УДК 538.975

ВЛИЯНИЕ ТЕМПЕРАТУРЫ СЕЛЕНИЗАЦИИ НА МИКРОСТРУКТУРУ И ХИМИЧЕСКОЕ СОСТОЯНИЕ ПЛЕНОК CuGaSe₂

© 2022 г. Т. М. Гаджиев^{*a*, *, М. А. Алиев^{*a*}, А. М. Исмаилов^{*b*}, А. М. Алиев^{*b*}, Г. А. Алиев^{*c*}, З. Х. Калажоков^{*d*, *e*}, М. Р. Тленкопачев^{*d*}, Х. Х. Калажоков^{*d*}, А. Ш. Асваров^{*f*}, А. Э. Муслимов^{*f*}, В. М. Каневский ^{*f*}}

^{*а*}Институт физики ДФИЦ РАН, Махачкала, 367015 Россия ^{*b*}Дагестанский государственный университет, Махачкала, 367000 Россия ^{*c*}Дагестанский государственный технический университет, Махачкала, 367015 Россия ^{*d*}Кабардино-Балкарский государственный университет им. Х.М. Бербекова, Нальчик, 360004 Россия ^{*d*}Институт информатики и проблем регионального управления КБНЦ РАН, Нальчик, 360000 Россия ^{*f*}Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, *Mockвa*, 119333 Россия ^{*k*}*e*-mail: gadjiev_timur@mail.ru Поступила в редакцию 24.04.2022 г.

Поступила в редакцию 24.04.2022 г. После доработки 29.06.2022 г. Принята к публикации 29.06.2022 г.

Разработана технология получения тонких пленок CuGaSe₂ методом двухстадийной селенизации в потоке газа-носителя (азота) реакционного компонента (селена). Посредством электронной микроскопии и рентгенофазового анализа изучено влияние температуры селенизации на морфологию поверхности, состав и структуру пленок CuGaSe₂. На основании данных о трансформации химических состояний компонентов, полученных методом рентгеновской фотоэлектронной спектроскопии, проанализировано влияние температуры селенизации на процесс фазообразования в пленках.

Ключевые слова: тонкая пленка, халькогенид, селенизация, морфология, структура, состав, халькопирит, фотоэлектронная спектроскопия.

DOI: 10.31857/S1028096022120135

введение

Тройное соединение $CuGaSe_2$ принадлежит к полупроводникам типа I–III–VI₂, которые являются изоэлектронными и структурными аналогами соединений группы II–VI, и в течение многих лет их активно исследуют [1]. Благодаря ширине запрещенной зоны 1.68 эВ тонкие пленки CuGaSe₂ находят практическое применение в качестве верхнего элемента солнечной батареи в тандеме с нижним элементом из CuInSe₂ [2–4], в светодиодах [5] и различных нелинейных устройствах [6].

Большой интерес представляют многостадийные методы получения пленок CuGaSe₂, основанные на отжиге и селенизации интерметаллических прекурсоров медь—галлий. Преимуществом селенизации в селенсодержащей атмосфере является отсутствие необходимости точного контроля параметров, поскольку металлические прекурсоры поглощают только нужное для стехиометрии количество селена. Установлено, что в ряде случаев при селенизации прекурсоров пленки образуется смесь фаз бинарных селенидов, однако исследование механизмов реакций в пленке затруднительно. Изучение процессов разделения фаз и формирование однофазной пленки CuGaSe₂ является ключевым моментом при изготовлении высококачественных поглощающих слоев.

Целью настоящей работы было исследование морфологии поверхности, химического состава, структуры и электронного состояния атомов на поверхности пленок CuGaSe₂, полученных методом селенизации.

МЕТОДИКА ЭКСПЕРИМЕНТА

Тонкие пленки $CuGaSe_2$ получали двухэтапным методом управляемой селенизации предварительно нанесенных на стеклянные подложки интерметаллических слоев Cu-Ga в двухзонной термодиффузионной установке с участием газаносителя (N_2) реакционного компонента (Se).

Рис. 1. Концентрация селена в пленках CuGaSe₂, полученных при различных температурах селенизации.

Температура в зоне реакции слоев Cu–Ga с Se (температура селенизации T_{cen}) варьировалась в интервале $200 \le T_{cen} \le 550^{\circ}$ С, а давление парогазовой смеси Se + N₂ на этапе рекристаллизации увеличивали до 10^{-1} Па [7].

