УДК 539.5

ФОРМИРОВАНИЕ И РОСТ ЗЕРНОГРАНИЧНЫХ (аТі)-СЛОЕВ И ИХ ТВЕРДОСТЬ В СПЛАВАХ Ті–Сr

© 2022 г. А. С. Горнакова^{*a*}, *, Н. С. Афоникова^{*a*}, Е. Ю. Постнова^{*a*}, А. Н. Некрасов^{*b*}, Б. Б. Страумал^{*a*}, **

^аФедеральное государственное бюджетное учреждение науки Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук, Черноголовка, 142432 Россия ^bИнститут экспериментальной минералогии им. Д.С. Коржинского РАН, Черноголовка, 142432 Россия *e-mail: alenahas@issp.ac.ru **e-mail: straumal@issp.ac.ru Поступила в редакцию 12.04.2022 г.

После доработки 11.05.2022 г. Принята к публикации 11.05.2022 г.

Структура сплавов Ti–2 мас. % Cr, Ti–4 мас. % Cr и Ti–5.5 мас. % Cr, отожженных в условиях, соответствующих двухфазной области ($\alpha + \beta$) фазовой диаграммы Ti–Cr, исследована с помощью растровой электронной микроскопии, рентгеноструктурного анализа и микроиндентирования. Целью работы было исследование образования и роста слоев фазы (α Ti) на границах зерен (β Ti)/(β Ti). По результатам рентгеноструктурного анализа все образцы содержали после отжига фазы (α Ti) и (β Ti). Для каждого сплава были определены температуры, при которых на границах зерен формируются непрерывные слои фазы (α Ti). Были измерены толщина и твердость этих слоев. Установлено, что чем выше содержание хрома, тем более твердыми являются как (α Ti), так и (β Ti). Твердость фазы (α Ti) в сплаве Ti–5.5 мас. % Cr не зависит от температуры отжига, но твердость фазы (β Ti) увеличивается с понижением температуры отжига.

Ключевые слова: титан, хром, границы зерен, зернограничное смачивание, твердость. **DOI:** 10.31857/S1028096022110103

введение

Титановые сплавы имеют широкий спектр применения в различных областях промышленности [1-3]. Особое место среди них занимают двухфазные титановые сплавы [4, 5]. Варьирование их состава, а также термическая и механическая обработка позволяют управлять их свойствами, добиваясь заданных характеристик. Титановые сплавы с добавлением хрома до 10 мас. % относятся к β -титановым сплавам, которые привлекательны для биомедицинских приложений, поскольку для них характерен низкий модуль Юнга, близкий к значениям модуля Юнга натуральной кости [6–10].

Наличие в системе Ti—Cr двух фаз позволяет наблюдать такое явление, как зернограничное смачивание. Данное явление представляет собой процесс, когда при термической обработке граница зерен (оба зерна относятся к одной и той же фазе) заменяется слоем другой фазы, отличной от зерна. В результате вместо одной границы зерен, образуется две межфазные границы. Таким образом, явление зернограничного смачивания приводит к изменению физико-механических свойств материала. Впервые фазовые переходы между полным и неполным смачиванием в жидкостях были описаны в работе [11]. Было предсказано, что в любой двухфазной смеси жидкостей вблизи их критической точки краевые углы с любой третьей фазой должны стать равными нулю. Позднее [12, 13] был рассмотрен случай, когда капля жидкости растекается по поверхности. В зависимости от значения контактного угла могут возникнуть две ситуации. Если контактный угол равен нулю, то смачивание полное и капля растекается по поверхности. С другой стороны, если контактный угол находится в интервале от 0° до 180°, то капля не растекается (это – случай частичного или неполного смачивания). Переход смачивания - это поверхностный фазовый переход от частичного к полному смачиванию. Связь между явлением смачивания границ зерен в металлах и углом их разориентации подробно описана, например, для системы Fe-30 мас. % Mn-10 мас. % Си [14]. Чем меньше угол разориента-

