ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ, 2022, № 3, с. 66–70

УДК 539.186

Посвящается памяти Я.А. Тепловой, научного руководителя и соавтора

ИЗМЕНЕНИЕ НЕРАВНОВЕСНОГО И РАВНОВЕСНОГО СРЕДНЕГО ЗАРЯДА ИОНОВ В ЗАВИСИМОСТИ ОТ ТОЛЩИНЫ ПРОЙДЕННОГО СЛОЯ ВЕЩЕСТВА

© 2022 г. Ю. А. Белкова*

Московский государственный университет им. М.В. Ломоносова, НИИЯФ им. Д.В. Скобельцына, Москва, 119991 Россия *e-mail: belkova-fiz@mail.ru Поступила в редакцию 26.07.2021 г. После доработки 27.08.2021 г. Принята к публикации 30.08.2021 г.

Рассмотрено изменение зарядовых фракций $F_i(x)$ и среднего заряда ионов $\overline{i}(x)$ по мере убывания энергии ионов при увеличении толщины пройденного слоя вещества x. С помощью предложенного полуэмпирического метода проведены аналитические расчеты для прохождения ионов N с начальными скоростями $V_0 = 4 \times 10^8$ и 6×10^8 см/с через целлулоид. Показано, что в неравновесной области зависимость зарядовых фракций и средних зарядов от x определяется начальными скоростями и начальными зарядами ионов i_0 , а после достижения зарядового равновесия средние заряды ионов убывают и увеличивается нейтральная фракция F_0 с ростом x независимо от начальных условий для всех рассмотренных V_0 и i_0 .

Ключевые слова: торможение ионов, потери энергии ионов, зарядовые фракции, неравновесный и равновесный средний заряд ионов.

DOI: 10.31857/S1028096022030050

введение

При прохождении быстрых ионов через вещество потеря и захват электронов приводят к изменению величины зарядовых фракций в ионном пучке. В случае тонкой мишени быстрые ионы, как правило, не успевают достичь состояния зарядового равновесия, зарядовые распределения и средний заряд ионов зависят от толщины мишени х. Изменением энергии ионов за счет торможения в случае тонкой мишени пренебрегают [1-4]. Равновесное зарядовое распределение устанавливается в том случае, если слой вещества достигает равновесной толщины T_{eq} [4, 5]. Тогда равновесные зарядовые фракции и средний равновесный заряд \overline{i}_{eq} считаются не зависящими от x и начального заряда налетающего иона io и определяются начальной энергией ионов E₀.

Если толщина мишени сравнима по величине с пробегом ионов, то потери энергии ионов в веществе приводят к существенному уменьшению их скорости и соответствующему изменению равновесных зарядовых фракций и равновесного среднего заряда ионов по мере увеличения пройденного слоя x [6]. Предложенная ранее степенная аппроксимация для неупругих потерь энергии [7] позволила аналитически описать изменение энергии ионов при торможении и зависимость равновесного среднего заряда ионов от пройденного слоя вещества [8].

В настоящей работе на примере прохождения ионов азота через целлулоид рассмотрено изменение зарядовых фракций и средних зарядов ионов в зависимости от толщины пройденного слоя *x* как в области малых толщин — до достижения зарядового равновесия, так и в равновесной области. Это позволяет проследить за эволюцией зарядового распределения ионов по мере прохождения через вещество, начиная от начального зарядового состояния при влете ионов в мишень с некоторой начальной энергией и практически до остановки ионов в веществе.