Морфология поверхности пленок и их элементный состав были изучены с использованием растрового электронного микроскопа (РЭМ) VEGA 3LMH, оснащенного энергодисперсионным рентгеновским спектрометром X-Max.

Рентгенофазовые и рентгеноструктурные исследования выполняли на дифрактометре Empyrean Series 2 (PANalytical, Нидерланды) с использованием Cu K_{α} -излучения (1.5405 Å), углы сканирования 10°–140°, β-фильтр. Фазы идентифицировали, сравнивая экспериментально полученные межплоскостные расстояния *d* с данными картотеки Joint Committee on Powder Diffraction Standard (JCPDS).

Исследования методом рентгеновской фотоэлектронной спектроскопии (РФЭС) были выполнены с использованием спектрометра K-Alpha фирмы Termo Scientific с источником рентгеновского Al K_{α} -излучения (1486.6 эВ). Вычитание фона вторичных электронов проводили методом Ширли. Калибровку спектрометра осуществляли по пикам Au 4 $f_{7/2}$, Cu 2 $p_{3/2}$, Ag 3 $d_{5/2}$, которым были приписаны значения энергии связи 83.96, 932.62 и 368.21 эВ соответственно.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследование селенизированных тонких пленок методом энергодисперсионной рентгенов-

Рис. 2. РЭМ-изображения поверхности пленок CuGaSe₂, полученных при температуре селенизации: a - 500; 6 - 550°C.

ской спектрометрии показало, что с ростом температуры селенизации концентрация селена увеличивается, причем наблюдаются две области линейного роста в области температур 200–350 и 350–550°С (рис. 1). Состав пленок, полученных при $T_{cen} = 550$ °С, квазистехиометрический, и распределение компонентов по поверхности пленок неравномерно (±3%), а концентрации углерода и кислорода находятся на уровне фоновых значений.

Полученные при $T_{cen} = 500-550$ °С пленки толщиной 1 мкм плотные, без микропроколов, с хорошей адгезией к подложке. На рис. 2 представлены РЭМ-изображения поверхностей пленок, полученных при различных температурах селенизации. При $T_{cen} = 500$ °С на поверхности пленок присутствуют микровключения, размер которых варьируется в пределах 100 нм $\leq L \leq 6$ мкм. Они объединяются в цепочки единичных конгломератов, размер которых достигает 12 мкм (рис. 2а). С увеличением температуры селенизации до $T_{cen} =$ = 550°С происходит сглаживание микрорельефа с уменьшением числа микрозерен (рис. 2б). Размеры микровключений варьируются в пределах 2– 7 мкм, а конгломератов – до 6 мкм.

Результаты исследования образцов методом рентгенофазового анализа представлены на рис. 3 и в табл. 1. На дифрактограммах образцов CuGaSe₂, полученных при температурах селенизации $T_{\rm сел}$ выше 400°С, присутствует серия дифракционных линий 112, 204, 116 фазы халькопирита, причем наблюдается рост интенсивности линии 112. Также наблюдается смещение линии 112 в область меньших значений 20. В свою очередь, на дифрактограммах пленочных образцов CuGaSe₂, полученных при температурах селенизации 300-400°С, присутствуют дополнительные дифракционные отражения 312 и 400 фазы халькопирита, а также отражения, связанные с соединениями Cu_2Se и $Cu_{0.25}Ga_{0.58}Se$. С ростом температуры кристаллизации происходит уменьшение ширины

профиля отражения 112. Оценка размеров областей когерентного рассеяния (средний размер кристаллитов) с использованием формулы Селякова—Шеррера показала, что с ростом температуры селенизации этот параметр монотонно увеличивается от 11 до 59 нм.

Расположение отражения 112 с максимумом при $2\theta = 28.112^{\circ}$ на дифрактограмме пленки, полученной при $T_{cen} = 550^{\circ}$ С, указывает на образование в первую очередь кристаллитов с составом, близким к CuGaSe₂. С ростом температуры селенизации наблюдается смешение основного пика 112 в сторону меньших углов 20 по закону Вегарда, что указывает на введение Se в материал. Рост интенсивности основного отражения структуры халькопирита 112, уменьшение ширины линии на полувысоте и ее смещение в сторону меньших значений дифракционных углов свидетельствует об изменении размеров элементарной ячейки. По вычисленным межплоскостным расстояниям рассчитаны параметры элементарной ячейки а и с синтезированных пленок, которые хорошо согласуются с литературными данными [8, 9].

