me = Cr, Fe.

ставкой для энергодисперсионного микроанализа Oxford Instruments. распределению материала, а, следовательно, и к близким значениям нанотвердости и модуля Юнга после КВД в центре и на краю образца.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Фазовый состав образцов до и после КВД

Фазовый состав трех исследованных сплавов представлен в табл. 1. Основной объем материала приходится на фазу α -Ті. По сравнению с параметрами решетки α -фазы чистого титана в двух-компонентных сплавах параметр решетки *а* меньше, а, следовательно, отношение *с/а* больше. Ячей-ка в ГПУ-решетке в двухкомпонентных сплавах "сжата", т.е. титан обогащен вторым компонентом, поэтому период решетки уменьшился. Фазовый состав после отжига в трех исследованных сплавах отличается долей и типом структур интерметаллида.

В табл. 2 представлены данные об объемной доле каждой фазы и параметры решеток этих фаз после отжига и КВД, полученные со всей поверхности образцов. Все три образца отличаются фазовым составом. В титановом сплаве с никелем присутствуют только две фазы: α и ω . В сплаве с хромом был найден еще и интерметаллид. Легирование титана железом в сочетании с КВД приводит к образованию четырех фаз: α , β , ω и TiFe. Возможно, большая доля интерметаллида в сплаве после отжига приводит к более равномерному

Нанотвердость сплавов

Для сплава Ti-Ni значения нанотвердости *H* изменялись слабо — от 4.8 \pm 0.1 в центре до 5.0 \pm ± 0.1 ГПа на краю образца (рис. 2), значения модуля Юнга изменялись от 148 до 121 ГПа. Для сплавов Ті-Fe и Ті-Сг разброс значений нанотвердости и модуля Юнга был более широким. Рассмотрим более подробно три области измерения образцов: при R_0 , $R_{1/2}$ и R_1 для каждого сплава. Значения нанотвердости в центральной части образцов сплавов с никелем и железом различаются на 1.3 ± 0.2 ГПа. Поскольку известно, что центральная область образца меньше всего подвергается деформации, можно предположить, что изначально сплав Ti-Ni был более твердым, чем Ті-Fe. На середине радиуса разброс значений нанотвердости у трех сплавов самый низкий по образцу – 0.8 ГПа. Эта область подвергается более интенсивной деформации, которая "выравнивает" нанотвердость образцов. На краю образцов наблюдается самый сильный разброс значений нанотвердости – 2.9 ГПа. Обычно центральная часть образца и ее край не используются для проведения дальнейших исследований, но все же хо-

Рис. 2. Зависимость нанотвердости сплавов Ті– 2.5 мас. % Ni (квадраты), Ti–2.2 мас. % Fe (треугольники) и Ti–2 мас. % Cr (кружки), предварительно отожженных и подвергнутых кручению под высоким давлением, от области измерения вдоль поверхности образца: в центре (R_0), на середине радиуса ($R_{1/2}$) и на крае (R_1).

телось бы понять, какие причины могут привести к такому разбросу значений. Первое предположение: размер канавки под плунжером 0.3 мм, а толщина исходного образца варьировалась от 0.6 до 0.7 мм. Возможно, вариации толшины исходных образцов, влияющие на степень сдвиговой деформации, сыграли отрицательную роль и привели к разбросу значений на краях. Второе предположение: это недостаточно качественная подготовка поверхности образцов перед измерениями, которая привела к разбросу данных. Обе эти причины возможны, но, так как КВД и подготовка поверхности проводились однообразно, ошибка должна быть одинаковой при измерениях. Есть другое более существенное предположение, которое не проверялось в настоящей работе, — это фазовый состав образцов в трех областях и микроструктурные составляющие, такие как размер или доля фаз или размер частиц фаз или доля межфазных границ и "выделение" частиц интерметаллида на границах зерен. Эти предположения открывают возможности дальнейших, более подробных исследований.

Модуль Юнга сплавов

Рассмотрим измеренные значения модуля Юнга (E) (рис. 3). Видно, что в центральной части образцов различие в значениях E сплавов меньше 20 ГПа, в то время как на краях разброс более 100 ГПа. Можно сделать предположение, что разброс обусловлен тем, что модуль упругости является более чувствительной характеристикой, и наличие мелких неровностей на поверхности, границах зерен может внести свои коррективы в

Рис. 3. Зависимость модуля Юнга для сплавов Ті– 2.5 мас. % Ni (квадраты), Ті–2.2 мас. % Fe (треугольники) и Ті–2 мас. % Cr (кружки) от области измерения вдоль поверхности образца: в центре (R_0), на середине радиуса ($R_{1/2}$) и на крае (R_1). Образцы были предварительно отожжены и подвергнуты кручению под высоким давлением.