МЕТОД РАСЧЕТОВ И ОСНОВНЫЕ РЕЗУЛЬТАТЫ

При прохождении ионного пучка с зарядами ядер Z через вещество изменение его зарядового

состава описывается системой дифференциальных уравнений:

$$\frac{dF_i}{dx} = \sum_k F_k \sigma_{ki} - F_i \sum_k \sigma_{ik}, \quad \sum_i F_i = 1,$$
(1)

где заряд иона *i* может принимать значения от -1 до *Z*. Величина зарядовой фракции *F_i* меняется с толщиной мишени *x*, а сечения потери или захвата электрона σ_{ik} считают постоянными. Аналитическое решение системы уравнений (1) возможно в том случае, если при рассмотрении ионного пучка можно ограничиться небольшим числом зарядовых компонент. Для двухкомпонентного пучка решение хорошо известно [9]. Его можно обобщить на случай трех компонент в случае, когда поведение двух фракций в зависимости от *x* подобно (обе фракции стремятся к нулю при $x \to 0$ и монотонно возрастают при увеличении *x*). В этом случае зарядовые фракции и средний заряд $\overline{i} = \sum_i iF_i(x)$ можно представить в виде [10, 11]:

$$F_{i} = F_{ieq} + (F_{i0} - F_{ieq}) \exp(-\beta x),$$
(2)

$$\overline{i} = \overline{i}_{eq} + (i_0 - \overline{i}_{eq}) \exp(-\beta x), \qquad (3)$$

где F_{i0} — начальное значение *i*-й зарядовой компоненты, i_0 — начальный заряд иона, F_{ieq} и $\overline{i_{eq}}$ значения зарядовых компонент и среднего заряда ионов в пучке после достижения равновесия (при $x > T_{eq}$). Коэффициент β может быть выражен через сечения потери и захвата электрона.

В приближении тонкой мишени при рассмотрении установления зарядового равновесия обычно считают, что энергия иона остается практически постоянной и равна начальной энергии E_0 . Тогда величины F_{ieq} и $\overline{i_{eq}}$ становятся постоянными после достижения зарядового равновесия и не меняются при изменении x. Однако, если увеличить толщину слоя вещества, пройденного ионами, уменьшение энергии ионов становится существенным. Таким образом, при замедлении ионов изменяются равновесные значения F_{ieq} и $\overline{i_{eq}}$, которые зависят от энергии ионов, а, следовательно, и от пройденного слоя вещества x.

Для определения зависимости $F_{ieq}(x)$ и $\overline{i}_{eq}(x)$ необходимо описать уменьшение энергии (скорости) ионов по мере увеличения *x*. Для проведения анализа удобно использовать степенную аппроксимацию неупругих потерь энергии ионов S_e [12, 13], параметрами которой являются максимальное значение потерь энергии ионов S_{emax} и скорость иона V_{max} (энергия E_{max}), при которой потери энергии достигают величины S_{emax} . Так, например, если начальная скорость иона V_0 меньше, чем V_{max} , то можно получить [13]:

$$S_{e} = \frac{V}{V_{\max}} S_{e\max},$$

$$E^{1/2} = E_{0}^{1/2} - \frac{S_{e\max}}{2E_{\max}^{1/2}} x, \quad x \le \frac{2E_{0}^{1/2}E_{\max}^{1/2}}{S_{e\max}}.$$
(4)

Полученное выражение для энергии ионов E(x) позволяет связать толщину мишени x с энергией, которую будет иметь ион, пройдя такой слой вещества:

$$x = \frac{2E_{\max}^{1/2}}{S_{e\max}} (E_0^{1/2} - E^{1/2}),$$
 (5)

что позволит описать зависимость $F_{ieq}(x)$ на основе известных данных о равновесных зарядовых фракциях при различной энергии ионов. Тогда использование полученной зависимости совместно с (2) делает возможным определение зарядовых фракций ионов $F_i(x)$ как в неравновесной $(x < T_{eq})$, так и в равновесной области $(x \ge T_{eq})$. Аналогичное описание среднего заряда ионов i(x) возможно, если учесть изменение среднего равновесного заряда по мере прохождения через вещество [13]:

$$\overline{i}_{eq}(x) = Z \left[1 - \exp\left(-\sqrt{\frac{E_0}{E_{max}}} + \frac{S_{emax}}{2E_{max}}x\right) \right].$$
(6)

