УДК 537.533.35:53.072

СТАТИСТИЧЕСКАЯ МОДЕЛЬ ДИСКРЕТНЫХ ПРОЦЕССОВ МНОГОКРАТНОГО РАССЕЯНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ В СЛОЕ ВЕЩЕСТВА

© 2022 г. Н. Н. Михеев*

Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва. 119333 Россия

*e-mail: kmikran@spark-mail.ru
 Поступила в редакцию 26.07.2021 г.
 После доработки 29.09.2021 г.
 Принята к публикации 07.10.2021 г.

Представлены результаты использования принципиально нового подхода для описания дискретных процессов многократного рассеяния направленного пучка протонов в слое вещества. В качестве базового параметра используется среднее число взаимодействий, которые частицы испытали в пленке известной толщины. Это позволяет эффективно рассчитывать энергетические и угловые распределения прошедших пленку быстрых частиц в форме, соответствующей экспериментальным спектрам.

Ключевые слова: однократное и многократное рассеяние, решение транспортного уравнения, транспортное сечение, транспортная длина заряженных частиц в веществе, наиболее вероятная потеря энергии, наиболее вероятный угол отклонения частиц.

DOI: 10.31857/S1028096022060127

введение

Для нанотехнологий и большого числа количественных локальных методов исследования. которые используют направленные электронные и ионные пучки, распределения заряженных частиц по энергии и углу являются важнейшими характеристиками. Именно они определяют возможности как проведения контролируемого технологического воздействия на материал, так и эффективность экспериментальной диагностики свойств материала с высоким пространственным разрешением. В рамках традиционно используемой исследователями базовой концепции непрерывного торможения пучка частиц в веществе [1-4] удовлетворительной теории. позволяющей выполнять расчеты таких распределений, соответствующих экспериментально измеряемым спектрам, не создано. Как правило, используется громоздкий массив табулированных данных, основанный на аппроксимации усредненных, так называемых "наиболее достоверных", экспериментальных измерений [5-7].

В [8–10] впервые были сформулированы базовые положения новой статистической модели дискретного процесса многократного неупругого рассеяния направленного пучка электронов в веществе. И в дальнейшем они успешно использовались при проведении расчетов информативных сигналов для рентгеноспектрального микроанализа [11—13] и для количественных методов растровой электронной микроскопии [14—16].

В настоящей работе представлены результаты практического применения этой новой модели дискретных процессов многократного рассеяния для решения задач аналитического описания энергетических и угловых спектральных распределений пучков быстрых протонов и альфа-частиц, прошедших пленочную мишень заданной толщины. В двухпотоковом приближении получена формула для расчета наиболее вероятной энергии пучка частиц после прохождения пленки известной толщины, получены формулы для расчета глубины проникновения частиц в вешество при нормальном падении пучка на образец и для расчета транспортной длины в канале неупругого рассеяния. Проведена их проверка на соответствие имеющимся в научных публикациях экспериментальным данным.

ОСНОВНЫЕ ПОЛОЖЕНИЯ СТАТИСТИЧЕСКОЙ МОДЕЛИ ТРАНСПОРТА БЫСТРЫХ ПРОТОНОВ В КОНДЕНСИРОВАННОМ ВЕЩЕСТВЕ ПРИ МНОГОКРАТНОМ РАССЕЯНИИ

Кратко отметим основные положения модели, чтобы учесть те характерные для положительно

заряженных и более тяжелых протонов и альфачастиц особенности, которые существенно отличают их поведение от электронов при транспорте в пленочной мишени.

Неупругое рассеяние – вероятностный процесс. Для протонов и альфа-частиц с кинетической энергией более 1 кэВ на единицу атомной массы доминирующим каналом потерь энергии является неупругое рассеяние на электронах [5]. В статистике многократного рассеяния из числа всех возможных потерь энергии учитывают лишь однократные вероятностные потери энергии Е;. Они малы, и величина ε_i много меньше первичной энергии пучка E_0 . Для них характерны и наиболее вероятная потеря энергии ε_n , и максимальная однократная потеря ε_{max} . Ее величина заметно отличается от возможной максимальной потери энергии. Например, быстрый электрон может потерять всю кинетическую энергию в результате однократного акта - торможения в поле ядра атома (тормозное излучение), он может потерять значительную часть своей энергии на ионизацию электронов. Но вероятная однократная потеря энергии, как показано в [10], не превышает всего $0.0625E_0$ на всех этапах движения частицы в образце. Для протонов при скорости V₀ величина однократной потери энергии ограничена сверху значением $2m_eV_0^2$, что соответствует лобовому столкновению с электроном. Понятно, что это

столкновению с электроном. Понятно, что это событие возможное, но крайне маловероятное, и поэтому максимальную однократную потерю

энергии протонов полагаем далее равной $m_e V_0^2$.

