УДК (539.25+548.74+539.533):669

СТРУКТУРА И МИКРОТВЕРДОСТЬ СПЛАВОВ $(Sn_4In)_{100 - x}Bi_x$ (x = 0-8 ат. %), ПОЛУЧЕННЫХ ВЫСОКОСКОРОСТНЫМ ОХЛАЖДЕНИЕМ

© 2021 г. В. Г. Шепелевич^{*a*, *}, С. В. Гусакова^{*a*}, О. В. Гусакова^{*b*, **}

^аБелорусский государственный университет, Минск, 220030 Беларусь ^bМеждународный государственный экологический институт им. А.Д. Сахарова БГУ, Минск, 220070 Беларусь *e-mail: Shepelevich@bsu.by **e-mail: Ol.gusakova@gmail.com Поступила в редакцию 22.01.2020 г. После доработки 24.04.2021 г. Принята к публикации 30.04.2021 г.

Исследованы фазовый состав, микроструктура, механические свойства и стабильность фольг сплавов $(Sn_4In)_{100 - x}Bi_x$ (x = 0-8 ат. %), синтезированных методом сверхбыстрой закалки из расплава при скорости его охлаждения до 10^5 K/c. Быстрозатвердевшие фольги сплавов $(In_4Sn)_{100 - x}Bi_x$ при концентрации висмута меньше 4 ат. % состоят из твердых растворов висмута в γ -фазе (Sn_4In) и олове, а фольги сплава $(In_4Sn)_{92}Bi_8 - из$ твердого раствора висмута в γ -фазе и олове, а также ε -фазы (BiIn). В процессе выдержки фольг при комнатной температуре размеры включений ε -фазы увеличиваются за счет распада пересыщенных твердых растворов висмута в γ -фазе (Sn_4In) и олове. Фольги сплавов имеют микрокристаллическую структуру. Выявлено различие формы и размера зерен на стороне фольги, прилегающей к кристаллизатору и свободно затвердевающей стороне. Текстура γ -фазы в фольгах зависит от концентрации висмута. Легирование γ -фазы висмутом приводит к увеличению микротвердости. Выдержка фольг (InSn)_{100 - x} Bi_x (x = 0, 2 и 4 ат. %) при комнатной температуре в течение 30 ч вызывает монотонное увеличение микротвердости.

Ключевые слова: высокоскоростное затвердевание, легкоплавкие сплавы, фаза, микрокристаллическая структура, текстура, микротвердость.

DOI: 10.31857/S1028096021120207

введение

На основе олова и индия разрабатываются сплавы, применяемые в различных отраслях промышленности. Например, эвтектический сплав In-47 ат. % Sn, а также сплавы близкие к нему по составу, используются в качестве легкоплавкого припоя. Эвтектика In-Sn состоит из β-фазы (In_3Sn) и γ -фазы (Sn_4In) . Соединение Sn_4In , в отличие от олова и инлия, имеет простую гексагональную решетку [1]. Однако, влияние легирующих элементов на структуру и физические свойства у-фазы изучены крайне недостаточно. В последнее время активизировались исследования по изучению диаграмм состояния систем Sn-In-X (X = Bi, Zn и др.) [2-4]. Для получения вышеуказанных сплавов используются различные методы, в том числе и высокоскоростное затвердевание из жидкости, относящееся к энерго- и ресурсосберегающим технологиям [5–7]. В связи с этим имеет важное научное и практическое значение исследование структуры и свойств быстрозатвердевших сплавов олово—индий, легированных третьим компонентом.

Целью данного исследования является изучение влияния висмута на структуру и физические свойства сплавов $(Sn_4In)_{100 - x}Bi_x$ (x = 0-8 ат. %), полученных высокоскоростным затвердеванием.