Результаты расчетов изменения зарядовых фракций ионов N в зависимости от толщины пройденного слоя в целлулоиде приведены на рис. 1 и 2 для начальных скоростей ионов $V_0 = 4 \times$ $\times 10^8$ и 6 $\times 10^8$ см/с соответственно. При малых значениях x, до наступления зарядового равновесия, величина зарядовых фракций изменяется в результате процессов потери и захвата электрона ионами в соответствии с системой уравнений (1). В обоих представленных случаях основную роль играют три фракции (F_1 , F_2 , F_3 для $V_0 = 4 \times 10^8$ см/с и F_2 , F_3 , F_4 для $V_0 = 6 \times 10^8$ см/с), поэтому в расчетах использован метод, предложенный в [10], и зависимость зарядовых фракций от x была представлена в виде (2). Равновесная толщина мишени Т_{еа}, при которой наступает зарядовое равновесие, зависит от начальных скоростей и зарядов ионов. Для ионов N в целлулоиде T_{ес} равна примерно 100 Å [10]. Если учесть, что неупругие потери энергии равны $S_e = 77$ эВ/Å для $V_0 = 4 \times 10^8$ см/с и $S_e = 112 \text{ эB/Å}$ для $V_0 = 4 \times 10^8 \text{ см/с}$ [14], изменение энергии ионов в неравновесной области $\Delta E \cong 10$ кэB, что составляет менее 1% от начальной энергии E_0 . Таким образом, предположение о том, что энергия ионов, и, следовательно, сечения потери и захвата электрона в (1) остаются неизменными в ходе установления зарядового равновесия, можно считать справедливым.

Рис. 1. Зарядовые фракции ионов N в зависимости от толщины пройденного слоя вещества *x* в целлулоиде (экспериментальные данные [15]): $\blacksquare - F_1$; $\bullet - F_2$; $\blacktriangle - F_3$. Начальная скорость ионов $V_0 = 4 \times 10^8$ см/с, начальный заряд ионов $i_0 = 2$. Сплошные кривые – результаты расчетов, зарядовые фракции указаны рядом с кривыми.

После достижения зарядового равновесия *x* ≥ *T*_{еq} величина равновесных зарядовых фракций становится постоянной, если пренебречь замедлением ионов при прохождении через вещество. Однако если рассматривать мишень, толшина которой сравнима с пробегом ионов, то уменьшение энергии ионов становится существенным и приводит к тому, что равновесные зарядовые фракции изменяются с увеличением х. В рассмотренных примерах (рис. 1 и 2) условие $V_0 < V_{\text{max}}$ выполняется в обоих случаях, поэтому для определения соотношения энергии ионов и пройденного слоя вещества при расчетах использовали выражения (4) и (5). Расчеты равновесных зарядовых фракций в зависимости от E(x) соответствуют полученным в [5], экспериментальные данные для равновесных и неравновесных зарядовых фракций приведены в [15].

Представленные на рис. 1 и 2 результаты показывают, что равновесные зарядовые фракции ионов азота F_3 и F_2 для $V_0 = 4 \times 10^8$ см/с и F_4 и F_3 для $V_0 = 6 \times 10^8$ см/с убывают при увеличения х. Фракции, соответствующие меньшим значениям ионного заряда (F_1 для $V_0 = 4 \times 10^8$ см/с и F_1 , F_2 для $V_0 = 6 \times 10^8$ см/с), возрастают по мере замедления ионов и убывают только в конце пробега, когда доминирующей становится нейтральная фракция F_0 .

Результаты расчета средних зарядов ионов N (рис. 3) проводили по формуле (6), что соответствует случаю начальных скоростей ионов $V_0 < V_{\text{max}}$. В неравновесной области ($x < T_{\text{eq}}$) величи-

Рис. 2. Зарядовые фракции ионов N в зависимости от толщины пройденного слоя вещества *x* в целлулоиде (экспериментальные данные [15): $\blacksquare - F_1$; $\bullet - F_2$; $\blacktriangle - F_3$; $\blacktriangledown - F_4$. Начальная скорость ионов $V_0 = 6 \times 10^8$ см/с, начальный заряд ионов $i_0 = 4$. Сплошные кривые – результаты расчетов, зарядовые фракции указаны рядом с кривыми.