Всякому многократному рассеянию заряженных частиц в веществе предшествует однократное рассеяние каждой частицы и далее кратное рассеяние. Возможность использования статистической модели для такого рода процессов вытекает из простого соотношения для однократного взаимодействия, которое для быстрого протона принимает следующий вид:

$$\frac{m_e}{M_p} \Big[E_0^2 - E_p^2(1) \Big] = J^2, \tag{1}$$

где M_p и m_e — масса покоя протона и электрона, параметр J — усредненное определенным образом значение потенциальной энергии электронов мишени [10], $E_p = (E_0 - \varepsilon_p(1))$. То есть результат рассеяния — переход от E_0 к E_p — не зависит от энергии частицы. Это и служит основой эффективного применения к множеству вероятных потерь энергии ε_i законов дискретной статистики. При среднем числе *n* взаимодействий частицы в тонкой пленке необходимо лишь учесть статистическую вероятность такого состояния, которая равна логарифму числа перестановок из *n* независимых элементов:

$$\frac{m_e}{M_p} \Big[E_0^2 - E_p^2(n) \Big] = J^2 \ln(n!).$$
(2)

Применив к логарифму формулу Стирлинга

$$\ln\left(n!\right) \approx \left(n + \frac{1}{2}\right) \ln n - n + \ln \sqrt{2\pi},\tag{3}$$

получаем интегральную форму аналитического выражения для наиболее вероятной энергии пучка быстрых протонов, прошедших тонкую пленочную мишень и испытавших в ней *n* неупругих взаимодействий:

$$\frac{m_e}{M_p} \left[E_0^2 - E_p^2 \right] = n J^2 \ln\left(\frac{n}{e}\right),\tag{4}$$

где *е* – основание натурального логарифма.

Такой подход впервые позволяет однозначно и точно определить среднее число *n* неупругих взаимодействий, после которых процесс кратного рассеяния для потока заряженных частиц заканчивается. Процесс неупругого рассеяния становится процессом многократного рассеяния, когда составляющая статистической вероятности в виде логарифмического члена формулы (4) становится больше единицы, и это отражает тот факт, что данное состояние (суммарная, наиболее вероятная потеря энергии ΔE_p) может быть реализовано несколькими путями, и поэтому его вероятность ненамного, но возросла. По формуле Стирлинга в (4) это число легко определяется, и оно равно шести.

С увеличением толщины пленки и ростом числа $n = \varepsilon_{\max}/\varepsilon_p$ наступает момент, когда составляющая статистической вероятности, которая отражена логарифмическим членом в (4), достигает своего максимума при $\varepsilon_{\max} = m_e V_0^2$. Дальнейший рост толщины пленки, числа взаимодействий и суммарных потерь энергии протонами будет связан только с возрастанием члена nJ^2 в (4). Поэтому эту формулу можно записать в виде:

$$\frac{m_e}{M_p} \left[E_0^2 - E_p^2 \right] = n J^2 \ln\left(\frac{k}{e^{k/n}}\right), \tag{5}$$

где k = n при $n\varepsilon_p(1) < m_e V_0^2$ и $k = m_e V_0^2 / \varepsilon_p(1)$ при $n\varepsilon_p(1) \ge m_e V_0^2$.

Формулы (1)–(5) получены в предположении, что в неупругом рассеянии равновероятно принимают участие все Z электронов вещества мишени. В действительности же необходимо учитывать реальность пространственного распределения электронов внутри атома. Известно, что большая часть электронов атома с номером Z находится на расстояниях от ядра порядка $a_{\rm B}Z^{-1/3}$ ($a_{\rm E} = 0.529$ Å – боровский радиус). Численный расчет показывает, что половина полного электрического заряда атома находится внутри сферы

