УДК 661.715.1+544.541

ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ СВОЙСТВ И РАДИАЦИОННОЙ СТОЙКОСТИ ПОЛИПРОПИЛЕНА, МОДИФИЦИРОВАННОГО НАНОЧАСТИЦАМИ Al₂O₃

© 2021 г. М. М. Михайлов^{а,} *, В. А. Горончко^{а,} **, С. М. Лебедев^b

^а Томский государственный университет систем управления и радиоэлектроники, Томск, 634000 Россия ^bНациональный исследовательский Томский политехнический университет, Томск, 634000 Россия *e-mail: Membrana2010@mail.ru **e-mail: W_Goronchko@mail.ru Поступила в редакцию 30.12.2020 г. После доработки 25.01.2021 г. Принята к публикации 27.01.2021 г.

Исследованы спектры диффузного отражения (в диапазоне 300–1000 нм) и интегральный коэффициент поглощения солнечного излучения, а также их изменение после облучения электронами (E = 30 кэB, $\Phi = 2 \times 10^{16} \text{ см}^{-2}$) полипропилена, модифицированного наночастицами оксида алюминия в диапазоне концентрации 1–5 масс. %. Определена оптимальная концентрация наночастиц (2 масс. %), при которой радиационная стойкость увеличивается в 9.5 раз. Результаты исследования могут быть использованы при выборе материалов, работающих в условиях действия ионизирующих излучений: в космическом пространстве, в ядерной энергетике, в ускорительной и рентгеновской технике.

Ключевые слова: полипропилен, модифицирование полимеров, радиационная стойкость, нанопорошки, оксидные соединения, оптические свойства, нанокомпозиты.

DOI: 10.31857/S1028096021070128

введение

Модифицирование полимеров наночастицами с целью улучшения их стойкости к различным воздействиям внешних агрессивных сред в настоящее время является актуальным направлением для получения новых материалов. Нанопорошки оксида алюминия представляют собой наномерные материалы с фиксированными путем высоких скоростей закалки, упругими контактными напряжениями. Такие порошки эквивалентны нанокристаллическим материалам, содержащим в структуре кристаллическую и аморфную составляющие. Вследствие малого размера частиц и короткого времени образования порошки близки к кластерному состоянию, т.е. они носят явно выраженный неравновесный характер с энергонасыщенными состояниями. Для них характерно значительное снижение температуры плавления и спекания, высокая реакционная способность. Поэтому данному направлению посвящены исследования, результаты которых необходимы для различных областей применения, одним из главных среди которых является космическое пространство [1].

Полимерные композиционные материалы используются по различным причинам. Во-первых, они могут быть применены в качестве легких конструкционных материалов. Во-вторых, они могут быть подвергнуты обработке для достижения эффективного экранирования излучения. Требование, которому должны соответствовать полимерные композиты, является сохранение рабочих характеристик при долговременной эксплуатации в условиях космического пространства [2–7].

Установлено улучшение термической стабильности нанокомпозитов на основе циклоалифатической эпоксидной смолы, модифицированной кремнийсодержащими наноструктурами [2]. Описано влияние модифицирования на такие характеристики, как отверждение, температура стеклования, количество образованных агломератов наночастиц. Последние достижения в области нанокомпозитов, их типов и методик их изготовления представлены в работах [3, 4]. Установлена высокая стойкость ударопрочного полистирола по отношению к потоку быстрых электронов под разными углами их падения к нормали поверхности мишени [5]. В работе [6] исследовали радиационную стойкость при облучении электронами полистирола исходного и модифицированного наночастицами SiO₂. Введение наночастиц SiO₂ больших концентраций в полистирол приводит к образованию незначительного количества агломератов шарообразной формы и увеличению радиационной стойкости. При концентрации C == 30 масс. % их размер может достигать 80 мкм. Модифицирование эпоксидной смолы углеродным волокном, стекловолокном и арамидной тканью [7] приводит к уменьшению дегазации в космическом пространстве.