ции границ зерен, тем больше границ остается несмоченными или сухими. Подробные обзоры по смачиванию границ зерен жидкой и твердой фазами в многокомпонентных сплавах представлены в работах [15-17]. Фазовое превращение смачивания границ зерен может быть, как первого, так и второго рода. Наличие таких фазовых превращений впервые наблюдали в системе Zn-Al [18], а затем – в системах Zn–Sn, Zn–In [19] и Zr-Nb [20]. Вторая (смачивающая) фаза может быть, как в жидком, так и в твердом состоянии. К настоящему времени опубликовано несколько работ по явлению смачивания границ зерен второй твердой фазой в бинарных титановых сплавах, в которых детально изучена микроструктура сплавов с различным содержанием второго компонента (медь, кобальт, железо), предварительно отожженных в условиях, соответствующих двухфазной области ($\alpha + \beta$) фазовых диаграмм [21– 24]. Показано, что вид второго компонента и его количество существенно влияют на явления смачивания границ зерен. Поэтому вопрос смачивания на границах зерен, а также механических свойств (например, твердости) фаз (αТі) и (βТі) в титановых сплавах по-прежнему остается актуальным. Целью настоящей работы было изучение смачивания границ зерен в отожженных сплавах Ti–Cr с закалкой из двухфазной области ($\alpha + \beta$) фазовой диаграммы Ti-Cr, и измерение твердости фазы (β Ti), а также зернограничных прослоек (α Ti).

МАТЕРИАЛЫ И МЕТОДЫ

В работе исследованы двухкомпонентные титановые сплавы, содержащие 2, 4 и 5.5 мас. % хрома ("по шихте"). Сплавы были изготовлены из титана марки ТИ-1 чистотой 99.98% и хрома чистотой 99.99% методом левитационной индукционной плавки в атмосфере чистого аргона. Компонентный состав всех образцов после выплавки был проверен с помощью рентгеновского микроанализа и составил (точные данные о составе по результатам РЭМ указаны в скобках): Ti-2 мас. % Cr (Ti-2.09 \pm 0.06 мас. % Cr), Ti-4 мас. % Cr (Ti-3.81 \pm 0.08 мас. % Cr) и Ti-5.5 мас. % Cr (Ti-5.58 \pm 0.15 мас. % Cr).

Из полученных цилиндрических слитков диаметром 10.0 мм вырезали шайбы толщиной 2.0 мм. Затем каждый образец запаивали в кварцевую ампулу и отжигали в вакууме при остаточном давлении 4 × 10⁻⁴ Па. Отжиг проводили в условиях, соответствующих двухфазной области ($\alpha + \beta$) диаграммы состояния титан-хром: при температурах 665°C (1032 ч), 690°C (840 ч), 730°C (768 ч), 770°C (1200 ч) и 810°C (720 ч).

После закалки в воде (вместе с ампулой) образцы последовательно шлифовали на шлифовальной бумаге из карбида кремния зернистостью от 220 до 2000 грит (размер зерна 68 и 10 мкм

соответственно), после чего полировали с помощью алмазных паст зернистостью 6, 3 и 1 мкм. Структуру поликристаллических образцов исследовали с помощью оптического микроскопа Neophot-32 со встроенной камерой Canon Digital Rebel XT 10 Мпикс. Для компонентного анализа и получения изображений использовали растровые электронные микроскопы Tescan Vega TS5130 MM Oxford Instruments и Supra 50VP с системой микроанализа INCA Energy+, оснащенные энергодисперсионным спектрометром Oxford Instruments. Для фазового анализа образцов использовали рентгенограммы, полученные на рентгеновском дифрактометре Siemens D-500 с использованием излучения СиК_{α1}. Измерения микротвердости проводили на приборе ПМТ-3 с индентором Виккерса. Микротвердость измеряли в объеме зерен (βTi) и в зернограничных слоях (αТі). Измерения микротвердости проводились при нагрузке P = 20 г для образца, отожженного при 690°С, и при нагрузке P = 50 г для всех остальных образцов. Выбор значения нагрузки зависел от толщины зернограничного слоя, поэтому при более низкой температуре отжига 690°С, когда слой более тонкий, нагрузка на индентор меньше, а также чтобы исключить влияние межфазных границ (βТі)/(αТі). Значения микротвердости усредняли по десяти независимым экспериментам для каждой фазы.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Структура и фазовый состав исходных сплавов

