УДК 538.911

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ОРБИТАЛЬНОЕ УПОРЯДОЧЕНИЕ В КЕРАМИЧЕСКИХ СОСТАВАХ $BiMnO_{3+\delta}$ (0 < $\delta \le$ 0.14)

© 2022 г. В. В. Сиколенко^{*a*, *d*, *e*, *, А. Н. Чобот^{*b*,} **, М. В. Бушинский^{*b*}, Д. В. Желудкевич^{*b*}, С. И. Латушко^{*b*}, Г. М. Чобот^{*c*}, Б. Н. Савенко^{*a*}, Д. В. Карпинский^{*b*}}

^аОбъединенный институт ядерных исследований, Дубна, 141908 Россия

^bНаучно-практический центр по материаловедению НАН Беларуси, Минск, 220072 Беларусь

^сБелорусский государственный аграрный технический университет, Минск, 220023 Беларусь

^dKarlsruhe Institute of Technology, Karlsruhe, 76131 Germany

^еНаучно-образовательный центр "Функциональные наноматериалы" Балтийского федерального университета

им. И. Канта, Калининград, 236016 Россия

*e-mail: sikolen@jinr.ru **e-mail: a.n.chobot@tut.by Поступила в редакцию 20.06.2021 г. После доработки 17.09.2021 г. Принята к публикации 20.09.2021 г.

Кристаллическая структура составов BiMnO_{3 + δ} исследована в зависимости от номинального избытка содержания ионов кислорода с использованием дифракции рентгеновского синхротронного излучения. Установлено, что увеличение номинальной концентрации ионов кислорода приводит к последовательности фазовых переходов из моноклинной структуры (*C*2/*c*) в моноклинную (*P*2₁/*c*) и далее в орторомбическую структуру (*Pnma*) через формирование двухфазного структурного состояния. Указанная последовательность фазовых переходов сопровождается поэтапным разрушением орбитального упорядочения, сформированного d_{3z-r}^{2} орбиталями ионов Mn³⁺, что обусловлено неравномерным распределением вакансий ионов марганца в В-позициях решетки перовскита.

Ключевые слова: рентгеновская дифракция, синхротронное излучение, кристаллическая структура, мультиферроики, орбитальное упорядочение.

DOI: 10.31857/S1028096022020145

введение

В последнее десятилетие сложные оксиды переходных металлов, обладающие одновременно магнитным и электрическим упорядочением (мультиферроики), привлекают повышенный интерес исследователей. Наиболее изученным однофазным мультиферроиком является феррит висмута, обладающий высокими температурами перехода в магнитную (650 К) и сегнетоэлектрическую фазы (1100 К) [1]. Манганит висмута (ВіМпО₃) также является магнитоэлектрическим материалом со структурой перовскита с температурой перехода в магнитоупорядоченное состояние $T_{\rm C} \sim 102$ K [2, 3]. Ферромагнитный порядок в BiMnO₃ обусловлен наличием орбитального упорядочения, которое разрушается при температуре $T_{\rm C} \sim 475$ K, при этом не происходит изменения типа структурных искажений, кристаллическая структура остается моноклинной. При температурах выше T_C ~ 770 K происходит фазовый переход в орторомбическую структуру (пр. гр. *Рпта*) [4–7]. Магнитная структура $BiMnO_3$ обусловлена положительными обменными взаимодействиями между ионами Mn^{3+} , при этом характер обменных взаимодействий существенно зависит от геометрии химических связей Mn - O-Mn [8–12].