Эти данные показывают высокую эффективность модифицирования полимеров наночастицами для повышения радиационной стойкости. Поэтому перспективным представляется модифицирование других полимеров, работающих в условиях действия излучений. В космических аппаратах полипропилен может использоваться в качестве изоляционного материала.

Целью настоящей работы является исследование оптических свойств и их изменений при облучении электронами модифицированного наночастицами Al₂O₃ полипропилена.

МЕТОДИКА ЭКСПЕРИМЕНТА

В работе использовали полипропилен марки РР H030 GP в виде гранул шарообразной формы белого цвета, диаметр которых составлял 2-4 мм, и нанопорошки Al₂O₃, полученные плазмохимическим методом, с размерами зерен 30-40 нм и гранул до 500 нм. Нанокомпозиты получали в пластографе Брабендера. Смешивание двух составляющих осуществляли на двухшнековом экструдере. Полимер в виде гранул засыпали на приводимые в движение шнеки. Начальная температура (90°С) с изменением крутящего момента шнеков увеличивалась до температуры плавления (160°С). После расплавления полимера в него вводилось необходимое количество гранул оксида алюминия. Равномерное распределение наполнителя достигалось перемешиванием расплава до образования однородной массы. После 15 минут нагрев отключали. Готовый образец спекали при температуре 165°С под давлением в прессе. Было получено пять образцов в виде прямоугольных блоков 0.1 × 3 × 5 см с концентрацией наночастиц Al₂O₃: 0, 1, 2, 3 и 5 масс. %. [8, 9]. Блоки закрепляли на алюминиевые подложки.

Исследование спектров диффузного отражения ρ_{λ} и их изменение после облучения ($\Delta \rho_{\lambda}$ – определение радиационной стойкости нанокомпозитов) в области 0.35–1.0 мкм осуществляли в специальной установке – имитаторе условий космического пространства "Спектр-1" [10]. Спектры ρ_{λ} включали две составляющие: пропускание блоков и отражения от подложки. Поскольку отражение от подложки оставалось постоянным, то такие спектры характеризуют пропускание блоков. Облучение осуществляли электронами (энергия E = 30 кэВ, поток $\phi = 5 \times$ $\times 10^{12}$ см⁻² · с⁻¹) при флуенсе $\Phi = 2 \times 10^{16}$ см⁻² в вакууме 5 × 10^{-7} Торр при T = 300 К. Пробег электронов такой энергии в полипропилене составляет примерно 10 мкм, что значительно меньше толщины блоков (1 мм). Поэтому отражение от подложки после облучения не изменялось, и полученные изменения спектров после облучения определялись поглощением, наведенным в образцах действием электронов. Регистрацию спектров р₁ осуществляли после облучения на месте облучения (in situ) без выноса образцов в атмосферу. Такой способ регистрации спектров ρ_{λ} позволял избежать взаимодействия образованных в образцах дефектов с газами.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Из спектров ρ_{λ} исходного и модифицированных наночастицами образцов (рис. 1) следует, что при введении наночастиц в объем полимера происходит уменьшение коэффициента отражения в диапазоне 350—620 нм с явно выраженным минимальным значением при 380 нм.

Разностные спектры отражения $\Delta \rho_{\lambda}$ образцов, полученные вычитанием из спектра немодифицированного образца спектров модифицированных образцов (рис. 2), показывают влияние модифицирования на отражательную способность полипропилена. При концентрации наночастиц 1, 2, 3 и 5 масс. % отражательная способность в максимуме полосы при 380 нм уменьшается на 29, 27, 27 и 28% соответственно. Увеличение концентра-

Рис. 1. Спектры диффузного отражения модифицированных образцов полипропилена с различной концентрацией наночастиц Al_2O_3 , масс. %: 1 - 0, 2 - 1, 3 - 2, 4 - 3, 5 - 5.

