УДК 538.911

ВОЗМОЖНОСТЬ ИСПОЛЬЗОВАНИЯ ХРОМА В КАЧЕСТВЕ КОММУТАЦИОННОГО МАТЕРИАЛА ДЛЯ CrSi₂

© 2021 г. Ф. Ю. Соломкин^{*a*}, А. Ю. Самунин^{*a*}, Н. В. Зайцева^{*a*}, Н. В. Шаренкова^{*a*}, Г. Н. Исаченко^{*a*}, К. Л. Самусевич^{*c*}, В. В. Клечковская^{*b*}, *, А. С. Орехов^{*b*}, Е. В. Ракова^{*b*}, Е. В. Дроздова^{*b*}

^аФизико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, 194021 Россия ^bИнститут кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, 119333 Россия ^cУниверситет ИТМО, Санкт-Петербург, 197101 Россия *e-mail: klechvv@crys.ras.ru Поступила в редакцию 25.12.2020 г. После доработки 23.01.2021 г. Принята к публикации 25.01.2021 г.

Исследована возможность использования слоев металлического хрома в качестве коммутационного материала для среднетемпературного термоэлектрика CrSi₂. Образцы CrSi₂/Cr получали методом горячего прессования мелкодисперсного электролитического порошка хрома с монокристаллическим и поликристаллическим дисилицидом хрома с последующим высокотемпературным отжигом. Методами рентгенофазового анализа, растровой электронной микроскопии, энергодисперсионной рентгеновской спектроскопии и дифракции обратно рассеянных электронов показано, что как в объеме термоэлектрического материала, так и на границе раздела Cr–CrSi₂ дополнительные фазы не образуются. Следовательно, Cr может быть рекомендован в качестве коммутационного материала.

Ключевые слова: дисилицид хрома, металлический хром, коммутационный материал, граница раздела фаз, растровая электронная микроскопия, рентгенофазовый анализ. **DOI:** 10.31857/S1028096021070189

введение

При поиске наиболее эффективных термоэлектрических материалов особое внимание уделяют применению новых и оптимизации существующих термоэлектрических соединений. Важным вопросом для практического использования этих материалов является коммутация термоэлементов с токоподводами и их стабильность при термоциклировании.

Известно, что металл, используемый для коммутации, при высоких температурах может взаимодействовать с материалом полупроводника с образованием дополнительных фаз, влияющих на его физические свойства. В самом полупроводнике в результате эксплуатации при высоких температурах тоже могут наблюдаться фазовые переходы и образование дополнительных фаз, которые могут взаимодействовать с материалом токоподвода. Поэтому выбор коммутационного материала и исследование его взаимодействия с полупроводником важны для достижения стабильности физических свойств термоэлектрических преобразователей в процессе эксплуатации.

СгSi₂ является одним из перспективных среднетемпературных термоэлектриков *p*-типа проводимости с шириной запрещенной зоны 0.35 эВ [1] и рекордным фактором мощности с максимумом 45 мкВт/($K^2 \cdot cm$) при T = 600 K [2, 3]. Стабильность термоэлектрических свойств дисилицида хрома рассматривали в [2, 3], где была показана его высокая эффективность и перспективность для промышленного применения. Вопросы коммутации CrSi₂ с токоподводами, выбора материала для коммутации и исследования возможности его взаимодействия с полупроводником при высоких температурах в известных к настоящему времени работах не были рассмотрены.