На рис. 1 представлены РЭМ-изображения литых сплавов Ti-2 мас. % Cr (a), Ti-4 мас. % Cr (b) и Ti-5.5 мас. % Cr (с), сделанные в режиме обратно-рассеянных электронов. Вследствие того, что фазовый контраст в литых сплавах слабый, что легко объяснимо равномерным распределением хрома в титане после литья, в качестве примера мы отметили пунктирными линиями границы зерен в сплаве Ti-2 мас. %Cr (рис 1a). Видно, что сплав является поликристаллом с крупными зернами, на границах зерен нет выделений второй фазы (αТі). Исследуемые сплавы содержат две фазы (рис. 2), доля (βТі)-фазы увеличивается с увеличением концентрации хрома в сплаве (табл. 1), а параметры решетки фаз (αТі) и (βТі) меняются незначительно.

Структура и фазовый состав отожженных сплавов

Серия РЭМ-изображений на рис. 3 демонстрирует зависимость структуры трех исследованных сплавов от температуры отжига. Образцы состоят из зерен (βTi)-фазы и колоний (αTi)-фазы внутри этих зерен. При повышении температуры эти колонии разрушаются и образуют прослойки

ФОРМИРОВАНИЕ И РОСТ

Рис. 1. РЭМ-изображения литых сплавов Ti-2 мас. % Cr (а), Ti-4 мас. % Cr (б) и Ti-5.5 мас. % Cr (в).

Рис. 2. Рентгенограммы литых сплавов Ti-2 мас. % Cr (1), Ti-4 мас. % Cr (2) и Ti-5.5 мас. % Cr (3).

(αТі) фазы на границах зерен (βТі)/(βТі). Видно, что первые границы зерен (βТі)/(βТі) полностью покрытые (αТі)-фазой, появляются в трех изученных сплавах при разных температурах отжига. В табл. 2 представлены результаты рентгеноструктурного анализа для трех отожженных сплавов при трех различных температурах. Заметные изменения можно наблюдать только в параметре

Концентрация хрома, мас. %	Параметры решетки α-фазы, нм	Параметры решетки β-фазы, нм	Доля β-фазы, %
2	a = 0.2951; c = 0.4684	a = 0.3223	8
4	a = 0.2953; c = 0.4689	a = 0.3229	13
5.5	a = 0.2950; c = 0.4680	a = 0.3214	34

Таблица 1. Параметры решетки α- и β-фазы, а также доля β-фазы в литых сплавах

Рис. 3. РЭМ-изображения отожженных сплавов Ti-2 мас. % Cr (а-д), Ti-4 мас. % Cr (е-к) и Ti-5.5 мас. % Cr (л-п).

решетки *а* кубической (ВТі)-фазы, в которой значения а изменяются от минимального значения 0.3220 нм до максимального 0.3231 нм. Доля (βTi)-фазы в образцах увеличивается с увеличением содержания хрома, в соответствии с фазовой диаграммой. Образец сплава Ti-5.5 мас. % Cr, отожженный при 810°С, сильно текстурирован, имеет игольчатую форму, а линии (αТі)-фазы на рентгенограмме сильно размыты при больших углах отражения. Все это свидетельствует о том, что (αТі)-фаза является (α'Ті)-мартенситом. Таким образом, условия отжига этого образца соответствовали не двухфазной области ($\alpha + \beta$) фазовой диаграммы, а однофазной (β). При закалке в образце сплава Ti-5.5 мас. % Cr образовался мартенсит, и зернограничного смачивания в нем не происходило. В дальнейшей работе этот образец не рассматривали.