Следует отметить, что магнитные свойства BiMnO₃ в значительной степени зависят от содержания кислорода [13-15]. Увеличение содержания кислорода выше стехиометрического значения BiMnO_{3+ δ} (что предполагает наличие вакансий в позициях ионов висмута и марганца) приводит к разрушению дальнего ферромагнитного упорядочения, при этом наблюдается фазовый переход в неполярную орторомбическую структуру [16]. Составы BiMnO_{3+ δ} с содержанием кислорода $\delta > 0.12$ характеризуются отсутствием дальнего ферромагнитного порядка и величина эффективного магнитного момента практически не изменяется с увеличением номинального избытка в концентрации кислорода. Отметим, что в настоящее время отсутствуют структурные данные о корреляции между существованием орбитального упорядочения и кислородной стехиометрией, а также типом структурных искажений в составах $BiMnO_{3+\delta}$, что является определяющим фактором для объяснения магнитных и магнитоэлектрических свойств таких материалов.

В настоящей работе исследованы методом рентгеновской дифракции структурные фазовые переходы в составах $BiMnO_{3+\delta}$ в зависимости от кислородной стехиометрии и температуры, определена взаимосвязь между типом структурных искажений, орбитальным упорядочением и распределением катионных вакансий в решетке перовскита, установлены концентрационные и температурные области структурной стабильности моноклинной и орторомбической фаз.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы BiMnO_{3+ δ} с номинальным избытком кислорода $\delta = 0.02, 0.08, 0.14$ были получены из оксидов Bi₂O₃ (99.99%, Rare Metallic Co. Ltd.), Mn₂O₃ (99.97%, Alfa Aesar) с помощью техники высокого давления. Смесь оксидов, взятых в соответствии с химическими формулами Bi_{0.993}Mn_{0.993}O₃ (I), Ві0 974 Мп0 974 О3 (II), Ві0 955 Мп0 955 О3 (III), тщательно смешивали в планетарной шаровой мельнице Retsch PM 200 в присутствии этанола, затем образцы прессовались в таблетки диаметром 10 мм $(P \sim 0.3 \Gamma \Pi a)$ и отжигались при температуре 600°C в течение пяти часов. Окончательный синтез составов BiMnO_{3 + б} проводился с использованием пресса высокого давления ленточного типа при давлении 6 ГПа и температуре 1200°С в течение 10 мин в герметичных капсулах с графитовым теплопроводящим покрытием, образцы изолировались от нагревателя с помощью молибденовой фольги. После синтеза давление медленно сбрасывали, образцы закаливались при комнатной температуре. Кристаллическая структура составов уточнялась с использованием лабораторного дифрактометра ДРОН-3М, а также на основании данных, полученных методом дифракции синхротронного излучения на синхротроне КМС-2 (BESSY II, Берлин). Дифракционные спектры записывались в диапазоне угла рассеяния $2\theta = 10^{\circ}$ — 100° с шагом 0.014°. Дифракционные данные были проанализированы методом Ритвельда с использованием программного обеспечения FullProf [17, 18].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгенограммы, полученные для керамических составов $BiMnO_{3+\delta}$, указывают на формирование структуры перовскита во всех исследуемых составах, при этом присутствие примесных фаз не обнаружено (рис. 1, 2). Расположение рефлексов на дифрактограммах состава $BiMnO_{3.02}$, полу-

ченных с использованием лабораторного рентгеновского дифрактометра, а также дифрактометра с использованием синхротронного излучения, указывает на формирование моноклинной структуры. Условия погасания рефлексов h + k = 2n для hkl и h = l = 2n для h0l согласуются с пространственной группой *С*2/*с* (№ 15) (рис. 1). Поскольку в составе BiMnO_{3 02} дефицит катионов составляет менее 1% (Bi_{0.993}Mn_{0.993}O₃) для уточнения дифрактограмм заселенность позиций ионов висмута и марганца была приравнена к 99.3%. При этом предполагалось равномерное распределение вакансий между позициями Bi (8f) и двумя Wyckoff позициями ионов марганца — (4e) и (4d), используемых для ионов Mn [1] и Mn [2] соответственно (табл. 1). Значения степени заселенности ионов, вычисленные на основании дифракционных данных, соответствуют заявленной химической формуле BiMnO_{3.02} (I). Увеличение номинального избытка ионов кислорода на ~2% (состав BiMnO_{3.08}) приводит к заметному изменению кристаллической структуры по сравнению с составом BiMnO_{3 02}. Анализ дифракционных рефлексов, полученных для состава BiMnO_{3 08} (II), указывает на примитивный тип центровки элементарной ячейки (Р), в отличие от базоцентрированной ячейки С типа, характерной для состава BiMnO_{3.02}. Дифрактограмма состава BiMnO_{3.08} уточнена с использованием пространственной группы Р21/с, являющейся подгруппой группы С2/с.