радиуса $r_{0.5} = 1.33 a_{\rm B} Z^{-1/3}$ [17]. Поэтому в тонких слоях, толщина х которых много меньше транспортного пробега L_{tr}, неупругое взаимодействие быстрой заряженной частицы с большей вероятностью будет происходить с той половиной полного заряда атома, которая находится вне области радиуса $r_{0.5}$. Это приводит к формированию двух групп первичных частиц: испытавших неупругое рассеяние только на Z/2 внешних электронах (первая группа), и потока частиц, теряющих энергию с участием всех Z электронов (вторая группа). Возможности такого подхода для описания энергетических спектров пучка быстрых электронов при их транспорте в веществе были показаны в [18]. Но в отличие от электронов, когда обе группы сразу регистрируются в энергетических спектрах самых тонких слоев вещества, для положительно заряженных протонов и альфа-частиц вклад второй группы становится заметным лишь в энергетических спектрах слоев, толщина которых превышает 60% максимального пробега частиц в веществе. В свете сказанного для протонов и альфа-частиц первой группы формулы (1), (2) и (4), (5) примут вид:

$$\frac{m_e}{M_p} \Big[E_0^2 - E_p^2(1) \Big] = \frac{1}{4} J^2, \tag{6}$$

$$\frac{m_e}{M_p} \Big[E_0^2 - E_p^2(n) \Big] = \frac{1}{4} J^2 \ln(n!), \tag{7}$$

$$\frac{m_e}{M_p} \Big[E_0^2 - E_p^2 \Big] = \frac{1}{4} n J^2 \ln \left(\frac{k}{e^{k/n}}\right).$$
(8)

Величина *n* в двухпотоковом приближении определена для частиц первой группы в [10] как

$$n_{\rm l} = \frac{8\pi q^4 N_0 Z z^2 x}{J^2 \sqrt{1 - \beta^2}},\tag{9}$$

а для частиц второй группы как

$$n_2 = \frac{4\pi q^4 N_0 Z z^2 x}{J^2 \sqrt{1 - \beta^2}}.$$
 (10)

Здесь q — заряд электрона, N_0 — плотность атомов мишени, Z — атомный номер, J — усредненное определенным образом значение потенциальной энергии электронов мишени, z — заряд частицы потока, x — толщина мишени.

Приведенные выше формулы позволяют надежно проводить расчеты необходимых параметров для энергетического спектра быстрых протонов, которые прошли тонкую пленку вещества. Функция распределения по энергии $F(E_0, E_p)$ пучка заряженных частиц, прошедших тонкую пленочную мишень, была получена в [9] как решение одномерного транспортного уравнения. Впервые была учтена зависимость дифференциального сечения многократного неупругого рассеяния от числа испытанных частицей взаимодействий путем простого добавления в классическую формулу кратного рассеяния [17] множителя, равного $[\ln(\Delta E/\Delta E_p) + 2]$. В результате удалось, во-первых, устранить извечный расчетный дефицит потерь энергии в толстых пленках [19, 20], и, во-вторых, установить истинную причину неустранимой асимметрии экспериментальных спектров, даже когда среднее число взаимодействий *n* достигает $\approx 10^6$. В общем виде функция распределения $F(E_0, E_p)$ в статистике многократного рассеяния представима как:

$$F\left(\Delta E_{p},u\right) = \\ = \exp\left[-\frac{\Delta E_{p}}{2\Delta E_{\min}}\exp\left(-\int_{u_{\min}}^{u}\frac{ds}{\frac{1}{2}\ln s + 1 - s}\right)\right].$$
(11)

В отличие от функции распределения Ландау [21] для потерь энергии функция (8) имеет два первых приближенных решения, которые представимы через элементарные функции. Действительно, после разложения lns в ряд Грегори и последующего учета вклада только первого члена разложения получаем функцию $F(\Delta E_p, \Delta E)$ первого приближения общего решения (8) в достаточно простом аналитическом виде:

$$F\left(\Delta E_{p},u\right) = \exp\left[-\frac{\left(\Delta E - \Delta E_{p}\right)^{2}}{2\Delta E_{\min}\Delta E}\right].$$
 (12)

Здесь ΔE_p – наиболее вероятная суммарная потеря энергии ($E_0 - E_p$), $u = \Delta E / \Delta E_p$, $\Delta E_{\min} = \varepsilon_{\max}$.