на средних зарядов зависит от начального заряда ионов, а при увеличении х приближаются к значению \overline{i}_{eq} , которое определяется начальными скоростями ионов $V_0 = 4 \times 10^8$ и 6 × 10⁸ см/с соответственно. После достижения зарядового равновесия средний заряд медленно убывает на расстоянии х до нескольких тысяч ангстрем. В конце пробега. когда толщина слоя вещества достигает порядка микрометра, равновесный заряд ионов уменьшается и становится близким к нулю при $x = x_{max}$. Как отмечалось ранее [8], величина x_{max} может превосходить пробеги ионов, рассчитанные в SRIM, что связано с рассмотрением в настоящей работе неупругих потерь энергии, в то время как при малых скоростях упругие потери энергии становятся сравнимы по величине, что приводит к более быстрому убыванию энергии ионов.

Таким образом, средний заряд ионов зависит от толщины пройденного слоя вещества на всей длине пути, но характер этой зависимости меняется: в неравновесной области средний заряд зависит от начального заряда ионов и может быть рассчитана по формуле (3). Если $i_0 > \overline{i_{eq}}$ для данной начальной скорости ионов, то \overline{i} убывает с увеличением x. И наоборот, если $i_0 < \overline{i_{eq}}$, средний заряд \overline{i} возрастает по мере прохождения ионов через вещество вплоть до наступления зарядового равновесия, после чего $\overline{i} = \overline{i_{eq}}$ для всех начальных зарядов ионов. При дальнейшем увеличении x равновесный средний заряд $\overline{i_{eq}}$ убывает при замедлении ионов.

Рис. 3. Средний заряд ионов N в зависимости от толщины пройденного слоя вещества х в целлулоиде для различных начальных зарядов io (экспериментальные данные [15]): ■ -2; ● -3; ▲ -4 при $V_0 = 4 \times 10^8$ см/с; $\Box - 3; \circ - 4; \bigtriangleup - 5$ при $V_0 = 6 \times 10^8$ см/с. Результаты расчетов: сплошные линии – начальная скорость ионов $V_0 = 4 \times 10^8$ см/с, пунктирные линии – $V_0 = 6 \times$ $\times 10^8$ см/с, i_0 соответствует значению \overline{i} на оси ординат.

выволы

Представлен полуэмпирический метод расчета изменения зарядовых фракций и среднего заряда ионов по мере убывания энергии ионов при торможении в веществе. Приведены аналитические выражения для зависимости величины зарядовых фракций и среднего заряда ионов от толщины пройденного слоя вещества х как в неравновесной области ($x < T_{eq}$), так и после достижения зарядового равновесия. Проведены расчеты зависимости $F_i(x)$ и $\overline{i}(x)$ для ионов N с начальными скоростями $V_0 = 4 \times 10^8$ и 6×10^8 см/с в целлулоиде.

Расчеты показали, что зарядовые фракции и средние заряды ионов зависят от толщины пройденного слоя х вещества. В неравновесной области изменение $F_i(x)$ и $\overline{i}(x)$ происходит за счет процессов потери и захвата электрона ионами, в результате чего устанавливается зарядовое равновесия; зарядовые фракции и средние заряды приобретают равновесные значения F_{ieq} и $\overline{i_{eq}}$, которые не зависят от начальных зарядов ионов i_0 и определяются их начальными скоростями V₀. При x < T_{eq} изменением энергии ионов можно пренебречь. При рассмотрении дальнейшего замедления ионов необходимо учитывать уменьшение скорости ионов и соответствующее изменение F_{ieq} и $\overline{i_{eq}}$: равновесные заряды ионов уменьшаются по мере увеличения х. зарядовые фракции. игравшие основную роль в начале торможения, убывают, а величина фракций *F*₁ и *F*₀ возрастает.