Дифрактограмма состава BiMnO_{3.08} (II) содержит рефлексы, отсутствующие в дифрактограмме состава BiMnO_{3.02}, что в общем случае свидетельствует о понижении симметрии кристаллической структуры. Так рефлекс, находящийся на угле рассеяния 20 ~ 21.4° отсутствует в дифракционной картине состава BiMnO_{3.02}. Уточнение дифрактограммы с использованием пространственной группы P2₁/с позволило описать данный рефлекс как (102) (рис. 2). Появление данного рефлекса связано с понижением симметрии в распределении ионов марганца, в частности, появляется дополнительная позиция, характерная для ионов марганца Mn [3] - 2c(0, 0, 1/2), при этом пространственная группа $P2_1/c$ предполагает наличие трех независимых структурных позиций для ионов марганца (табл. 1). На рисунке 2 показаны проиндексированные рефлексы, характерные для пространственной группы $P2_1/c$. Следует отметить, что для состава BiMnO_{3.08} средняя заселенность ионов висмута и марганца составляет ~97.4%, при этом вакансии ионов висмута равномерно распределены по двум позициям 4е, а в распределении вакансий ионов марганца наблюдается неравномерное разделение по трем структурным позициям. Так, наибольшее число вакансий ионов марганца приходится на струк-

Рис. 1. Результат уточнения дифрактограммы состава BiMnO_{3.02}, полученной при комнатной температуре с использованием синхротронного излучения.

турную позицию 2b(1/2, 0, 0) (Mn [2]), что приводит к разрушению орбитального упорядочения вдоль плоскостей семейства (1, -1, 1).

Увеличение катионных вакансий до ~4.5%, что соответствует номинальной химической формуле BiMnO_{3.14} (III), приводит к изменению типа структурных искажений. Так рефлексы, находящиеся на углах рассеяния $2\theta \sim 21.4^{\circ}$, 43.5° , 51.5° и др., характерные для пространственных групп

C2/c и $P2_1/c$, полностью отсутствуют на дифрактограмме состава BiMnO_{3.14}.

Анализ дифрактограммы состава BiMnO_{3.14}, полученной при комнатной температуре, свидетельствует о стабилизации орторомбических искажений элементарной ячейки. Дифрактограмма состава BiMnO_{3.14} успешно уточнена с использованием пространственной группы *Pnma* (метрика ячейки $\sqrt{2}a_p \cdot 2a_p \cdot \sqrt{2}a_p$, где a_p – параметр прими-

Состав	пр. гр.	<i>a</i> , Å	$b, \mathrm{\AA}$	c, Å	Объем ячейки	β	Структурные позиции ионов
(I)	C2/c	3.8914 (9.5300)	3.944 (5.5769)	3.9746 (9.7338)	61.15 (489.233)	108.97	$\begin{array}{l} {\rm Bi}-8f;{\rm Mn}_1-4e;\\ {\rm Mn}_2-4d.\\ {\rm O}_{1.2.3}-8f \end{array}$
(II)	<i>P</i> 2 ₁ /c	3.9031 (9.5588)	3.9037 (5.5198)	3.9639 (9.7076)	60.3716 (482.973)	109.45	Bi _{1.2} - 4e. $Mn_1 - 4e.$ $Mn_2 - 2b.$ $Mn_3 - 2c.$ $O_{1-6} - 4e$
(III)	Pnma	3.9005 (5.5153)	3.9023 (7.8047)	3.9251 (5.5501)	59.7275 (238.910)	90.00	Bi $- 4c$; Mn $-4b$; O _{1.2} $- 8d$

Таблица 1. Структурные параметры составов BiMnO_{3 + δ}, где δ = 0.02, 0.08, 0.14, уточненные на основании данных синхротронного излучения

Рис. 2. Дифракционные рефлексы составов $BiMnO_{3+d}$ (d = 0.02, 0.08, 0.14), характерные для различных структурных фаз.

