УДК 548.4

ФОРМИРОВАНИЕ Zn-СОДЕРЖАЩИХ КЛАСТЕРОВ В ИМПЛАНТИРОВАННОЙ ПЛЕНКЕ Si₃N₄/Si

© 2023 г. А. Н. Терещенко^{*a*,} *, В. В. Привезенцев^{*b*}, А. А. Фирсов^{*b*}, В. С. Куликаускас^{*c*}, В. В. Затекин^{*c*}, М. И. Воронова^{*d*}

^аИнститут физики твердого тела им. Ю.А. Осипьяна РАН, Черноголовка, Московская область, 142432 Россия ^bФедеральный научный центр Научно-исследовательский институт системных исследований РАН,

Москва, 117218 Россия

^с Московский государственный университет им. М.В. Ломоносова, НИИЯФ им. Д.В. Скобельцына, Москва, 119991 Россия

^dУниверситет науки и технологий "МИСиС", Москва, 119049 Россия *e-mail: tan@issp.ac.ru Поступила в редакцию 21.01.2023 г. После доработки 28.03.2023 г. Принята к публикации 28.03.2023 г.

Приводятся результаты синтеза и исследования Zn-содержащих кластеров на границе раздела пленки Si₃N₄/Si, имплантированной ионами ⁶⁴Zn⁺ с дозой 5 × 10¹⁶ см⁻² и энергией 40 кэВ. Пленку Si₃N₄ предварительно наносили на кремниевую подложку газофазным методом. Затем имплантированные образцы размером 10 × 10 мм отжигали в окислительной атмосфере (на воздухе) с шагом 100°C в течение 1 ч на каждом шаге в диапазоне температур 400–800°C. Для исследования профилей цинка при отжигах использовали метод резерфордовского обратного рассеяния. Структуру и состав пленки изучали с помощью растровой электронной микроскопии в сочетании с энергодисперсионной спектроскопией, а также фотолюминесценцией. После имплантации вблизи поверхности пленки Si₃N₄ зафиксированы отдельные кластеры металлического цинка размером порядка 100 нм и менее. Установлено, что в процессе отжигов в образце происходит рост кластеров Zn и постепенное превращение фазы металлического Zn в фазы его оксида ZnO и далее, предположительно, силицида Zn₂SiO₄. После отжига при температуре 700°C, наиболее оптимальной для получения фазы ZnO, в пленке Si₃N₄ образуются кластеры оксида цинка размером около 100 нм. В спектре фотолюминесценцией в оксида цинка. После отжига при 800°C происходит деградация фазы ZnO и, предположительно, образование фазы силицида Zn₂SiO₄.

Ключевые слова: кремниевая подложка, поверхности, пленка Si₃N₄, имплантация цинка, кластеры, отжиг в окислительной среде, оксид цинка. **DOI:** 10.31857/S1028096023110195, **EDN:** MXTPJD

ВВЕДЕНИЕ

Свойства нанокластеров металлов и их оксидов могут значительно отличаться от свойств этих же материалов в макроскопической форме. В нанометровом диапазоне эти нанокластеры обладают уникальными свойствами, и поэтому их использование в различных матрицах может быть весьма перспективным в устройствах микро-, нано- и оптоэлектроники.

В частности, в последние годы в микроэлектронике возникла потребность в источниках света в ультрафиолетовой (УФ) области. Это стимулировало интенсивный поиск материалов с подходящей шириной запрещенной зоны. Основные усилия были сконцентрированы вокруг GaN $(E_g = 3.5 \text{ >B})$ и его твердого раствора с In. Однако энергия связи в экситоне у этого материала составляет 24.8 мэВ, поэтому рабочий температурный диапазон использования такого материала ограничен [1]. Для источников УФ-излучения наиболее подходящим материалом является оксид цинка ZnO. Интерес к этому материалу вызван не только его широкой запрещенной зоной 3.4 эВ, но и большой энергией связи между электроном и дыркой в экситоне 60 мэВ [2], которая гораздо больше, чем у GaN, что позволяет реализовать генерацию излучения в ZnO на основе экситонной рекомбинации при температурах выше комнатной.

Вообще говоря, оксид цинка исследуют достаточно давно [3] и широко применяют в микро-

электронике, в частности, для создания прозрачных контактов к различным оптическим элементам [4]. Кроме того, поскольку ZnO является пьезоэлектриком, он широко применяется при создании линий задержки поверхностных акустических волн и других акустоэлектронных устройств [5]. Благодаря сорбционному эффекту оксид цинка нашел применение в газовых сенсорах и аналогичных химических сенсорах для биологии и медицины [6-8]. Известно его применение в солнечных элементах нового поколения (ячейках Гретцеля) [9]. В последнее время в оксиде цинка в форме наночастиц был обнаружен ферромагнетизм при комнатной температуре [10], что перспективно для создания на его основе приборов для спинтроники. Наночастицы ZnO, помещенные в различные матрицы, например, Si, кварц, пленки SiO₂ и Si₃N₄ на Si подложке, сапфире смогут найти применение в различных микроэлектронных устройствах. Ранее нанокластеры Zn и ZnO были созданы в кварце, пленке SiO₂, кремнии и сапфире, имплантированном Zn с последующим отжигом, как термическим в окислительной среде, так и фотонным в вакууме при дополнительной имплантации подложки кислородом [11–17]. Метод имплантации был выбран потому, что он является одним из наиболее чистых и гибких технологических способов и позволяет получать концентрации Zn, которые гораздо выше его предельной равновесной растворимости в различных подложках. Это способствует выпадению цинка в преципитаты после имплантации.