Из-за наличия в знаменателе показателя экспоненты переменной ΔE асимметрия распределения является ее характерной особенностью при любом среднем числе *n* взаимодействий частиц в образце. В случае быстрых протонов и альфа-частиц эта асимметрия менее выражена, чем в случае электронов, из-за относительной малости величины ε_{max} (в сравнении с величиной *E*). Важнейший параметр такого распределения – полная ширина Г на половине высоты:

$$\Gamma = 2.35482 \left(\varepsilon_{\max} \Delta E_p\right)^{1/2}.$$

При известном значении Γ_{exp} экспериментального энергетического спектра и Γ_0 пика нулевых потерь первичного пучка частиц естественная величина Γ определяется соотношением: $\Gamma = = \left(\Gamma_{exp}^2 - \Gamma_0^2\right)^{1/2}$.

ТРАНСПОРТНАЯ ДЛИНА И ГЛУБИНА ПРОНИКНОВЕНИЯ ПУЧКА БЫСТРЫХ ПРОТОНОВ И АЛЬФА-ЧАСТИЦ В МИШЕНЬ ПРИ НОРМАЛЬНОМ ПАДЕНИИ ЧАСТИЦ НА ПОВЕРХНОСТЬ ОБРАЗЦА

Во многих практических приложениях теории рассеяния заряженных частиц в веществе исключительное значение имеет интеграл:

$$\sigma_{\rm tr} = \int (1 - \cos \theta) \, d\theta, \tag{13}$$

который называется транспортным сечением и который представляет собой усредненное по всем возможным угловым отклонениям сечение взаимодействия первичных частиц с веществом. Он определяет величину транспортного пробега $L_{\rm tr}$ направленного потока частиц в веществе, по достижении которого все направления их движения в мишени становятся равновероятными:

$$L_{\rm tr} = 1/(\sigma_{\rm tr} N_0).$$

Практическая значимость транспортного пробега $L_{\rm tr}$ для исследователей связана прежде всего с тем, что глубина проникновения пучка частиц в мишень, на которой наблюдается максимум распределения энергетических потерь частицами, практически равна величине $L_{\rm tr}$ [14]. И дополнительно, как показано в [22], при известном значении $L_{\rm tr}$ можно легко рассчитать угол наиболее вероятного рассеяния θ_p частиц, прошедших слой вещества толщиной x, по следующей формуле:

$$\theta_p = \frac{\pi}{4L_{\rm tr}^{\rm inel}} x.$$

Использование при операции усреднения в интеграле (8) наиболее вероятного сечения многократного неупругого рассеяния [9] позволяет определить величину транспортного сечения для

протонов в канале неупругого рассеяния σ_{tr}^{inel} в виде:

$$\sigma_{\rm tr}^{\rm inel} = \frac{4\pi q^4 Z z^2}{\frac{m_e}{M_n} E_0^2} \frac{1}{\sqrt{1-\beta^2}} \ln\left(\frac{2m_e V_0^2}{J\sqrt[4]{1-\beta^2}}\right)$$

и, соответственно, транспортную длину в канале неупругого рассеяния для пучка протонов как:

$$L_{\rm tr}^{\rm inel} = \frac{\frac{m_e}{M_p} E_0^2}{4\pi q^4 N_0 Z z^2 \frac{1}{\sqrt{1-\beta^2}} \ln\left(\frac{2m_e V_0^2}{J\sqrt[4]{1-\beta^2}}\right)}.$$
 (14)

Это соотношение, обозначенное в [22] как R_p , было успешно использовано при расчете наиболее вероятного угла рассеяния протонов, прошедших тонкую монокристаллическую пленку кремния в режиме "random". Более детальная апробация этой формулы будет проведена ниже в разделе, посвященном описанию углового распределения пучка частиц после прохождения ими монокристаллического слоя вещества в режиме каналирования.

Другим параметром, имеющим также большое значение в практических приложениях, является глубина R_r максимального проникновения частиц в бомбардируемый образец. Она определяется толщиной слоя вещества, после прохождения которого средняя кинетическая энергия частиц Е_т становится равной их тепловой энергии, т.е. практически $E_m \to 0$. Для пучка быстрых протонов, прошедших слой вещества, наиболее вероятная энергия Е_p из-за малой асимметрии распределений практически равна E_m. Как пример, для протонов с начальной энергией 19.68 МэВ, прошедших слой алюминия толщиной 0.0987 см, измеренная величина $E_p = 13.60$ МэВ [23]. Усреднение по всему энергетическому спектру дает величину $E_m = 13.5925$ МэВ. Поэтому в выражении (4) с полным правом можно заменить E_p на E_m . Тогда для протонов второй группы (двухпотокового приближения) в очень тонком слое у поверхности средняя энергия определяется из выражения:

$$\frac{m_e}{M_p} \left[E_0^2 - E_m^2(n_2) \right] = n_2 J^2 \ln\left(\frac{n_2}{e}\right).$$