механизмы пластичности. Но однообразность подготовки образцов исключает данное предположение. Сочетание α - и ω -фаз дает самые высокие значения нанотвердости и модуля Юнга, и, что немаловажно, равномерное распределение этих значений от центра к краю образца в сплаве Ti–Ni. В литературе подобный разброс значений *H* и *E* не обсуждался [17–20], поэтому полученные данные представляют несомненный интерес.

Особенности диаграмм Р-h

На записанных во время эксперимента диаграммах P-h (рис. 1) было отмечено сильное от-

Рис. 4. Зависимость приращения глубины отпечатка $(\Delta h_{\rm cr})$ при ползучести от нанотвердости образцов сплавов Ti-2.5 мас. % Ni (квадраты), Ti-2.2 мас. % Fe (треугольники) и Ti-2 мас. % Cr (кружки) после кручения под высоким давлением.

49

личие на участках Δh_{cr} , которые отвечают за приращение глубины отпечатка при ползучести. Рассчитав значения Δh_{cr} из рис. 1, мы построили зависимость приращения глубины отпечатка (Δh_{cr}) при ползучести от нанотвердости для исследованных сплавов после КВД (рис. 4). Полученная зависимость демонстрирует, как неравномерно перемешиваются компоненты в образцах при КВД. Сплав с никелем имеет одинаковые значения Δh_{cr} вдоль всего образца, в то время как для сплавов с хромом и железом значения Δh_{cr} очень сильно различаются. Другая особенность заключалась в том, что для сплава с хромом при одном и том же значении Δh_{cr} наблюдались разные значения нанотвердости. Такое поведение может быть обусловлено неоднородностью самого образца, т.е. индентор попадал либо на границу зерен, либо на межфазную границу, либо в другую фазу.

ЗАКЛЮЧЕНИЕ

Были измерены нанотвердость и модуль Юнга для сплавов Ti-2.5 мас. % Ni, Ti-2 мас. % Сг и Ti-2.2 мас. % Fe, предварительно отожженных в двухфазной области (α Ti + интерметаллид) и подвергнутых кручению под высоким давлением. Сплав Ti-2.5 мас. % Ni с большим содержанием фазы интерметаллида показал более высокие значения нанотвердости и модуля Юнга после КВД. Наноиндентирование является подходящим инструментом для изучения микронеоднородностей структуры и состава, возникающих при КВД.

БЛАГОДАРНОСТИ

Работа частично выполнена в рамках госзадания ИФТТ РАН и грантов РФФИ (проекты № 18-29-17047 и № 19-58-06002), а также гранта ТГУ им. Г.Р. Державина (приказ № 591-3 от 25.02.2020). Авторы выражают глубокую благодарность М.И. Егоркину (ЛФХОК, ИФТТ РАН) за изготовления титановых сплавов и А.Р. Кильмаметову (Институт нанотехнологий КИТ, Карлсруэ, Германия) за обработку образцов при кручении под высоким давлением.

Конфликт интересов: Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Asl M.S., Delbari S.A., Azadbeh M. et al. // J. Mater. Res. Technol. 2020. V. 9. P. 10647. https://doi.org/10.1016/j.jmrt.2020.07.066
- Moshokoa N., Raganya L., Obadele B.A., Machaka R., Makhatha M.E. // Int. J. Adv. Manufact. Technol. 2020. V. 111 P. 1237. https://doi.org/10.1007/s00170-020-06208-7