Полученные результаты могут быть использованы для описания торможения ионов в веществе, так как позволяют описать эволюцию зарядового распределения ионов в зависимости от толщины пройденного слоя вещества.

СПИСОК ЛИТЕРАТУРЫ

- 1. Blazevic A., Bohlen H.G., von Oertzen W. // Phys. Rev. A. 2000. V. 61. P. 032901.
- 2. Woods C.J., Sofield C.J., Cowern N.E.B. et al. // J. Phys. B. 1984. V. 17. P. 867.
- 3. Теплова Я.А., Дмитриев И.С. // Изв. РАН. Сер. физ. 1998. T. 62. № 4. C. 786.
- 4. Zaikov V.P., Kralkina E.A., Nikolaev V.S. et al. // Nucl. Instrum. Methods Phys. Res. B. 1986. V. 17. P. 97.
- 5. Belkova Yu.A., Novikov N.V., Teplova Ya.A. // Nucl. Instrum. Methods Phys. Res. B. // 2016. V. 373. P. 35.
- 6. Belkova Yu.A., Novikov N.V., Teplova Ya.A. // Modern Phys. Lett. B. 2020. P. 2050150. https://doi.org/10.1142/S021798492050150X
- 7. Белкова Ю.А., Теплова Я.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 4. С. 34. https://doi.org/10.1134/S0207352819040048
- 8. Белкова Ю.А., Теплова Я.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 3. С. 39. https://doi.org/10.31857/S1028096021030043
- 9. Аллисон С., Гарсиа-Муньос М. // Атомные и молекулярные процессы / Ред. Бейтс Д. М.: Мир, 1964. C. 624.
- 10. Белкова Ю.А., Теплова Я.А. // Изв. РАН. Сер. физ. 2012. T. 76. № 6. C. 772.
- 11. Belkova Yu.A., Teplova Ya.A. // Rad. Eff. Defects Solids. 2013. V. 168. № 5. P. 365. https://doi.org/10.1080/10420150.2013.777446
- 12. Белкова Ю.А., Теплова Я.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. № 8. С. 43. https://doi.org/10.1134/S0207352818080073
- 13. Belkova Yu.A., Teplova Ya.A. // Rad. Eff. Defects Solids. 2018. V. 173. № 3-4. P. 175. https://doi.org/10.1080/10420150.2018.1462365
- 14. Ziegler J.F. SRIM: the Stopping and Range of Ions in Matter (www.srim.org).
- 15. Белкова Ю.А., Теплова Я.А. Равновесные и неравновесные зарядовые состояния ионов при прохождении через газовые и твердотельные мишени. Препринт НИИЯФ МГУ № 2011-14/878. М., 2011. 62 c.

70

БЕЛКОВА

Change in Non-Equilibrium and Equilibrium Mean Charge of Ions Depending on the Thickness of the Passed Layer of a Matter

Yu. A. Belkova*

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, 119991 Russia *e-mail: belkova-fiz@mail.ru

The change in the charge fractions $F_i(x)$ and the mean ion charge $\overline{i}(x)$ as the ion energy decreases with increasing thickness of the passed layer of matter x is considered. Using the proposed semi-empirical method, analytical calculations have been carried out for the passage of N ions with initial velocities $V_0 = 4 \times 10^8$ and 4×10^8 cm/s through celluloid. It is shown that in the non-equilibrium region the dependence of charge fractions and mean ion charge on x is determined by the initial velocities and initial charges of the ions i_0 , and after reaching the charge equilibrium, the mean charges of the ions decrease and the value of the neutral fraction F_0 increases with increasing x, regardless of the initial conditions for all considered i_0 and V_0 .

Keywords: ion deceleration, ion energy loss, charge fractions, non-equilibrium and equilibrium ion mean charge.