Логарифмический член представляет собой статистическую вероятность процесса рассеяния. Она зависит от текущей скорости протонов, и при $x \to R_x$, когда многократное рассеяние переходит в кратное, логарифм становится равным единице. Поэтому для E_m в этом случае можно записать:

$$\frac{m_e}{M_p} \Big(E_0^2 - E_m^2 \Big) = n_2 J^2.$$

Если провести возможное усреднение этой вероятности как $1/2\{\ln(n_2/e) + 1\} = 1/2\ln(n_2) =$ $= 1/2\ln(\varepsilon_{\max}/\varepsilon_{\min}) = \ln\{((m_eV_0^2)/J)\}$ и для средней энергии протонов второй группы записать соотношение

$$\frac{m_e}{M_p} \left(E_0^2 - E_m^2 \right) = n_2 J^2 \ln \left(\frac{m_e V_0^2}{J \sqrt[4]{1 - \beta^2}} \right), \tag{15}$$

то из него легко определить толщину R_x мишени, при которой средняя энергия E_m обращается в ноль:

$$R_{x} = \frac{\frac{m_{e}}{M_{p}}E_{0}^{2}}{4\pi q^{4}N_{0}Zz^{2}\frac{1}{\sqrt{1-\beta^{2}}}\ln\left(\frac{m_{e}V_{0}^{2}}{J\sqrt[4]{1-\beta^{2}}}\right)}.$$
 (16)

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 8 2022

Использование этой формулы для пучка протонов с энергией 19.68 МэВ и пучка альфа-частиц с энергией 79.8 МэВ в алюминии дает $R_x = 0.2076$ см для протонов и $R_x = 0.2099$ см для ионов гелия. Экспериментально измеренные R_x в [23] равны: 0.2066 ± 0.0035 и 0.2103 ± 0.0035 см соответственно. Для пучка протонов с энергией 49.1 МэВ в золоте расчет по формуле (13) дает $R_x = 0.2466$ см. Экспериментальное значение R_x из той же работы равно 0.2461 ± 0.0025 см. Видно, что, несмотря на некоторую эвристичность подхода при выводе формулы (13), она дает не оценочные, а достаточно точные результаты.

ФОРМУЛА ДЛЯ РАСЧЕТА НАИБОЛЕЕ ВЕРОЯТНОЙ ЭНЕРГИИ ПУЧКА БЫСТРЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ, ПРОШЕДШИХ СЛОЙ ВЕЩЕСТВА ЗАДАННОЙ ТОЛЩИНЫ

Из-за отмеченной выше близости средней энергии E_m наиболее вероятной E_p можно, подставив в формулу (12) выражение для n_2 формулы (7), получить формулу, которая описывает зависимость E_{p2} протонов второй группы от толщины пленки x, когда $x \to R_x$, как

$$\frac{m_e}{M_p} \left(E_0^2 - E_{p2}^2 \right) = \frac{4\pi q^4 N_0 Z z^2 x}{\sqrt{1 - \beta^2}} \ln \left(\frac{m_e V_0^2}{J \sqrt[4]{1 - \beta^2}} \right).$$

Однако формула (8) для протонов первой группы (двухпотокового приближения), описывающая зависимость E_{p1} протонов от толщины мишени, в тонких пленках принимает следующий вид:

$$\frac{m_e}{M_p} \left(E_0^2 - E_{p1}^2 \right) = \frac{4\pi q^4 N_0 Z z^2 x}{\sqrt{1 - \beta^2}} \ln \left(\frac{2m_e V_0^2}{J \sqrt[4]{1 - \beta^2}} \right)$$

Разница между этими двумя выражениями состоит лишь в множителе, равном примерно двум, в логарифмическом члене. Очевидно, что они могут быть объединены в одну формулу, описывающую зависимость E_p всего пучка протонов от толщины пленки во всем диапазоне толщин, если ввести в логарифмический член множитель $2 - x/R_x$, величина которого линейно меняется с толщиной мишени. При этом в логарифмическом члене сохраняется начальная скорость V_0 частиц, а не текущая средняя V. Получаем:

$$\frac{m_e}{M_p} \left(E_0^2 - E_p^2 \right) = \frac{4\pi q^4 N_0 Z z^2 x}{\sqrt{1 - \beta^2}} \ln \left[\frac{\left(2 - \frac{x}{R_x} \right) m_e V_0^2}{J \sqrt[4]{1 - \beta^2}} \right].$$
(17)