Для проверки компонентного состава в зерне и зернограничном слое (α Ti)-фазы был проведен химический анализ поперек границы (β Ti)/(β Ti) в образце сплава Ti-5.5 мас. % Cr, отожженного при 730°C. (рис. 4а). Результат (рис. 4б) показал, что зернограничный слой (α Ti)-фазы содержит около 0.3 мас. % хрома. На рис. 4в представлены температурные зависимости средней толщины зернограничного слоя 2 Δ в трех исследованных сплавах. Для сплава Ti-4 мас. % Cr средняя толщина зернограничной прослойки (α Ti)-фазы увеличивается с увеличением температуры отжига примерно втрое. В сплавах Ti-2 мас. % Cr и Ti-5.5 мас. % Cr значения 2 Δ уменьшаются по мере приближения к линии транзуса (т.е. границы β и

ФОРМИРОВАНИЕ И РОСТ

Концентрация хрома, мас. %	<i>T</i> , °C	Параметры решетки α-фазы, нм	Параметр решетки β-фазы, нм	Объемная доля β-фазы, %
2	665	a = 0.2949; c = 0.4690	a = 0.3229	8
	730	a = 0.2950; c = 0.4686	a = 0.3226	1
	810	a = 0.2949; c = 0.4685	a = 0.3225	3
4	665	a = 0.2950; c = 0.4688	a = 0.3230	14
	730	a = 0.2950; c = 0.4686	a = 0.3222	8
	810	a = 0.2950; c = 0.4686	a = 0.3225	16
5.5	665	a = 0.2949; c = 0.4689	a = 0.3231	24
	730	a = 0.2951; c = 0.4689	a = 0.3220	18
	810	a = 0.2950; c = 0.4686	a = 0.3226	3

Таблица 2. Параметры решеток (α Ti) и (β Ti) фаз и их объемная доля в отожженных сплавах

 $\alpha + \beta$ областей на фазовой диаграмме). На рис. 4г видно небольшое увеличение среднего размера зерна с ростом температуры отжига во всех образцах.

Микротвердость отожженных сплавов

В работе была измерена микротвердость зернограничных прослоек (αТі)-фазы (они выглядят темно-серыми на рис. 4а) и зерен (βТі) (рис. 4а светло-серые области). На рис. 5 показаны результаты этих измерений.

Значения микротвердости фаз (α Ti) и (β Ti) для трех исследованных сплавов, отожженных при одной и той же температуре 770°С (1200 ч), показали, что увеличение содержания хрома в (α Ti) и (β Ti) твердых растворах приводит к увеличению микротвердости (α Ti) и (β Ti) фаз (рис. 5а). Согласно фазовой диаграмме Ti–Cr, при одной и той же температуре отжига изменяется доля фаз в сплавах, а состав фаз должен оставаться неизменным. Хотя условия отжига и закалки сплавов были одинаковы, закалка, скорее всего, оказывает основное влияние на компонентный состав фаз, т.е. долю хрома в каждой фазе в каждом сплаве, структуру и морфологию, а значит, и на микротвердость фаз.

Если рассматривать сплав Ti-5.5 мас. % Cr (рис. 5б), отожженный при разных температурах, то мы видим, что значения микротвердости (α Ti)фазы изменяются от 270 до 300 *HV*, а для (β Ti)-фазы они находятся в пределах от 270 до 400 *HV*. Микротвердость обеих фаз увеличивается с повышением температуры отжига. Предел растворимости хрома в (α Ti) изменяется с ростом температуры очень незначительно, поэтому мало изменяется и микротвердость. При этом состав (β Ti)-фазы существенно меняется. При температуре отжига 690°C (черные квадраты на рис. 5б) содержание хрома в твердом растворе (β Ti,Cr) составляет ~9 мас. %, при 730°C оно равно ~7 мас. % (темно-серые квадраты), а при 770°С составляет ~5 мас. % (светло-серые квадраты). Таким образом, с помощью отжига в условиях, соответствующих двухфазной области (α Ti + β Ti), и с добавлением большего количества хрома, можно повысить общую твердость материала за счет твердого раствора (β Ti,Cr).

Морфологию взаимного расположения фаз анализировали по серии РЭМ-изображений, приведенных на рис. 3. В качестве примера на рис. 6а стрелкой (GB_W) показана граница зерен (β Ti)/(β Ti), полностью смоченная прослойкой фазы (α Ti). Другой стрелкой (GB_{NW}) показана граница зерен (β Ti)/(β Ti), не полностью (частично) смоченная прослойкой фазы (α Ti). На рис. 66 для трех исследованных сплавов показаны температурные зависимости доли границ зерен (β Ti)/(β Ti), полностью смоченных прослойкой фазы (α Ti).