Для изучения химических состояний атомов меди в образцах было проведено сравнение спектров оже-линий CuLMM, что является достаточно информативным методом, поскольку данная линия претерпевает значительные трансформации в различных химических состояниях (рис. 4а). Можно заметить, что соединение меди с селеном прослеживается при энергии 917.6 эВ в образцах, селенизированных при низких температурах $T_{cen} \le 300^{\circ}$ С, тогда как в образцах, полученных при температурах $T_{cen} \ge 350^{\circ}$ С, наблюдается усиление интенсивности пика при энергии 919.7 эВ, соответствующей металлической форме Cu(0) [10].

Анализ энергии связи линий Ga3d (рис. 4б) говорит о незначительном высвобождении метал-

Рис. 3. Дифрактограммы пленок CuGaSe₂ полученных при различных температурах селенизации: 1 - 550; 2 - 500; 3 - 450; 4 - 400; 5 - 350; 6 - 300; 7 - 250; $8 - 200^{\circ}$ C. На дифрактограммах 4 - 6 звездочкой отмечен пик, соответствующий фазе Cu_{0.25}Ga_{0.58}Se, кружочком – пики фазы Cu₂Se.

лического галлия, в то время как доля металлической меди в составе падает, и значительная часть меди оказывается соединенной с селеном в образцах, полученных при $T_{cen} \leq 300^{\circ}$ С [10, 11]. Напротив, в образцах, селенизированных при $T_{cen} > 300^{\circ}$ С, доля металлического галлия значительно меньше. Однако в них доля металлической меди больше, о чем свидетельствует форма пика CuLMM при 919.7 эВ. При высоких температурах преиму-

Температура селенизации <i>T</i> _{сел} , °С	Угловое положение 20 ₁₁₂ , град	Интенсивность I ₁₁₂ , имп.	Ширина линии на середине высоты β ₁₁₂ , град	Размер кристаллитов D ₁₁₂ , нм
200	28.25	475	0.820	11
250	28.24	508	0.770	12
300	28.24	2470	0.670	14
350	28.23	3280	0.600	15
400	28.22	7650	0.332	31
450	28.13	12600	0.292	37
500	28.12	16600	0.231	51
550	28.11	20100	0.209	59

Таблица 1. Характеристики отражения 112 в зависимости от температуры селенизации

Рис. 4. Результаты сравнительного анализа пиков CuLMM (a), Ga $3d_{5/2}$ (б) и Se 3d (в) пленок CuGaSe₂, полученных при температурах селенизации: 1-550; 2-500; 3-450; 4-400; 5-350; 6-300; 7-250; $8-200^{\circ}$ С.

щественно образуются связи селена и галлия, наблюдается увеличение количества меди в атомарном состоянии. При низких же температурах селенизации количество связей Cu–Se растет. На рис. 4в приведены спектры Se 3d, пики которых вблизи энергии связи 54.0-54.8 эВ могут указывать на образование селеном связей с медью, галлием, а также участия селена в соединении CuGaSe₂ [12].

ЗАКЛЮЧЕНИЕ

Впервые получены поликристаллические пленки $CuGaSe_2$ двухэтапным методом управляемой селенизации предварительно нанесенных на стеклянные подложки интерметаллических слоев Cu-Ga в двухзонной термодиффузионной установке с участием газа-носителя (N_2) реакционного компонента (Se).

С ростом температуры селенизации происходит увеличение концентрации селена, размеров микрозерен и кристаллитов. Пленки, полученные при температуре селенизации 550°С, имеют структуру халькопирита с преимущественной ориентацией [112].

Согласно данным рентгеновской фотоэлектронной спектроскопии образцов, полученных при различных температурах селенизации, обнаруживается, что при высоких температурах наблюдается в большей степени образование связей селена с галлием и увеличение количества металлической меди. При низких температурах селенизации преимущественно растет содержание Cu—Se и высвобождается Ga в металлическом состоянии.