- Verestiuc L., Spataru M.-C., Baltatu M.S. et al. // J. Mechan. Behavior Biomed. Mater. 2021. V. 113. P. 104198. https://doi.org/10.1016/j.jmbbm.2020.104198
- Deng G., Bhattacharjee T., Chong Y. et al. // J. Alloys Compd. 2020. V. 822. P. 153604. https://doi.org/10.1016/j.jallcom.2019.153604
- Chong Y., Deng G., Shibata A., Tsuji N. // Adv. Eng. Mater. 2019. V. 21. P. 1900607. https://doi.org/10.1002/ADEM.201900607
- Kao Y.L., Tu G.C., Huang C.A., Liu T.T. // Mater. Sci. Eng. A. 2005. V. 398. P. 93. https://doi.org/10.1016/j.msea.2005.03.004
- Veiga C., Davim J.P., Loureiro A.J.R. // Rev. Adv. Mater. Sci. 2012. V. 32. P. 133.
- 8. *Lütjering G. Williams J.C.* Titanium. 2nd ed. Berlin: Springer, 2007.
- 9. https://bigenc.ru/chemistry/text/2014495 (Большая российская энциклопедия).
- Задорожный М.Ю. Механосинтез и водородсорбционные свойства сплавов на основе нанокристаллического интерметаллического соединения ТiFe: Автореферат дис. ... канд. т. н.: 05.16.09. Москва: МИСиС, 2013. 24 с.
- 11. https://www.libmetal.ru/titan/titan%203.htm (Справочник по цветным металлам).
- 12. Куликова Т.М., Моисеев Г.К., Ильиных Н.И. // Известия Челябинского науч. центра. 2001. Вып. 1. С. 41.
- Murray J.L. // Bull. Alloy Phase Diagr. 1981. V. 2(3). P. 320.
- 14. Oliver W.C., Pharr G.M. // J. Mater. Res. 2004. V. 19(1). P. 3. https://doi.org/10.1557/jmr.2004.19.1.3
- Golovin Yu.I., Tyurin A.I., Aslanyan E.G., Pirozhkova T.S., Vasyukov V.M. // Phys. Solid State. 2017. V. 59. № 9. P. 1803. https://doi.org/10.1134/S1063783417090104
- Golovin Yu.I., Tyurin A.I., Iunin Yu.L. // Dokl. Phys. 2003. V. 48. № 9. P. 505. https://doi.org/10.1134/1.1616061
- Deng G., Bhattacharjee T., Chong Y. et al. // J. Alloys Compd. 2020. V. 82. P. 153604. https://doi.org/10.1016/j.jallcom.2019.153604
- Nie M., Wang C.T., Qu M. et al. // J. Mater. Sci. 2014. V. 49. P. 2824. https://doi.org/10.1007/s10853-013-7988-z
- Gornakova A.S., Straumal A.B., Khodos I.I., Gnesin I.B., Mazilkin A.A., Afonikova N.S., Straumal B.B. // J. Appl. Phys. 2019. V. 125. P. 082522. https://doi.org/10.1063/1.5053937
- Straumal B.B., Korneva A., Kilmametov A.R., Litynska-Dobrzynska L., Gornakova A.S., Chulist R., Karpov M.I., Zieba P. // Materials. 2019. V. 12. P. 426. https://doi.org/10.3390/ma12030426

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 11 2021

Phase Transformations and Mechanical Properties of Two-Component Titanium Alloys after Heat Treatment in the Two-Phase Region (α + Intermetallic Compound) and High-Pressure Torsion

A. S. Gornakova^{1, *}, B. B. Straumal^{1, 2, **}, Yu. I. Golovin³, N. S. Afonikova¹, T. S. Pirozhkova³, and A. I. Tyurin³

¹Ossipyan Institute of Solid State Physics RAS, Chernogolovka, 142432 Russia ²Chernogolovka Scientific Center RAS, Chernogolovka, 142432 Russia ³G.R. Derzhavin Research Institute "Nanotechnologies and Nanomaterials" TSU, Tambov, 392000 Russia *e-mail: alenahas@issp.ac.ru

**e-mail: straumal@issp.ac.ru

The nanohardness (*H*) and Young's modulus (*E*) were measured for three alloys: Ti–2.5 wt % Ni, Ti–2 wt % Cr, and Ti–2.2 wt % Fe. They were pre-annealed in the two-phase region (α Ti + intermetallic compound) of the phase diagram and then subjected to high-pressure torsion. The titanium alloy with the addition of nickel showed the highest values of *H* and *E*, they varied evenly from the center to the edge of the sample, and the alloy after high-pressure torsion contained two phases: α and ω . The nanohardness of the Ti–2.5 wt % Ni alloy along the radius of the sample over the surface varied slightly – from a minimum 4.8 to a maximum 5.2 GPa, as did Young's modulus (from 121 to 155 GPa). The maximum values of *H* and *E* were in the middle of the sample radius. The Ti–2.2 wt % Fe alloy behaved differently: four phases in its composition, namely α , β , ω and TiFe, led to a strong scatter in the measured values of *H* and *E*: from 4.4 to 2.0 GPa and from 131 to 12 GPa, respectively. The processing of the *P*–*h* diagrams allowed us to relate the nanohardness of the material with its creep.

Keywords: titanium alloys, intermetallic compounds, high-pressure torsion, Young's modulus, nanohard-ness, heat treatment mode.