При малых концентрациях второго компонента (2 мас. % Сг) первые границы зерен (βТі)/(βТі), полностью смоченные прослойкой фазы (αТі), появляются при приближении температуры отжига к линии транзуса, а их доля скачкообразно изменяется от 0 до 80%. В двух других сплавах доля границ зерен (βТі)/(βТі), полностью смоченных прослойками фазы (αТі), наоборот, понижается с увеличением температуры. Стопроцентного смачивания границ зерен (βТі)/(βТі) прослойками фазы (αТі) (как в работах [21-24]) зафиксировать не удалось. Вероятно, это связано со сложной морфологией фаз в титановых сплавах. В литом состоянии зерна фазы (ВТі) содержат колонии ламелей (αТі)-фазы [4], а температурная обработка сплава приводит к коагуляции ламелей и их росту. Кроме того, изоляция на границах зерен, т.е. образование прослоек (αТі)-фазы по границам зерен, происходит скачком, и измерить толщину зернограничного слоя (αТі) становится возможным только тогда, когда он делается заметным в растровом микроскопе. Возможно, что максимум смачивания в 80% связан со спектром разориен-

Рис. 4. РЭМ-изображения сплава Ti-5.5 мас. % Cr, отожженного при 730°C (а). Темно-серые области соответствуют (α Ti)- ϕ азе, светло-серые области соответствуют (β Ti). Точками *1*–7 обозначены области образца, в которых была определена концентрации титана и хрома (б). Температурные зависимости толщины зернограничного слоя 2 Δ (в) и среднего размера зерен (г) в сплавах Ti–2 мас. % Cr, Ti–4 мас. % Cr и Ti–5.5 мас. % Cr.

Puc. 5. Значения микротвердости фаз (αTi) и (β Ti): a) в сплавах Ti-2 мас. % Cr (треугольники), Ti-4 мас. % Cr (круги) и Ti-5.5 мас. % Cr (квадраты), отожженных при 770°C (1200 ч); б) В сплаве Ti-5.5 мас. % Cr, отожженном при: 690°C (840 ч) (черные символы), 730°C (768 ч) (темно-серые символы) и 770°C (1200 ч) (светло-серым).

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 11 2022

Рис. 6. (а) РЭМ-изображение сплава Ti-5.5 мас. % Cr, отожженного при температуре 690°С. Темно-серые области соответствуют (α Ti)- ϕ aзе, а светло-серые области соответствуют (β Ti)- ϕ aзе. Стрелкой и символом GB_W показана граница зерен (β Ti)/(β Ti), полностью смоченная прослойкой ϕ азы (α Ti). Другой стрелкой и символом GB_{NW} показана граница зерен (β Ti)/(β Ti), неполностью (частично) смоченная прослойкой ϕ азы (α Ti). (6) Температурная зависимость доли границ зерен (β Ti)/(β Ti), полностью смоченных прослойкой ϕ азы (α Ti) в сплавах Ti-2 мас. % Cr (квадраты), Ti-4 мас. % Cr (кружки) и Ti-5.5 мас. % Cr (треугольники).

тации границ зерен, от малоугловых до большеугловых границ. Так, в статье [14] подробно рассмотрено явление смачивания границ зерен в сплаве Fe-30% Mn-10% Си и показано, что оно связано с разориентацией зерен, как это было показано и на индивидуальных границах зерен в системе Zn-Al [18]. К сожалению, из-за мартенситных преврашений в титане очень сложно оценить даже методом дифракции обратного рассеяния электронов разориентацию зерен в поликристаллических титановых сплавах. В статье [25] был разработан метод определения ориентации высокотемпературной β-фазы по измеренным данным обратного рассеяния электронов для низкотемпературной α-фазы в сплаве Ti-6Al-4V. Следовательно, по доле полностью смоченных границ зерен можно косвенно оценить долю мало- и большеугловых границ зерен (границы зерен с разориентацией от 15° до 50° будут смачиваться в первую очередь) и оценить твердость материала зная состав сплава.