Результаты проверки соответствия расчетов E_p по полученной формуле (17), экспериментальным данным измерений E_p для пучка протонов (E_0 =

Рис. 1. Зависимость наиболее вероятной энергии E_p пучка протонов с $E_0 = 19.68$ МэВ (кружки) и ионов гелия с $E_0 = 79.8$ МэВ (треугольники) от толщины алюминиевой мишени: сплошные кривые — расчет по формуле (14) ($M = M_p$, M_{α} для протонов и ионов гелия); символы — экспериментальные результаты [23].

= 19.68 МэВ) и для пучка альфа-частиц (E_0 = 79.8 МэВ), прошедших алюминиевые пленки различной толщины, представлены на рис. 1. Видно, что наблюдается достаточно хорошее соответствие расчетов и экспериментальных результатов во всем диапазоне толщин пленок.

ДВУХПОТОКОВАЯ МОДЕЛЬ ТРАНСПОРТА БЫСТРЫХ ПРОТОНОВ В ВЕЩЕСТВЕ

Для протонов и альфа-частиц совершенно так же, как и для пучка электронов, общий энергетический спектр прошедших пленку частиц представляет собой сумму спектров двух групп частиц:

$$N_{T}(E, E_{p1}, E_{p2}) = A_{1} \exp\left[-\frac{(E_{p1} - E)^{2}}{0.5m_{e}V_{0}^{2}(E_{0} - E)}\right] + A_{2} \exp\left[-\frac{(E_{p2} - E)^{2}}{2m_{e}V_{0}^{2}(E_{0} - E)}\right],$$
(18)

где A_1 , A_2 — коэффициенты, учитывающие вклад каждого из двух потоков частиц в общий спектр.

Но если для отрицательно заряженных электронов после прохождения ими любой тонкой пленки характерно надежно регистрируемое присутствие сразу двух потоков частиц в общем энергетическом спектре [24], то для положительно заряженных протонов вторая группа частиц становится заметной только после прохождения пленок толщиной более $0.5R_x$. Пример исполь-

Рис. 2. Энергетическое распределение пучка протонов с начальной энергией $E_0 = 19.68$ МэВ после прострела алюминиевых пленок различной толщины *х*: I - 0.0367 ($n = 6 \times 10^5$); 2 - 0.0990 ($n = 1.6 \times 10^6$); 3, 4 - 0.1474 см ($n = 2.4 \times 10^6$), n - среднее число неупругих взаимодействий в мишени. Пунктирные линии – рассчитанные по формуле (18) вклады в спектры первой (I-3) и второй (4) групп частиц, сплошная линия 3 – суммарное энергетическое распределение протонов двух групп, символы – экспериментальные спектры [23].

зования этой формулы для модельных расчетов, связанных с описанием экспериментальных спектров пучка протонов с $E_0 = 19.68$ МэВ, прошедших алюминиевые пленки различной толщины [23], представлен на рис. 2, 3. Видно, что полученные в рамках статистики многократного рассеяния заряженных частиц формулы для расчета величин ε_p , *n*, *E*_p и Γ совместно с функцией распределения частиц по энергии $F(\Delta E_p, \Delta E)$ позволяют достаточно детально и аналитически описать энергетические распределения пучка частиц, соответствующие экспериментально регистрируемым спектрам. Также следует обратить внимание на реальное среднее число неупругих взаимодействий, которые частицы испытывают во время своего движения в пленочной мишени. Оно огромно, и имитировать процесс транспорта частиц современными методами математического моделирования вряд ли имеет смысл, располагая возможностью аналитически описать эти процессы проверенными методами дискретной статистики многократного рассеяния.