Рис. 2. Разностные спектры отражения $\Delta \rho_{\lambda}$ образцов, полученные вычитанием спектров, модифицированных образцов из спектра не модифицированного образца при концентрации наночастиц, масс. %: *1* – 1, *2* – 2, *3* – 3 и *4* – 5.

ции до 5 масс. % приводит к увеличению отражательной способности в области 700—1000 нм.

Регистрируемые изменения коэффициента отражения могут быть обусловлены изменением как поглощения, так и рассеяния, поскольку коэффициент отражения только уменьшается. При больших значениях концентрации (5 масс. %) в диапазоне 700–1000 нм превалирующее влияние оказывает рассеяние, поскольку коэффициент отражения при этом превосходит значения для немодифицированного полимера.

После облучения электронами спектры отражения изменяются так, что в разностных спектрах отражения $\Delta \rho_{\lambda}$, полученных вычитанием спектров облученных образцов из спектров до облучения (рис. 3), проявляются полосы поглощения.

Появление полос поглощения после облучения полипропилена обусловлено образованием свободных радикалов. Энергия разрыва химической связи в полипропилене составляет 3.2 эВ [11, 12]. Полосы в области 400-430 нм (3-3.2 эВ) могут быть вызваны образованием дополнительных электронных уровней (в свободных радикалах) или образованием частично заполненных молекулярных орбиталей (в катион-и анион-радикалах) [13]. Полосы с энергией 3.3-3.4 эВ (370-390 нм) могут быть обусловлены С =О-группами, присутствующими в полипропилене в незначительном количестве [14]. Полосы в области 440-520 нм (2.5-2.9 эВ) характеризуются качеством изготовления образца, т.е. количеством образовавшихся конгломератов микронного диапазона размеров из наночастиц. Эти изменения являются необратимыми [14].

Рис. 3. Разностные спектры диффузного отражения исходного и модифицированных наночастицами Al_2O_3 образцов полипропилена после облучения электронами (E = 30 кэВ, $\varphi = 5 \times 10^{12}$ см⁻² · c⁻¹): а – не модифицированный ПП, 6: $I - \Pi\Pi + 1$ масс. % нано Al_2O_3 , $2 - \Pi\Pi + 2$ масс. % нано Al_2O_3 , $3 - \Pi\Pi + 3$ масс. % нано Al_2O_3 , $4 - \Pi\Pi + 5$ масс. % нано Al_2O_3 .

При флуенсе электронов $\Phi = 2 \times 10^{16}$ см⁻² из зависимости $\Delta \rho_{\lambda}$ от концентрации наночастиц Al₂O₃ в интервале от 1–5 масс. % для $\lambda = 380$ нм (рис. 4) для не модифицированного полипропилена следует, что оптимальной для увеличения радиационной стойкости является концентрация 5 масс. % наночастиц Al₂O₃. Отношение значений $\Delta \rho_{\lambda}$ не модифицированного образца к $\Delta \rho_{\lambda}$ модифицированных образцов для $\Phi = 2 \times 10^{16}$ см⁻² составляет: 5.0, 5.6, 6.4 и 8 для концентрации наночастиц 1, 2, 3 и 5 масс. % соответственно. При введении наночастиц ZrO₂ в таком же режиме увеличение радиационной стойкости полипропилена регистрировали в диапазоне концентраций от 0.5 до 3 масс. % [15]. Дальнейшее увеличение концентрации до 5 масс. % привело к резкому

Рис. 4. Зависимость изменения коэффициента отражения при длине волны 380 нм при флуенсе электронов $\Phi = 2 \times 10^{16}$ см⁻² от концентрации наночастиц Al₂O₃ при модифицировании полипропилена.

росту деградации, превышающей деградацию не модифицированного образца.