выводы

Исследованы структура и морфология титановых сплавов Ti-2 мас. % Cr, Ti-4 мас. % Cr и Ti-5.5 мас. % Cr, отожженных в условиях, соответствующих двухфазной области ($\alpha + \beta$) фазовой диаграммы Ti-Cr. Определен средний размер зерен для каждого отожженного образца и установлено, что самые крупные зерна в сплаве с 2 мас. % Сг имеют величину ~350 мкм. Измерена толщина слоев фазы (α Ti) на границах зерен (β Ti)/(β Ti), при повышении температуры отжига на ~100°C она увеличивается втрое. Для каждого сплава при всех температурах отжига определяли долю границ зерен (β Ti)/(β Ti), полностью покрытых (смоченных) прослойками фазы (α Ti). Максимальное значение доли полностью смоченных границ зерен (β Ti)/(β Ti) составляет 80%. Значение твердости по Викерсу фазы (α Ti) не зависит от температуры отжига, но чем ниже температура отжига, тем выше значение твердости фазы (β Ti). Установлено, что чем больше доля второго компонента в сплаве, тем тверже фазы (α Ti) и (β Ti).

БЛАГОДАРНОСТИ

Авторы благодарят за финансовую поддержку Министерство науки и высшего образования РФ (соглашение № 075-15-2021-945, номер проекта в ЭБ 13.2251.21.0013).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Zwicker U.* Titanium and Titanium Alloys. Berlin: Springer, 1974. 717 p.
- 2. *Lütjering G., Williams J.C.* Titanium. 2nd Edn. Berlin: Springer, 2007. 435 p.
- Veiga C., Davim J.P., Loureiro A.J.R. // Rev. Adv. Mater. Sci. 2012. V. 32. P. 133.
- 4. *Chrapoński J., Szkliniarz W. //* Mater. Charact. 2001. V. 46. P. 149.
- https://www.doi.org/10.1016/S1044-5803(01)00117-6 5. Salihu S.A., Suleiman I.Y. // IOSR J. Appl. Phys. 2019.
- V. 11. P. 35.

https://www.doi.org/10.9790/4861-1102013539

6. Shinohara Yu., Ishigaki T., Inamura T., Kanetaka H., Miyazaki Sh., Hosoda H. // Mater. Sci. Forum. 2010. V. 654–656. P. 2122. https://www.doi.org/10.4028/www.scientific.net/ MSF.654-656.2122

- Kusano Y., Inamura T., Hosoda H., Wakashima K., Miyazaki S. // Adv. Mat. Res. 2010. V. 89–91. P. 307. https://www.doi.org/10.4028/www.scientific.net/ AMR.89-91.307
- Kiryukhantsev-Korneev F.V., Sheveiko A.N., Komarov V.A., Blanter M.S., Skryleva E.A., Shirmanov N.A., Levashov E.A., Shtansky D.V. // Russ. J. Non-Ferr. Met. 2011. V. 52. P. 311. https://www.doi.org/10.3103/S1067821211030138
- Murayama Y., Sasaki Sh., Kimura H., Chiba A. // Mater. Sci. Forum. 2010. V. 638–642. P. 635. https://www.doi.org/10.4028/www.scientific.net/ MSF.638-642.635
- Nakai M., Niinomi M., Hieda J., Shibata T. // ISIJ Internat. 2012. V. 52. P. 1655. https://www.doi.org/10.2355/isijinternational.52.1655
- 11. *Cahn J.W.* // J. Chem. Phys. 1977. V. 66. P. 3667. https://www.doi.org/10.1063/1.434402
- Bonn D., Ross D. // Rep. Prog. Phys. 2001. V. 64. P. 1085. https://www.doi.org/10.1088/0034-4885/64/9/202
- Bonn D., Ross D., Bertrand E., Ragil K., Shahidzadeh N., Broseta D., Meunier J. // Physica A. 2002. V. 306. P. 279. https://www.doi.org/10.1016/S0378-4371(02)00505-8
- Takashima M., Wynblatt P. Adams B.L. // Interface Sci. 2000. V. 8. P. 351. https://www.doi.org/10.1023/A:1008727728076
- Straumal B.B., Korneva A., Lopez G.A., Kuzmin A., Rabkin E., Gerstein G., Straumal A.B., Gornakova A.S. // Materials. 2021. V. 14. P. 7506. https://www.doi.org/10.3390/ma14247506