РАСПРЕДЕЛЕНИЕ ПО УГЛУ НАПРАВЛЕННОГО ПУЧКА ЧАСТИЦ, ПРОШЕДШИХ СЛОЙ ВЕЩЕСТВА, В РЕЖИМАХ "RANDOM" И КАНАЛИРОВАНИЯ

Ранее в [22] функция (9) как решение одномерного транспортного уравнения была успешно использована для описания распределения пучка заряженных частиц по полярному углу θ после их прохождения пленочной мишени известной тол-

Рис. 3. Энергетический спектр пучка протонов с начальной энергией $E_0 = 19.68$ МэВ после прохождения алюминиевой пленки толщиной x = 0.1841 см: пунктирные линии – рассчитанные вклады в спектр первой (*1*) и второй (*2*) групп протонов; сплошная линия 3 - их суммарное энергетическое распределение; символы – экспериментальный спектр [23].

щины *х* при нормальном падении пучка на поверхность образца:

$$F(\theta, \theta_p) = \frac{dN}{d\Omega} = \frac{dN}{2\pi\theta d\theta} =$$

= $A \exp\left[-\frac{\theta^2}{0.75\theta_p (\theta + \theta_p)}\right].$ (19)

Здесь θ_p — угол наиболее вероятного отклонения заряженных частиц при малоугловом рассеянии и в то же время максимальный угол однократного отклонения в процессе многократного рассеяния. Этот параметр связан с транспортной длиной частиц и толщиной мишени следующим соотношением:

$$\theta_p = \frac{\pi}{4L_{\rm tr}^{\rm inel}} x.$$

Результат использования такого подхода при описании спектра угловых отклонений для пучка протонов, прошедших монокристаллическую пленку кремния в режиме "random", представлен на рис. 4 (кривая 1). В рамках разработанной статистики многократного неупругого рассеяния частиц имеется возможность использовать функцию (16) для аналитического описания спектров угловых отклонений пучка протонов и после их каналирования в монокристаллической мишени. Достаточно установить связь транспортной длины L_{tr} в условиях каналирования с величиной критического угла каналирования θ_c [25, 26]. А она легко прослеживается в выражении (11) для $L_{\rm tr}$, поскольку значение логарифма как значение статистической вероятности определяется отно-

Рис. 4. Спектры угловых отклонений (символы) направленного пучка протонов с начальной энергией $E_0 = 10.3$ МэВ, прошедших тонкую монокристаллическую пленку кремния толщиной x = 0.91 мкм [27] в режимах: "random" (1); аксиального каналирования вдоль оси (111) (2); плоскостного каналирования на {100} (3); сплошные кривые – соответствующие этим режимам модельные расчеты.

шением максимальной однократной потери энергии частиц к наиболее вероятной, т.е. $k = \epsilon_{\max}/\epsilon_p$. В условиях каналирования $\epsilon_{\max} = E_0 \theta_c^2$, а $\epsilon_p = E_0 \theta_{\min}^2$. Поэтому (11) можно записать как:

$$L_{\rm tr}^{\rm inel} = \frac{\frac{M_e}{M_p} E_0^2}{2\pi q^4 N_0 Z z^2 \frac{1}{\sqrt{1-\beta^2}} \ln\left(\frac{\theta_c^2}{\theta_{\min}^2 \sqrt{1-\beta^2}}\right)}.$$
 (20)

Точность проводимых по формуле (20) расчетов $L_{\rm tr}$ определяется точностью расчета угла $\theta_{\rm c}$. Проведенные по формулам [25, 26] расчеты критических углов $\theta_{\rm c}$ для аксиального (111) и плоскостного (110) каналирования протонов с энергией $E_0 = 10.3$ МэВ в кремнии дают значения $\theta_{\rm c}$ 1.78 × $\times 10^{-3}$ и 0.805 × 10^{-3} рад соответственно. Тогда транспортная длина в кремнии при аксиальном каналировании составляет 1701.7 мкм, а при плоскостном каналировании 2599.1 мкм. Результаты сравнения рассчитанных распределений с экспериментальными спектрами [27] представлены на рис. 4 (кривые 2, 3). Видно, что наблюдает-

ся хорошее соответствие расчетов и экспериментальных спектров угловых отклонений.

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований решена задача аналитического описания энергетических и угловых спектральных распределений пучков быстрых протонов и альфа-частиц, прошедших пленочную мишень заданной толщины. В двухпотоковом приближении получена формула для расчета значений наиболее вероятной энергии пучка частиц после прохождения пленки известной толщины, получены формулы для расчета глубины проникновения частиц в вещество при нормальном падении пучка на образец и транспортной длины в канале неупругого рассеяния. Проведена их проверка на соответствие имеющимся в научных публикациях экспериментальным данным.