Наиболее информативной характеристикой материалов космической техники по сравнению со спектрами поглощения, наведенного облучением, является интегральный коэффициент поглощения солнечного излучения a_s и его изменение после облучения Δa_s . Этот коэффициент определяется нормированием спектра ρ_{λ} на спектр излучения Солнца согласно стандарту [16, 17] по формуле:

$$a_{\rm s} = 1 - \rho_{\rm s} = 1 - \frac{\int_{\lambda_1}^{\lambda_2} \rho_{\lambda} S_{\lambda} d\lambda}{\int_{\lambda_1}^{\lambda_2} S_{\lambda} d\lambda}, \qquad (1)$$

где ρ_s — интегральный коэффициент отражения, ρ_{λ} — спектр отражения, S_{λ} — спектр излучения Солнца, λ_1 , λ_2 — спектральный диапазон излучения Солнца.

Интегральный коэффициент отражения ρ_s рассчитывали суммированием значений ρ во всем спектральном диапазоне:

$$\rho_{s} = \frac{\sum_{i=1}^{n} \rho(\lambda_{i}) S(\lambda_{i}) \Delta(\lambda_{i})}{\sum_{i=1}^{n} S(\lambda_{i}) \Delta(\lambda_{i})},$$
(2)

где n = 24.

Из зависимости Δa_s , рассчитанной по спектрам $\Delta \rho_{\lambda}$, исследуемых образцов полипропилена от концентрации наночастиц (рис. 5), следует ее

Рис. 5. Зависимость изменения коэффициента поглощения a_s при флуенсе электронов $\Phi = 2 \times 10^{16}$ см⁻² от концентрации наночастиц Al_2O_3 при модифицировании полипропилена.

качественное отличие от аналогичной зависимости для полосы поглощения при 380 нм. Оптимальным значением концентрации наночастиц является 2 масс. %. При этом значении радиационная стойкость увеличивается в 9.5 раз по сравнению с не модифицированным полипропиленом. Для концентрации 1, 3 и 5 масс. % увеличение составляет в 3.8, 2.38 и 1.36 раз соответственно.

ЗАКЛЮЧЕНИЕ

Выполнено модифицирование полипропилена промышленного производства PP H030 GP наночастицами оксида алюминия различной концентрации в диапазоне 1–5 масс. %. Установлено, что отражательная способность образцов, модифицированных при C = 1-3 масс. % уменьшается по всему спектру в диапазоне (200–1000 нм) и увеличивается в диапазоне 700–1000 нм у образца при концентрации наночастиц C = 5 масс. %.

Установлено, что облучение электронами с энергией 30 кэВ и флуенсом 2×10^{16} см⁻² приводит к уменьшению коэффициента отражения всех образцов (в основном в УФ и видимой областях спектра). Образуется несколько полос поглощения, интенсивность которых в зависимости от концентрации наночастиц изменяется с минимумом, соответствующим 1–5 масс. %. Для интегрального коэффициента поглощения солнечного излучения минимум изменений соответствует концентрации наночастиц 2 масс. %.

Эффективность увеличения радиационной стойкости, рассчитанная по значениям интегрального коэффициента поглощения, достигает 9.5 раз при концентрации 2 масс. % и 8 раз при расчете по значениям $\Delta \rho_{\lambda}$ на длине волны 380 нм при концентрации 5 масс. %.

БЛАГОДАРНОСТИ

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-32-90096.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Юрьев С.А.* Оптические свойства и радиационная стойкость порошков диоксида титана, модифицированных наночастицами оксидных соединений: Дис. канд. тех. наук: 01.04.04. Томск: ТУСУР, 2015. 157 с.
- Suliga A., n Hamerton I., Viquerat A. // Composites. Part B: Engineering. 2018. V. 138. P. 66. https://doi.org/10.1016/j.compositesb.2017.11.010
- Ponnusamy S., Gunasundari E. // Nano Hybrids and Composites. 2018. V. 20. P. 65. https://doi.org/10.4028/www.scientific.net/NHC.20.65
- 4. Жданович О.А. // Разработка композиционных материалов с наноструктурированными соединениями бора для создания быстровозводимых конструкций и покрытий с заданными анизотропными свойствами, предназначенных для защиты от радиационного излучения. Федеральная целевая программа. № 14.625.21.0035 на период 2015–2017 гг. Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014–2020 годы. Номер Соглашения 14.625.21.0035. 2017. С. 1–3. http:// www.irea.org.ru/documentation/gk/razrabotka-kompozitsionnykh-materialov-s-nanostrukturirovannymisoedineniyami-bora-dlya-sozdaniya-b.php.
- 5. Ястребинский Р.Н., Соколенко И.В., Иваницкий Д.А., Матюхин П.В. // Международный журнал при-