МЕТОДИКА

Сплавы (Sn-11 ат. % In)-x ат. % Ві (в дальнейшем (SnIn)Ві_x, x = 0, 2, 4 и 8) получены сплавлением компонентов в кварцевой ампуле и последующей кристаллизацией в графитовой изложнице, позволяющей получить стержень длиной 12 см и площадью поперечного сечения 10 мм². Затем образец сплава массой ~0.2 г расплавляли (температура перегрева 50-80°С) и инжектировали на внутреннюю полированную поверхность быстровращающегося медного цилиндра. Капля

Компоненты	Концентрация, ат. %			
	спектр 14	спектр 15	спектр 16	
Олово	1.7	80.0	80.7	
Индий	48.2	12.0	10.9	
Висмут	50.1	8.0	8.4	

Таблица 1. Концентрация компонентов в участках, представленных на рис. 4

расплава растекалась по поверхности цилиндра и затвердевала в виде фольги длиной до 15 см, шириной до 10 мм и толщиной от 30 до 100 мкм. Рассчитанная средняя скорость охлаждения расплава составляла не менее 10⁵ К/с [5].

Исследование структуры быстрозатвердевших фольг осуществляли с помощью растрового электронного микроскопа LEO 1455VP фирмы "Карл Цейс" (Германия) в режиме отраженных электронов. Рентгеноспектральный микроанализ выполняли с использованием энергодисперсионного спектрометра Aztec Energy Advanced X-Max 80. Глубина области генерации рентгеновского излучения составляла около 3 мкм. Зеренную структуру фольг исследовали методом дифракции обратно отраженных электронов с помощью дифракционной приставки фазового анализа "НКL CHANNEL 5" (Oxford Instruments, Великобритания) к растровому электронному микроскопу. Рентгеноструктурный анализ фольг и их текстуру изучали на дифрактометре Rigaku Ultima IV. Исследование текстуры фаз осуществлялось с помощью обратных полюсных фигур, используя метод Харриса для определения полюсных плотностей дифракционных линий [8]. Металлографическая обработка микроструктуры фольг выполнена методом случайных секущих [9]. Погрешность определения параметров микроструктуры составила около 10%. Измерение микротвердости Н_и фольг проводили на ПМТ-3 при нагрузке 2 г и с погрешностью 5%. Изохронный отжиг фольг выполняли через 20°С от комнатной температуры до 120-160°С с выдержкой по 10 мин при каждой температуре отжига.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгенограмма быстрозатвердевшей фольги Sn-11 ат. % In содержит только дифракционные линии γ -фазы (Sn₄In): (0001, 10 $\overline{10}$, 10 $\overline{11}$, 11 $\overline{20}$, 0002, 11 $\overline{21}$ и др.) Легирование γ -фазы висмутом вызывает появление на рентгенограмме дополнительных дифракционных отражений, соответствующих олову (101, 211, 301, 420 и др.). При этом дифракционные отражения олова наблюдались при падении рентгеновского излучения на поверхность фольги А, контактирующую с кристаллизатором, и противоположную поверхность В фольги.

Изображения микроструктуры поверхностей А и В быстрозатвердевших фольг сплавов (SnIn)Bi₈, полученные методом растровой электронной микроскопии (РЭМ) через 3 часа после изготовления, не содержат контрастных участков (рис. 1а, 1б). Однако, согласно данным рентгеноспектрального микроанализа, на распределении элементов вдоль линий сканирования *L*-*L*^I выявляются участки с различной концентрацией олова и индия (рис. 1в, 1г). В участках с пониженным содержанием индия его концентрация составляет 9-10 ат. %, тогда как остальном объеме содержится 15–16 ат. % In. Отсутствие контраста на РЭМ-изображениях между этими участками обусловлено незначительным различием атомных масс олова и индия. Таким образом, слои фольги (SnIn)Bi_r, прилегаюшие к поверхностям А и В, состоят из твердого раствора на основе у-фазы, пересыщенного висмутом, и твердого раствора на основе олова, пересыщенного висмутом и индием.