БЛАГОДАРНОСТИ

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- 1. Bethe H.A. // Ann. Phys. (Leipzig) 1930. B. 5. S. 325.
- 2. Bloch F. // Z. Phys. 1933. B. 81. S. 363.
- 3. Moliere G. // Z. Naturf. 1947. B. 2a. S. 133.
- 4. Штернхеймер Р. Принципы и методы регистрации элементарных частиц / Ред. Арцимович Л.А. М.: Изд-во иностр. лит-ры, 1963. 344 с.
- ICRU Report 49. Stopping Powers and Ranges for Protons and Alpha Particles. International Commission on Radiation Units and Measurements. 1993.
- 6. Andersen H.H., Ziegler J.F. Hydrogen Stopping Powers and Ranges in All Elements. N.Y.: Pergamon Press, 1977.
- 7. ICRU Report 37. Stopping Powers for Electrons and Positrons. International Commission on Radiation Units and Measurements. 1984.
- 8. *Михеев Н.Н.* // Изв. РАН. Сер. физ. 2000. Т. 64. № 11. С. 2137.
- 9. *Михеев Н.Н., Степович М.А., Юдина С.Н. //* Поверхность. Рентген., синхротр. и нейтрон. исслед. 2009. № 3. С. 53.
- 10. *Михеев Н.Н.* // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2010. № 4. С. 25.
- 11. *Михеев Н.Н., Степович М.А., Широкова Е.В.* // Изв. РАН. Сер. физ. 2010. Т. 74. № 7. С. 1049.
- 12. *Михеев Н.Н., Степович М.А., Широкова Е.В. //* Изв. РАН. Сер. физ. 2012. Т. 76. № 9. С. 1112.
- Михеев Н.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2014. № 9. С. 66. https://doi.org./10.7868/S0207352814090133
- 14. *Михеев Н.Н., Колесник А.С. //* Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 12. С. 88. https://doi.org/10.7868/S0207352817120083

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ

- Михеев Н.Н., Никифорова Н.А., Степович М.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 1. С. 98. https://doi.org/10.1134/S0207352810010141
- 16. *Михеев Н.Н.* // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 12. С. 70. https://doi.org./10.31857/S1028096020120120201
- 17. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М.: Физматгиз, 1963. 704 с.
- 18. *Mikheev N.N., Stepovich M.A.* // Mater. Sci. Eng. B. 1995. V. 32. № 1–2. P. 11.
- 19. Williams E.J. // Proc. Roy. Soc. 1929. V. 125. S. 420.
- 20. Brown D.B., Wittry D.D., Kyzer D.F. // J. Appl. Phys. 1969. V. 40. № 4. P. 1627.

- 21. *Ландау Л.Д.* // Собрание трудов. М.: Наука, 1969. Т. 1. С. 482.
- Михеев Н.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 3. С. 77. https://doi.org./10.31857/S1028096020030127
- 23. Tschalär C., Maccabee H.D. // Phys. Rev. B. 1970. 1. P. 2863.
- 24. *Михеев Н.Н.* // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 8. С. 56. https://doi.org/10.1134/S0207352819080109
- 25. Линдхард Й. // УФН. 1969. Т. 99. Вып. 2. С. 249.
- 26. Оцуки Ё.-Х. Взаимодействие заряженных частиц с твердыми телами. М.: Мир, 1985. 280 с.
- 27. Ведьманов Г.Д., Лазарев Ю.Г., Николайчук Л.И., Радченко В.И., Хижняк Н.А. // Изв. РАН. Сер. физ. 1995. Т. 59. № 10. С. 141.

Nº 8

2022

Statistical Model of Discrete Multiple Scattering of Charged Particles in a Layer of Substance

N. N. Mikheev*

Shubnikov Institute of Crystallography FSRC "Crystallography and Photonics" RAS, Moscow, 119333 Russia *e-mail: kmikran@spark-mail.ru

The results of using a fundamentally new approach to describe discrete processes of multiple scattering of a directed proton beam in a layer of matter are presented. The basic parameter is the average number of interactions experienced by the particles in a film of known thickness. This makes it possible to efficiently calculate the energy and angular distributions of fast particles passing through the film, corresponding to the experimental spectra.

Keywords: single and multiple scattering, solution of the transport equation, transport cross section, transport length of charged particles in matter, most probable energy loss, most probable angle of deflection of particles.