кладных и фундаментальных исследований. 2015. № 12-6. С. 983.

- Черкашина Н.И., Павленко А.В. // ЖТФ. 2018. Т. 88. № 4. С. 587. https://doi.org/10.21883/JTF.2018.04.45728.2237
- Pastore R., Delfini A., Albano M., Vricella A., Marchetti M., Santoni F. // Acta Astronautica. 2020. V. 170. P. 466. https://doi.org/10.1016/j.actaastro.2020.02.019
- 8. *Whelan A.* Polymer Technology Dictionary. Springer Science & Business Media: 2012. 555 p.
- Ahamad A., Chaudhari A., Patil C., Mahulikar P., Hundiwale D. // Polymer-Plastics Technology and Engineering. 2012. V. 51. № 8. P. 786. https://doi.org/10.1080/03602559.2012.663045
- Kositsyn L.G., Mikhailov M.M., Kuznetsov N.Ya., Dvoretskii M.I. // Instruments and Experimental Techniques. 1985. V. 28. P. 929.
- 11. *Лахтин, Ю.М.* Материаловедение. 3-е изд. М.: Машиностроение, 1990. 528 с.
- 12. Singh N.L., Sharma A., Shrinet V., Rakshit A.K., Avasthi D.K. // Bull. Mater. Sci. 2004. V. 27. P. 263. https://doi.org/10.1007/BF02708515
- 13. Милинчук В.К. Радиационная стойкость органических материалов. М.: Энергоатомиздат, 1986. 271 с.
- Дунто, Ф.И. Полиэтилен высокого давления. Научно-технические основы промышленного синтеза. Л.: Химия, 1988. 200 с.
- Mikhailov M.M., Lebedev S.M., Sokolovskiy A.N., Goronchko V.A. // Polym. Compos. V. 40. P. 3050. https://doi.org/10.1002/pc.25148
- 16. ASTM E490-00a. Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables, ASTM International, West Conshohocken, PA, 2019.
- 17. ASTM E903-96. Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres, ASTM International, West Conshohocken, PA, 2012.

Investigation of Radiation Stability of Optical Properties of Polypropylene Modified with Al₂O₃ Nanoparticles

M. M. Mikhailov^{1, *}, V. A. Goronchko^{1, **}, S. M. Lebedev²

¹Tomsk State University of Control Systems & Radioelectronics, Tomsk, 634000 Russia ²National Research Tomsk Polytechnic University, Tomsk, 634000 Russia *e-mail: Membrana2010@mail.ru **e-mail: W Goronchko@mail.ru

The spectra of diffuse reflection in the range of 300-1000 nm and the integral absorption coefficient of solar radiation and their change after irradiation with electrons (E = 30 keV, $\Phi = 2 \times 10^{16}$ cm⁻²) of polypropylene modified with nanoparticles of aluminum oxide in the range of 1–5 mass. %. The optimal mass of nanoparticles (2%), at which the radiation resistance increases by 9.5 times, has been determined. The research results can be used in the selection of materials operating under the conditions of ionizing radiation: in outer space, in nuclear power engineering, in accelerator and X-ray technology.

Keywords: polypropylene, polymer modification, radiation resistance, nanopowders, oxide compounds, optical properties, nanocomposites, optical properties.