Легирование γ-фазы висмутом приводит к увеличению параметров ее кристаллической решетки *a* и *c* (рис. 2). Радиус атома висмута больше радиуса атомов олова и индия [9], что и обусловливает увеличение расстояния между узлами кристаллической решетки при образовании твердого раствора замещения висмута в γ-фазе. Замещение атомов олова висмутом приводит к выделению олова, что приводит к появлению дополнительных рефлексов олова.

Изображения поперечного сечения фольги сплава (SnIn) Bi_8 , полученные после ее выдержки в течение 30 и 150 ч при комнатной температуре, представлены на рис. 3. В средней части поперечного сечения фольги сплава (SnIn) Bi_8 присутствуют четко выраженные белые выделения (рис. 3а, 3б). Такие выделения не наблюдались в сечении фольг сплавов с содержанием висмута 2 и 4 ат. %.

С помощью метода рентгеноспектрального микроанализа (РСМА) определен химический состав крупных белых выделений (рис. 4а, табл. 1, спектр 14) фольг сплава (SnIn)Bi₈. Отношение концентраций индия и висмута (в ат. %) составляет 0. 96, что соответствует ε -фазе (BiIn). Химический состав областей, не имеющих белых выделений, также определен методом РСМА и представлен в табл. 1 (спектры 15 и 16). Различие концентраций компонентов в этих областях не превышает 10%. В фольгах сплавов (SnIn)Bi_x, содержащих 2 и 4 ат. % Ві, выделения ε -фазы не наблюдались.

Исследования распределения элементов вдоль линии сканирования $L-L^1$ в фольге сплава (SnIn)Ві₈ позволили установить, что выделения ε -фазы формируются в участках, состоящих из

Рис. 1. РЭМ-изображения поверхностей A (а) и B (б) и распределение Sn, In и Bi, (кривые *1*, *2* и *3* соответственно) вдоль линий сканирования $L-L^{I}$ фольг сплава (SnIn)Bi₈ по поверхностям A (в) и B (г).

олова и на границе участков олова и у-фазы (рис. 5). Обращает на себя внимание тот факт, что концентрация висмута в обоих участках одинакова. Исследования показали, что параметры є-фазы в фольгах сплава (SnIn)Ві₈ изменяются со временем. Результаты исследования представлены в табл. 2. Через 30 ч после изготовления объемная доля выделений ε -фазы $V_{\varepsilon} = 2.1\%$, удельная поверхность ее межфазной границы с другими фазами S = 0.58 мкм⁻¹, средняя длина хорд d = 0.58 мкм⁻¹. Выдержка фольги сплава (SnIn)Ві8 при комнатной температуре в течение 150 ч вызывает увеличение объемной доли выделений и средней длины хорд выделений є-фазы, а также удельной поверхности межфазной границы. Плотность частиц ε-фазы также увеличивается. Таким образом, при комнатной температуре происходит медленный распад пересыщенных твердых растворов на основе олова и ү-фазы, приводящий к росту существующих частиц выделений є-фазы.

В тройных сплавах (SnIn)Вi_x при высокоскоростном затвердевании из-за значительного переохлаждения расплава происходит увеличение скорости образования центров кристаллизации, что способствует формированию микрокристал-

Рис. 2. Зависимость параметров кристаллической решетки a(1) и c(2) γ -фазы от концентрации висмута в фольгах сплавов (SnIn)Bi_x.

Рис. 3. Микроструктура поперечного сечения фольги сплава (SnIn)Ві₈ после и выдержки при комнатной температуре: а – в течение 30 часов, б – 150 ч.

Рис. 4. Выделения фазы в поперечном сечении фольги сплава (SnIn)Ві₈: а – крупное выделение ε-фазы, б – участки с различной плотностью выделений ε-фазы.

Рис. 5. Микроструктура (а) и распределение Sn, In и Ві вдоль линии сканирования $L-L^1$ (б) фольги сплава (SnIn) Ві₈.

лической структуры. На рис. 6 представлено изображение зеренной структуры слоев, прилегающих к поверхностям А и В, фольги сплава (SnIn)Bi₄.