тивной ячейки перовскита), которая является одной из минимальных супергрупп для пространственной группы $P2_1/c$. Структурные параметры вычисленные на основании дифракционных данных, свидетельствуют об отсутствии орбитального упорядочения в составе BiMnO_{3.14}, при этом пространственная группа *Pnma* характеризуется одной структурной позицией для ионов марганца, что предполагает изотропное распределение вакансий ионов марганца по B-подрешетке перовскита в составе BiMnO_{3.14}.

На основании полученных данных установлено, что увеличение номинального содержания анионов кислорода в составах BiMnO_{3+δ} (0 < δ < 0.16) приводит к последовательности фазовых переходов из моноклинной структуры *C*2/*c* в моноклинную структуру *P*2₁/*c* и далее в орторомбическую структуру через формирование двухфазного структурного состояния. Указанная последовательность сопровождается поэтапным разрушением орбитального упорядочения, что обусловлено неравномерным распределением катионных вакансий, в частности, вакансии ионов марганца преимущественно распределяются в позиции 2*b* (1/2, 0, 0) моноклинной ячейки пространственной группы *P*2₁/*c*.

БЛАГОДАРНОСТИ

Исследование выполнено при поддержке РФФИ (проект № 20-52-00023) и БРФФИ (проект № Т20Р-121) в рамках Государственного задания Министерства высшего образования и науки, проект FZWM-2020-0008".

Авторы благодарят Берлинский центр материалов и энергии имени Гельмгольца (Helmholtz-Zentrum Berlin für Materialien und Energie) за проведение синхротронных исследований.

Конфликт интересов: авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Ederer Claude and Spaldin Nicola A. // Phys. Rev. B. 2005. V. 71. 060401(R). https://doi.org/10.1103/PhysRevB.71.060401
- Moreira dos Santos A., Parashar S., Raju A.R., Zhao Y.S., Cheetham A.K., Rao C.N.R. // Solid State Commun. 2002. V.122. P. 49. https://doi.org/10.1016/S0038-1098(02)00087-X
- 3. *Belik Alexei A.* // Adv. Mater. 2011. V.12 P. 044610. https://doi.org/10.1088/1468-6996/12/4/044610
- 4. Kimura T., Kawamoto S., Yamada I., Azuma M., Takano M., Tokura Y. // Phys. Rev. B. 2003. V.67 P. 180401. https://doi.org/10.1103/PhysRevB.67.180401
- Atou T., Chiba H., Ohoyama K., Yamaguchi Y., Syono Y. // J. Solid State Chem. 1999. V. 145. P. 639. https://doi.org/10.1006/jssc.1999.8267

- КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ОРБИТАЛЬНОЕ УПОРЯДОЧЕНИЕ
- Moreira dos Santos A., Cheetham A.K., Atou T., Syono Y., Yamaguchi Y., Ohoyama K., Chiba H., Rao C.N.R.// Phys. Rev. B. 2002. V. 66. P. 064425. https://doi.org/10.1103/PhysRevB.66.064425
- Belik Alexei A., Iikubo Satoshi, Yokosawa Tadahiro, Kodama Katsuaki, Igawa Naoki, Shamoto Shinichi, Azuma Masaki, Takano Mikio, Kimoto Koji, Matsui Yoshio, Takayama-Muromachi Eiji // J. Am. Chem. Soc. 2007. V. 129. P. 971.