Согласно диаграмме состояния системы Cr–Si [4–6] и кристаллографической базе данных, существуют четыре кристаллические модификации силицида хрома, имеющие кубическую, тетрагональную и гексагональную элементарные ячейки (табл. 1) [7–9]. Известны две модификации диси-

Таблица 1. Кристаллические модификации силицида хрома

Фаза	Пр. гр.	Параметры ячейки, нм			Ссылка
		а	b	С	ССБЛКа
Cr ₃ Si	$Pm\overline{3}n$	4.555	4.555	4.555	[7]
CrSi ₂	<i>P</i> 6 ₂ 22	4.422	4.422	6.351	[7]
CrSi	<i>P</i> 2 ₁ 3	4.62	4.62	4.620	[7]
Cr ₅ Si ₃	I4/mcm	9.17	9.17	4.636	[8]
CrSi ₂	<i>P</i> 6 ₄ 22	4.4283	4.4283	6.368	[9]

лицида хрома, описываемыми пространственными группами (пр. гр.) *P*6₂22 и *P*6₄22.

На термолектрические свойства и морфологию дисилицида хрома существенно влияют методы получения и технология синтеза материала [10, 11]. Как было показано в [3, 4], фактор мощности CrSi₂ сильно зависит от условий кристаллизации. Так, при быстрой кристаллизации в объеме термоэлектрика выделяются микрокристаллы кремния, а при длительной направленной кристаллизации (метод Бриджмена) фактор мощности значительно возрастает, дополнительные фазы отсутствуют. При отжиге монокристаллов при 1573 К в течение 170 ч фактор мощности CrSi₂ снижается до 20 мкВт/($K^2 \cdot c_M$); при T = 600 К наблюдается твердотельный фазовый переход с выпадением микрокристаллического кремния [2]. Такой же эффект обнаруживается при высокотемпературных измерениях термоэлектрических параметров спрессованных микрокристаллов дисилицида хрома, полученных из раствора в расплаве олова [3]. Следовательно, при определенных условиях CrSi₂ может проявлять нестабильность состава.

При учете флуктуаций состава полупроводника в переделах области гомогенности [4] и вероятность появления вторичных фаз в результате высокотемпературного отжига в настоящей работе была поставлена цель исследовать микроструктуру, фазовый и химический составы образцов поликристаллического и монокристаллического дисилицида хрома, запрессованного в порошке хрома, чтобы понять возможность использования хрома в качестве коммутационного материала. Особое внимание было уделено изучению микроструктуры и фазового состава.

МАТЕРИАЛЫ И МЕТОДЫ

Чтобы сформировать резкую границу раздела между Cr и CrSi₂, образцы изготавливали методом горячего прессования с последующим отжигом на воздухе. Для изоляции от влияний внешней среды дисилицид хрома целиком запрессовывали в объеме мелкодисперсного порошка электролитического хрома. Горячее прессование проводили в вакууме при температуре T = 1213 K и давлении P = 1 т/см². Образцы отжигали на воздухе при T = 1173 K в течение 50 ч.

Рентгенофазовый анализ проводили на дифрактометре ДРОН-3 (СиК_α-излучение). Для изучения микроструктуры образцов в окрестности границы раздела и уточнения локального фазового состава был применен метод растровой электронной микроскопии (РЭМ) с использованием микроскопа FEI Quanta 200 3D (ускоряющее напряжение до 30 кВ), оборудованного рентгеновским энергодисперсионным спектрометром EDAX с Si(Li) детектором и приставкой регистрации дифракции обратно рассеянных электронов EDAX DigiView EBSD с разрешением 1392 × 1040 пикселей. Анализ химического состава образца осуществляли при ускоряющем напряжении 20 кВ. Картины дифракции обратно рассеянных электронов регистрировали при ускоряющем напряжении 30 кВ и токе пучка 9.7 нА. Обработка экспериментальных данных была реализована в программной среде MATLAB с помощью пакета MTEX [12].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Из диаграмм состояния Cr–Si следует, что синтез дисилицида хрома происходит при T = 1748-1843 К [4–6]. Это значительно выше температуры, при которой образцы запрессовывали в порошок хрома (1213 К). Анализ рентгенограмм полученных образцов, содержащих поликристаллический и монокристаллический дисилицид хрома, показал, что в объеме материала и на границе раздела Cr–CrSi₂ вторичные фазы не образуются.