Выделения γ-фазы на поверхности А имеют вытянутую форму, а на поверхности В – равноосную. Объемная доля олова и γ-фазы в слое, прилегающем к поверхности А, составляют 0.28 и 0.72, а в слое, прилегающем к поверхности В – 0.30 и 0.70 соответственно. Высокоугловые границы, изображенные темными жирными линиями, наблюдаются не в каждом сечении выделений фаз.

В табл. 3 представлены параметры зеренной структуры, определенные методом случайных секущих. Средние величины хорд на сечениях зерен γ-фазы в слоях, прилегающих к поверхностям A и В, равны 5.4 и 5.0 мкм, а олова — 2.5 и 4.1 мкм соответственно. Т.е. в быстрозатвердевших фольгах формируется микрокристаллическая структура. Удельная поверхность высокоугловых границ зе-

СТРУКТУРА И МИКРОТВЕРДОСТЬ СПЛАВОВ

Параметры микроструктуры	Выдержка 30 ч при 20°С	Выдержка 150 ч при 20°С
Объемная доля є-фазы, %	2.1	3.5
Средняя величина хорд, мкм	1.5	1.7
Удельная поверхность, мкм ⁻¹	5.8×10^{-2}	7.7×10^{-2}
Число сечений частиц ϵ -фазы на единицу площади, мкм $^{-2}$	5.3×10^{-3}	1.1×10^{-2}

Таблица 2. Параметры микроструктуры фольги сплава (SnIn)Bi₈

рен в γ-фазе больше, чем в олове в 2–4 раза вблизи поверхностей A и B соответственно.

Полюсные плотности дифракционных линий γ -фазы представлены в табл. 4. В фольге Sn₄In наблюдается слабовыраженная текстура (0001), (10 10) и (10 11). Увеличение концентрации висмута в сплавах (SnIn)Bi_x приводит к ослаблению компоненты (10 10) текстуры и усилению компоненты (10 11) текстуры в γ -фазе. В олове также наблюдается слабовыраженная текстура (100). Микротвердость быстрозатвердевших сплавов (SnIn) Bi_x зависит от концентрации висмута и изменяется в процессе выдержки при комнатной температуре. На рис. 7 представлены зависимости $H_{\mu}(t)$ быстрозатвердевших сплавов (SnIn) Bi_x с различной концентрацией висмута от времени выдержки при комнатной температуре. Микротвердости бинарного сплава и сплавов с концентрацией 2 и 4 ат. % Ві монотонно увеличиваются в процессе выдержки при комнатной температуре, а микротвердость сплава с концентрацией 8 ат. % Ві не изменяется.

Рис. 6. Зеренная структура фольги сплава (SnIn)Ві₄ в слоях, прилегающих к поверхностям A (а) и (б) и B (в) и (г).

ШЕПЕЛЕВИЧ и др.

Параметры зеренной структуры	Слой вблизи поверхности А	Слой вблизи поверхности В
Объемная доля ү-фазы, V_{γ}	0.72	0.68
Объемная доля олова, $V_{\rm Sn}$	0.28	0.32
Средняя хорда сечений зерен ү-фазы, <i>d</i> _ү , мкм	5.4	5.0
Средняя хорда сечений зерна олова, <i>d</i> _{Sn} , мкм	2.2	3.3
Удельная поверхность	0.08	0.12
высокоугловых границ зерен ү-фазы, S_{γ} , мкм $^{-1}$		
Удельная поверхность	0.038	0.032
высокоугловых границ зерен олова, $S_{\rm Sn}$, мкм $^{-1}$		

Таблица 3. Параметры зеренной структуры фольги сплава (SnIn)Bi₄

Таблица 4. Полюсные плотности дифракционных линий γ -фазы фольг сплавов (SnIn)Bi_x