БЛАГОДАРНОСТИ

Работа выполнена на оборудовании АЦКП Дагестанского федерального исследовательского центра РАН, ЦКП "Физика поверхности, наносистем и технологии наноструктур" и ЦКП "Рентгеновская диагностика материалов" Кабардино-Балкарского государственного университета им. Х.М. Бербекова.

СПИСОК ЛИТЕРАТУРЫ

1. *Tell B., Shay J., Kasper H.* // J. Appl. Phys. 1972. V. 43. № 5. P. 2469.

https://doi.org/10.1063/1.1661532

- 2. *Shay J.L., Wernick J.H.* Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications: International Series of Monographs in the Science of the Solid State. Oxford: Pergamon Press, 1975. 254 p.
- 3. *Saad M., Riazi H., Bucher E., Lux-Steiner M.C.* // Appl. Phys. A. 1996. V. 62. № 2. P. 181.
- Nadenau V., Hariskos D., Schock H. // Proc. 14th Eur. Photovoltaic Solar Energy Conf. Barcelona, 1997. V. 85. P. 1250.
- Yamamoto N. // Jpn. J. Appl. Phys. 1980. V. 19. (S3) P. 95. https://doi.org/10.7567/JJAPS.19S3.95
- 6. *Pamplin B.R., Kiyosawa T., Masumoto K.* // Prog. Cryst. Growth Charact. 1979. V. 1. № 4. P. 331. https://doi.org/10.1016/0146-3535(79)90002-9
- Гаджиев Т.М., Алиев М.А., Махмудов С.Ш., Каневский В.М., Муслимов А.Э., Асваров А.Ш. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 10. С. 42. https://doi.org/10.31857/S1028096020100064

 Swamy H., Naidu B., Reddy P. // Vacuum. 1990. V. 41. № 4-6. P. 1445. https://doi.org/10.1016/0042-207

- Islam M.M., Yamada A., Sakurai T., Ishizuka S., Matsubara K., Niki S., Akimoto K. // Optoelectronics. 2011. V. 2011. P. 573094. https://doi.org/10.1155/2011/573094
- Meederetal A. // J. Phys. Chem. Solids. 2003. V. 64. P. 1553. https://doi.org/10.1016/S0022-3697(03)00075-1
- Popp A., Pettenkofer Ch. // Phys. Stat. Sol. B. 2017. V. 254. Iss. 11. P. 1700193. https://doi.org/10.1002/pssb.201700193
- Würz R., Rusu M., Schedel-Niedrig Th. et al. // Surf. Sci. 2005. V. 580. P. 80. https://doi.org/10.1016/j.susc.2005.01.054

Effect of Selenization Temperature on the Microstructure and Chemical State of CuGaSe₂ Films

T. M. Gadzhiev^{1, *}, M. A. Aliev¹, A. M. Ismailov², A. M. Aliev², G. A. Aliev³, Z. Kh. Kalazhokov^{4, 5}, M. R. Tlenkopachev⁴, Kh. Kh. Kalazhokov⁴, A. Sh. Asvarov⁶, A. E. Muslimov⁶, V. M. Kanevsky⁶

¹Institute of Physics, Dagestan Federal Research Center RAS, Makhachkala, 367015 Russia ²Dagestan State University, Makhachkala, 367000 Russia

³Dagestan State Technical University, Makhachkala, 367026 Russia

⁴Kabardino-Balkarian State University, Nalchik, 360004 Russia

⁵Institute of Informatics and Regional Management Problems, KBSC RAS, Nalchik, 360000 Russia

⁶Institute of Crystallography, FSRC "Crystallography and Photonics" RAS, Moscow, 119333 Russia *e-mail: gadjiev_timur@mail.ru

A technology was developed for producing thin films of $CuGaSe_2$ by using a route of two-stage selenization in a gas flow (nitrogen), the carrier of the reaction component (selenium). The effect of selenization temperature on the surface morphology, composition, and structure of $CuGaSe_2$ films was studied by means of scanning electron microscopy and X-ray phase analysis. Based on data on the transformation of the chemical states of the components obtained by X-ray photoelectron spectroscopy, the influence of the selenization temperature on the process of phase formation in films was analyzed.

Keywords: thin film, chalcogenide, selenization, morphology, structure, composition, chalcopyrite, photoelectron spectroscopy.