На рис. 1 представлены РЭМ-изображения микроструктуры образцов с поликристаллическим и монокристаллическим дисилицидом хрома в оболочке из порошка хрома. На рис. 1а, в показан общий вид поверхности поперечного среза образца, содержащего монокристалл CrSi₂, а также увеличенное РЭМ-изображение участка границы раздела Cr-CrSi₂ и профиль интенсивности РЭМ-изображения поперек границы радела (рис. 1в, вставка). На рис. 16, 1г представлены

Рис. 1. РЭМ-изображения поверхностей поперечных срезов (а, б) и границ раздела CrSi₂–Cr (в, г) для образцов с монокристаллическим (а, в) и поликристаллическим (б, г) дисилицидом хрома в оболочке Cr. На вставках – профили интенсивности поперек границ.

аналогичные данные для образца, содержащего поликристаллический дисилицид хрома. Видно, что на границе раздела $CrSi_2$ —Cr наблюдается скачок интенсивности, свидетельствующий о том, что $CrSi_2$ и Cr в условиях данных экспериментов химически не взаимодействуют друг с другом и дополнительные фазы не образуются.

Химический состав образцов анализировали при ускоряющем напряжении 20 кВ. На рис. 2 представлены карты распределения хрома и кремния в образцах с монокристаллическим (рис. 2a, 2в) и поликристаллическим дисилицидом хрома (рис. 2б, 2г), полученные методом энергодисперсионной рентгеновской спектроскопии (ЭДС). Видно, что распределение хрома и кремния в области $CrSi_2$ и спрессованого порошка Cr равномерное. На рис. 2д, 2е изображены профили распределения хрома и кремния в образце вдоль линии сканирования, расположенной поперек границы раздела. Видно, что соотношение элементов остается постоянным по обе стороны границы раздела. На границе наблюдается скачок, свидетельствующий о резком изменении элементного состава. Данные ЭДС соответствуют предполагаемому составу образцов, в центре которых находится монокристаллический и поликристаллический дисилициды хрома, запрессованные в порошок хрома.

Кристаллическую структуру термоэлектрика и локальный фазовый состав вблизи границы раздела $CrSi_2/Cr$ также исследовали методом дифракции обратно рассеянных электронов. Сопоставление расчетных и экспериментальных картин Кикучи для известных фаз силицидов хрома показало наилучшее совпадение с гексагональной фазой CrSi₂. На рис. 3 приведены для сопоставления экспериментальная картина Кикучи и расчетная в случае гексагональной фазы CrSi₂ (пр. гр. $P6_222$). Дифракционная картина порошка хрома в исследуемых образцах содержит два диффузных кольца, что свидетельствует о его нанокристаллическом или аморфном состоянии.

Рис. 2. ЭДС-карты распределения кремния (a, б) и хрома (b, г) и профили распределения Cr и Si перпендикулярно границе $CrSi_2$ —Si (д, е) в образцах с монокристаллическим (a, b, д) и поликристаллическим $CrSi_2$ (б, г, е), запрессованными в порошке Cr.

Рис. 3. Экспериментальная картина Кикучи (а) и ее наложение на расчетное положение линий Кикучи для фазы CrSi₂ (пр. гр. *P*6₂22) (б).

ЗАКЛЮЧЕНИЕ

Анализ электронно-микроскопических и рентгеновских данных, полученных при исследовании образцов с включенными монокристаллами и поликристаллами дисилицида хрома, запрессоваными в порошок хрома, показал, что горячее прессование и отжиг не влияют на фазовый состав поликристаллов и монокристаллов дисилицида хрома. Материалу полупроводника соответствует гексагональная фаза с пр. гр. Р6,22. В результате горячего прессования и последующего высокотемпературного отжига на границе раздела CrSi₂-Cr вторичные фазы не формируются. Полученные результаты свидетельствуют о том, что Cr может быть рекомендован в качестве коммутационного материала для создания устройств на основе термоэлектрика CrSi₂.