Дифракционные	Концентрация висмута, ат. %			
линии	0	2	4	8
1011	1.4	2.5	1.8	1.7
$11\overline{2}0$	0.4	0.3	0.3	0.5
0002	2.3	2.0	2.9	2.4
$11\overline{2}1$	0.4	0.6	0.4	0.4
$20\overline{2}0$	1.8	0.6	0.9	0.6
$10\overline{1}2$	0.4	0.6	0.4	0.8
2021	0.3	0.3	0.3	0.5

Увеличение H_{μ} обусловлено тем, что в исследуемых легкоплавких сплавах границы зерен являются разупрочненными зонами [10]. Кроме того, при больших скоростях роста центров кристаллизации в области контакта соседних зерен образуются различные несовершенства (ступеньки, уступы, пустоты, несопряженные участки

Рис. 7. Зависимость микротвердости H_{μ} фольг сплавов (SnIn)Bi_x от времени выдержки *t* при комнатной температуре для фольг с различной концентрацией Bi: 1 - x = 0; 2 - x = 2; 3 - x = 4; 4 - x = 8 ат. %

границ зерен), понижающие прочностные свойства материала фольг. Пластическая деформация сплава, возникающая под алмазным индентором при измерении микротвердости, вызвана зернограничным проскальзыванием и сдвигами внутри зерен [11, 12]. В процессе старения при комнатной температуре в исследуемых сплавах активно протекают диффузионные процессы, способствующие улучшению структуры границ зерен и фаз. Это приводит к уменьшению вклада зернограничного проскальзывания в общую величину пластической деформации и росту прочностных свойств.

Аналогичные изменения H_{μ} наблюдались и в эвтектических сплавах систем Bi–Sn, Sn–In и Bi–In [13–15]. В фольге сплава (SnIn)Bi₈ образуется большое количество дисперсных частиц олова и ε -фазы, расположенных на границах γ -фазы и препятствующих их миграции, что не вызывает увеличения микротвердости при комнатной температуре. Способность фольги увеличивать свою твердость с течением времени может оказаться полезной, например, при изготовлении изделий сложной конфигурации.

Рис. 8. Изменение микротвердости H_{μ} при изохронном отжиге фольг сплавов (SnIn)Bi_x, для фольг с различной концентрацией Bi: 1 - x = 0; 2 - x = 2; 3 - x = 4; 4 - x = 8 ат. %.

Фольги исследуемых сплавов, выдержанных в течение нескольких суток при комнатной температуре, подвергались изохронному отжигу. Кривые изменения микротвердости после изохронного отжига представлены на рис. 8. При нагреве выше 40°С наблюдается уменьшение микротвердости, что может быть связано с усилением диффузионных процессов, вызывающих изменение структуры зерен γ-фазы. Зерна становятся более пластичными и микротвердость фольги снижается.

ЗАКЛЮЧЕНИЕ

Полученные высокоскоростным охлаждением из жидкой фазы тройные сплавы (SnIn)Bi, содержащие 2 и 4 ат. % Ві, состоят из твердых растворов висмута в у-фазе и твердых растворов висмута и индия в олове. Тройной сплав (SnIn)Ві₈ включает твердый раствор висмута в у-фазе, твердый раствор висмута и индия в олове, а также є-фазы. Фольги сплавов имеют микрокристаллическую структуру и слабовыраженные текстуры γ-фазы, состоящие в повышенных полюсных плотностях отражений от плоскостей (0001) и $(10\overline{1}0)$ для фольг, не содержащих Ві, и в повышенных полюсных плотностях отражений от (0001) и $(10\overline{1}1)$ при легировании висмутом. В твердом растворе Ві и Іп в олове наблюдается текстура (100). Микротвердость быстрозатвердевших фольг сплавов (SnIn)Вi, с концентрацией висмута 0-4 ат. % ниже микротвердости сплавов, полученных в квазиравновесных условиях. однако она монотонно увеличивается со временем выдержки сплава при комнатной температуре.