https://doi.org/10.1021/ja0664032

- Coey J.M.D., Viret M., von Molnár S. // Adv. Phys. 2009. V. 58(2) P. 167 https://doi.org/10.1080/0001873090336318
- 9. Trukhanov S.V., Khomchenko V.A., Karpinsky D.V., Silibin M.V., Trukhanov A.V., Lobanovsky L.S., Szymczak H., Botez C.E., Troyanchuk I.O. // J. Rare Earths. 2019. V. 37(11). P. 1242. https://doi.org/10.1016/j.jre.2018.12.010
- Goodenough J.B., Wold A., Arnott R.J., Menyuk N. // Phys. Rev. 1961. V. 124. P. 373. https://doi.org/10.1103/PhysRev.124.373
- Solovyev I.V., Pchelkina Z.V. // New J. Phys. 2008. V. 10. 073021. https://doi.org/10.1088/1367-2630/10/7/073021

- Figueiras F.G., Karpinsky D., Tavares P.B., Gonçalves J.N. et al // Phys. Chem. Chem. Phys. 2017. V. 19. P. 1335. https://doi.org/10.1039/c6cp07682c
- Chiba H., Atou T., Syono Y. // J. Solid State Chem. 1997. V. 132(1). P. 139. https://doi.org/10.1006/jssc.1997.7432
- Sundaresan A., K. Mangalam R.V., Iyo A., Tanaka Y., Rao C.N.R. // J. Mater. Chem. 2008. V. 18. P. 2191. https://doi.org/10.1039/b803118p
- Belik A.A., Kolodiazhnyi T., Kosudac Kosuke, Takayama-Muromachi Eiji. // J. Mater. Chem. 2009. V. 19. P. 1593. https://doi.org/10.1039/b818645f
- Belik A.A., Kodama Katsuaki, Igawa Naoki, Shamoto Shin-ichi, Kosuda Kosuke, Takayama-Muromachi Eiji. // J. Am. Chem. Soc. 2010. V. 132(23). P. 8137. https://doi.org/10.1021/ja102014n
- 17. *Rietveld H.M.* // J. Appl. Cryst. 1969. V. 2 P. 65. https://doi.org/10.1107/ S0021889869006558
- Rodríguez-Carvajal Juan. // Physica B. 1993. V. 192. P. 55. https://doi.org/10.1016/0921-4526(93)90108-I

Crystal Structure and Orbital Ordering in BiMnO_{3+ δ} (0 < $\delta \le$ 0.14) Ceramics

V. V. Sikolenko^{1, 4, 5, *}, A. N. Chobot^{2, **}, M. V. Bushinsky², D. V. Zheludkevich², S. I. Latushko², G. M. Chobot³, B. N. Savenko¹, and D. V. Karpinsky²

¹Joint Institute for Nuclear Research. Dubna. 141980 Russia

²Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk, 220072 Belarus

³Belarusian State Agrarian Technical University, Minsk, 220023 Belarus

⁴Karlsruhe Institute of Technology, Karlsruhe, 76131 Germany

⁵Scientific and Educational Center "Functional Nanomaterials" of the I. Kant Baltic Federal University (BFU),

Kaliningrad, 236016 Russia

*e-mail: sikolen@jinr.ru

**e-mail: a.n.chobot@tut.by

Crystal structure of BiMnO_{3 + δ} has been studied as a function of nominal oxygen content using X-Ray synchrotron diffraction. It has been found that an increase of nominal oxygen ion concentration leads to a series of the phase transitions from monoclinic (*C*2/*c*) to other monoclinic phase (*P*2₁/*c*) and than to orthorhombic *Pnma* structure through the two-phase regions. The indicated sequence of the phase transitions is accompanied by a gradual destruction of the orbital ordering formed by the d_{3z-r}^2 orbitals of Mn³⁺ ions, which is caused by the nonuniform distribution of vacancies of manganese ions in the B-positions of the perovskite lattice.

Keywords: X-ray diffraction, synchrotron radiation, crystal structure, multiferroics, orbital ordering.