БЛАГОДАРНОСТИ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках государственного задания с использованием оборудования ЦКП ФНИЦ "Кристаллографии и фотоники" РАН (проект RFMEFI62119X0035).

СПИСОК ЛИТЕРАТУРЫ

 Fedorov M.I., Zaitsev V.K. // Handbook of Thermoelectric / Ed. by Rowe D.M. N.Y.: CRC press, 2006. P. 31.

- Соломкин Ф.Ю., Суворова Е.И., Зайцев В.К., Новиков С.В., Бурков А.Т., Самунин А.Ю., Исаченко Г.Н. // Журн. тех. физики. 2011. Т. 81. Вып. 2. С. 147.
- Соломкин Ф.Ю., Зайцев В.К., Новиков С.В., Самунин Ю.А., Исаченко Г.Н. // Журн. тех. физики. 2013. Т. 83. Вып. 2. С. 141.
- 4. *Gel'd P.V., Sidorenko F.A.* // Silicides of Transition Metals of the Fourth Period. M.: Metallurgiya, 1971. P. 90.
- Gokhale A.B., Abbaschian G.J. // J. Phase Equilibria. 1987. V. 8. P. 474. https://doi.org/10.1007/BF02893156
- 6. Okamoto H. // J. Phase Equilibria. 2001. V. 22. P. 593.
- Boren B. // Archive Chem., Mineral. Geol. 1933. № 11. P. 1.
- Dauben C.H., Templeton D.H., Myers C.E. // J. Phys. Chem. 1956. № 60. P. 443. https://doi.org/10.1021/j150538a015
- 9. Tanaka K., Nawata K., Koiwa M., Yamaguchi M., Inui H. // Mater. Res. Soc. Symp. Proc. 2001. № 646. P. 4.3.1.
- Соломкин Ф.Ю., Зайцев В.К., Картенко Н.Ф., Колосова А.С., Орехов А.С., Самунин А.Ю., Исаченко Г.Н. // Журн. тех. физики. 2010. Т. 80. Вып. 1. С. 152.
- Соломкин Ф.Ю., Зайцев В.К., Картенко Н.Ф., Колосова А.С., Бурков А.Т., Урюпин О.Н., Шабалдин А.А. // Журн. тех. физики. 2010. Т. 80. Вып. 5. С. 157.
- Hielscher R., Schaeben C. // J. Appl. Crystallogr. 2008. V. 41. № 6. P. 1024. https://doi.org/10.1107/S0021889808030112

Feasibility of Using Chromium as a Switching Material for CrSi₂

F. Yu. Solomkin¹, A. Yu. Samunin¹, N. V. Zaitseva¹, N. V. Sharenkova¹, G. N. Isachenko¹, K. L. Samusevich³, V. V. Klechkovskaya², *, A. S. Orekhov², E. V. Rakova², E. V. Drozdova²

¹Ioffe Physical-Technical Institute RAS, Saint-Petersburg, 194021 Russia

²Shubnikov Institute of Crystallography FSR Center "Crystallography and Photonics" RAS, Moscow, 119333 Russia

³ITMO University, St. Petersburg, 197101 Russia

*e-mail: klechvv@crys.ras.ru

The feasibility of using layers of metallic chromium as a switching material for a medium-temperature thermoelectric $CrSi_2$ was investigated. The $CrSi_2/Cr$ samples were synthesized by hot pressing of the fine electrolytic chromium powder with single crystal and polycrystalline chromium disilicide, followed by high-temperature annealing. X-ray phase analysis, scanning electron microscopy, energy X-ray dispersive spectroscopy and electron backscatter diffraction showed that no secondary phases were formed both in the bulk of the thermoelectric material and at the $CrSi_2$ –Cr interface. Therefore, Cr can be recommended as a switching material.

Keywords: chromium disilicide, metallic chromium, contact material, interface, scanning electron microscopy, X-ray phase analysis.