СПИСОК ЛИТЕРАТУРЫ

- 1. Смитлз К. Дж. Металлы. М.: Металлургия, 1980. 447 с.
- Shalaby R.M. // Materials Science & Engineering. A. 2013. V. 560. P. 86.
- 3. *Song J.-M., Chang Y.-L., Liu T.-S. et al.* // Materials Transactions. 2004. V. 45. № 3. P. 666.
- 4. Moon K.W., Boettinger W.J., Kattner U.R. et al. // J. Electronic. Materials. 2001. V. 30. P. 45.
- 5. *Мирошниченко И.С.* Закалка из жидкого состояния. М.: Металлургия, 1982. 168 с.
- 6. Васильев В.А. Высокоскоростное затвердевание расплавов (теория, технология и материалы) / Ред. Митина Б.С. М.: "СП ИНТЕРМЕТ ИНЖИ-НИРИНГ", 1998. 400 с.
- 7. Ван Цзинцзе, Шепелевич В.Г. Быстрозатвердевшие фольги индия. Минск: РИВШ, 2011. 172 с.
- 8. Русаков А.А. Рентгенография металлов. М.: Атом-издат, 1977. 480 с.
- 9. Ормонт Б.Ф. Введение в физическую химию и кристаллохимию полупроводников. М.: Высшая школа, 1968. 488 с.
- 10. Хоникомб Р. Пластическая деформация металлов. М.: Мир, 1972. 408 с.
- 11. Бокштейн Б.С., Капецкий Ч.В., Швиндерман Л.С. Термодинамика и кинетика границ зерен в металлах. М.: Металлургия, 1986. 224 с.
- 12. Грабский М.В. Структурная сверхпластичность металлов. М.: Металлургия, 1975. 272 с.
- Шепелевич В.Г., Гусакова О.В., Щербаченко Л.П. // Материалы, технологии, инструменты. 2012. Т. 17. № 4. С. 35.
- 14. Шепелевич В.Г., Щербаченко Л.П. // Физика и химия обработки материалов. 2014. № 4. С. 52.
- Shepelevich V.G., Scherbachenko L.P. // British Journal of Science. Education and Culture. 2015. V. 111. № 1(7). P. 863.

Structure and Microhardness of alloys $(Sn_4In)_{100} - _xBi_x$ (x = 0-8 at %), Produced by Rapid Cooling

V. G. Shepelevich^{1, *}, S. V. Husakova¹, O. V. Gusakova^{2, **}

¹Belarusian State University, Minsk, 220030 Belarus

²International Sakharov Environmental Institute of Belarusian State University, Minsk, 220070 Belarus

*e-mail: Shepelevich@bsu.by

**e-mail: Ol.gusakova@gmail.com

The phase composition, microstructure, mechanical properties and stability of $(Sn_4In)_{100}$ Bi_x (x = 0-8 at %) alloys synthesized by rapid quenching from a melt technique at a cooling rate of up to 10⁵ K/s were studied. Rapidly quenched foils of alloys $(In_4Sn)_{100-x}Bi_x$ (x = 2 and 4 at %) at bismuth concentration of up to 4 at % consist of solid solutions of bismuth in the γ -phase (Sn4In) and tin, and the foil (InSn)Bi₈ – from the solid solution of bismuth in the γ -phase and tin as well as the ε -phase (BiIn). During foil aging at room temperature, the sizes of ε phase inclusions increase due to the decomposition of supersaturated bismuth solid solutions in the γ -phase (Sn4In) and tin. The foils have a microcrystalline structure. A difference was found in the shape and size of grains on the side of the foil adjacent to the mold and the freely solidifying side. The texture of the γ -phase in foils depends on the concentration of bismuth. The alloying of the γ phase with bismuth leads to an increase in microhardness. Holding the foils (InSn)_{100-x}Bi_x (x = 0, 2 and 4 at %) at room temperature causes a monotonic increase in the microhardness.

Keywords: rapid solidification, low-melting alloys, phase, microcrystalline structure, texture, microhardness.