- Straumal B.B., Korneva A., Kuzmin A., Lopez G.A., Rabkin E., Straumal A.B., Gerstein G., Gornakova A.S. // Metals. 2021. V. 11. P. 1881. https://www.doi.org/0.3390/met11111881
- Straumal B., Rabkin E., Lopez G.A., Korneva A., Kuzmin A., Gornakova A., Straumal A., Baretzky B. // Crystals. 2021. V. 11. P. 1540. https://www.doi.org/10.3390/cryst11121540
- Straumal B.B., Gornakova A.S., Kogtenkova O.A., Protasova S.G., Sursaeva VG, Baretzky B. // Phys. Rev. B. 2008. V. 78. P. 054202. https://www.doi.org/10.1103/PhysRevB.78.054202
- 19. Gornakova A.S., Straumal B.B., Tsurekawa S., Chang L.-S., Nekrasov A.N. // Rev. Adv. Mater. Sci. 2009. V. 21. P. 18.
- Straumal B.B., Gornakova A.S., Kucheev Y.O., Baretzky B., Nekrasov A.N. // J. Mater. Eng. Perform. 2012. V. 21. P. 721. https://www.doi.org/10.1007/s11665-012-0158
- Gornakova A.S., Prokofiev S.I., Straumal B.B., Kolesnikova K.I. // Russ. J. Non-Ferr. Met. 2016. V. 57. P. 703.

https://www.doi.org/10.3103/S1067821216070099

- Straumal B.B., Gornakova A.S., Prokofjev S.I., Afonikova N.S., Baretzky B., Nekrasov A.N., Kolesnikova K.I. // J. Mater. Eng. Perform. 2014. V. 23. P. 1580. https://www.doi.org/10.1007/s11665-013-0789-3
- Gornakova A.S., Straumal B.B., Nekrasov A.N., Kilmametov A., Afonikova N.S. // J. Mater. Eng. Perform. 2018. V. 27. P. 4989. https://www.doi.org/10.1007/s11665-018-3300-3
- 24. Gornakova A.S., Prokofiev S.I., Kolesnikova K.I., Straumal B.B. // Russ. J. Non-Ferr. Met. 2016. V. 57. P. 229.
 - https://www.doi.org/10.3103/S106782121603007X
- Glavicic M.G., Kobryn P.A., Bieler T.R., Semiatin S.L. // Mater. Sci. Eng. A. 2003. V. 346. P. 50. https://www.doi.org/10.1016/S0921-5093(02)00535-X

Formation and Growth of Grain Boundary (αTi)-Layers and Their Hardness in Ti-Cr Alloys

A. S. Gornakova^{1, *}, N. S. Afonikova¹, E. Yu. Postnova¹, A. N. Nekrasov², B. B. Straumal^{1, **}

¹Ossipyan Institute of Solid State Physics RAS, Chernogolovka, 142432 Russia ²Korzhinskii Institute of Experimental Mineralogy RAS, Chernogolovka, 142432 Russia

Korznińskii Institute of Experimental Mineratogy KAS, Chernogolovka, 142452 Kussia

*e-mail: alenahas@issp.ac.ru

**e-mail: straumal@issp.ac.ru

The microstructure of the Ti–2 wt % Cr, Ti–4 wt % Cr and Ti–5.5 wt % Cr alloys annealed in the two-phase region ($\alpha + \beta$) of the Ti–Cr phase diagram was studied with the aid of scanning electron microscopy, X-ray diffraction analysis and micro-indentation. The aim of the work was to investigate the formation and growth of the (α Ti) layers in (β Ti)/(β Ti) grain boundaries. According to the X-ray diffraction results, all studied samples contained after annealing (α Ti) and (β Ti) phases. The temperatures where the (α Ti) layers formed in (β Ti)/(β Ti) grain boundaries were determined for each alloy. The thickness and hardness of (α Ti) grain boundary layers were measured. It is determined that the higher is the chromium content, the harder are both (α Ti) and (β Ti) phases. The hardness of (α Ti) phase in the Ti–5.5 wt % Cr alloy does not depend on the annealing temperature, but the hardness of (β Ti) phase increases with decreasing annealing temperature.

Keywords: titanium, chromium, grain boundaries, grain boundary wetting, hardness.