Целью настоящей работы было исследование процессов формирования кластеров ZnO в пленке Si₃N₄ на Si подложке после имплантации цинком и термических отжигов в окислительной среде.

ОБРАЗЦЫ И МЕТОДИКИ ЭКСПЕРИМЕНТА

На стандартные пластины кремния *n*-типа диаметром 76 мм и толщиной 380 мкм, выращенные методом Чохральского с ориентацией (111), методом высокотемпературного химического осаждения (CVD – chemical vapor deposition), осуществляемого в потоке аргона, были нанесены пленки Si₃N₄ толщиной 150 нм. Пленка нитрида кремния была выбрана потому, что Si₃N₄ наряду с оксидом кремния SiO₂ является основным диэлектриком в современной микроэлектронике. Нитрид кремния используют как маску при диффузии различных примесей в кремниевую подложку и при окислении кремния. В отличие от оксида кремния нитрид кремния имеет высокую концентрацию электронных ловушек и широко используется в качестве среды хранения связанного заряда в

ловушках, поэтому Si_3N_4 является перспективным материалом для создания активного слоя при изготовлении резистивных мемристоров (устройств ReRAM) [18].

В эксперименте пленка нитрида кремния была использована в качестве промежуточного слоя на кремнии для создания кластеров ZnO в этой области. Выращенная на кремнии пленка Si₃N₄ была имплантирована ионами ⁶⁴Zn⁺ с дозой 5 × 10¹⁶ см⁻² и энергией 40 кэВ. При имплантации ионный ток не превышал 0.35 мкA/см², так что температура пластины была не выше 40°C. Далее пластины резали на образцы размером 10 × 10 мм и отжигали в течение 1 ч на воздухе при температурах от 400 до 800°C с шагом 100°C.

Для изучения изменения профилей имплантированного Zn при отжигах использовали резерфордовское обратное рассеяния (РОР) ионов ⁴Не⁺ с энергией 700 кэВ на ускорителе Ван-де-Граафа. Энергетическое разрешение системы детектор-усилитель составляло 20 кэВ, угол рассеяния 160°. Поверхность пленки Si₃N₄ была исследована с помощью растрового электронного микроскопа (РЭМ) СОХЕМ⁺ с использованием детектора вторичных электронов в сочетании с энергодисперсионной спектроскопией (ЭДС), включая отображение ЭДС-карт отдельных элементов и их суперпозицию. Для исследования изменения фазы цинка в процессе отжига использовали метод фотолюминесценции: спектры измеряли при температуре 6 К в диапазоне длин волн 330-620 нм. Фотолюминесценцию возбуждали He-Cd лазером с длиной волны 325 нм и мощностью накачки 0.5 Вт/см².

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ *РОР-исследования*

На рис. 1 представлены экспериментальные POP-спектры пленки Si_3N_4 на кремниевой подложке после имплантации и отжигов с вышеуказанными параметрами, а также расчетный спектр (кривая 4), выполненный с использованием программы SRIM [19]. На этом рисунке хорошо видны не только зона Zn (каналы 380–460), но и "ступенька", соответствующая кремниевой подложке (канал 240), и область, отвечающая содержанию азота в пленке нитрида кремния (каналы 120–185), и, наконец, небольшой пик (около канала 212), соответствующий содержанию кислорода на поверхности пленки нитрида кремния.

На рис. 2 представлены экспериментальные POP-спектры зоны Zn. Анализ кривых на этом рисунке показывает, что профиль Zn после имплантации действительно симметричный и имеет

Рис. 1. РОР-спектры пленки Si_3N_4 на кремниевой подложке: *1* – после имплантации цинка; *2*, *3* – после отжига при 600 и 800°С; *4* – расчет.

Рис. 3. Обзорное РЭМ-изображение поверхности образца после имплантации Zn, полученное в режиме детектирования вторичных электронов.

нормальную форму. Как известно, подвижность Zn довольно слабо зависит от температуры в диаnазоне 400–600°С и начинает сильно изменяться при 700°С и выше, когда Zn становится очень подвижен ввиду того, что он обладает смешанным механизмом диффузии, например, вакансионномежузельным в кремнии. В нитриде кремния цинк ведет себя при высоких температурах подобно другим быстро диффундирующим примесям типа благородных (Au) или переходных металлов (Ti, Ni) [20]. При отжигах профили имплантированного цинка начинают смещаться вначале при низких температурах (400–600°С) немного вглубь пленки Si₃N₄, а затем при более высоких температурах (700°С и выше) – к поверх-

Рис. 2. Экспериментальные POP-спектры в зоне Zn после имплантации (1) и отжигов при 600 (2) и 800°С (3).

Рис. 4. Энергодисперсионный спектр пленки нитрида кремния после имплантации по кадру на рис. 3.

ности, которая является для них неограниченным стоком. Максимум имплантированного цинка становится меньше и уширяется, поэтому теперь его профиль уже не симметричный.

РЭМ-исследования

На рис. 3 представлено РЭМ-изображение, полученное в режиме детектирования вторичных электронов (топологический контраст). На этом рисунке в подповерхностном слое пленки нитрида кремния наблюдаются отдельные яркие частицы (бугорки) размером 1 мкм и менее, до 100 нм. На рис. 4 представлен энергодисперсионный

Элемент	Тип линии	Концентрация, ат. %
Si	К-серия	49.95
Ν	К-серия	43.65
Zn	<i>L</i> -серия	5.40
Всего		100.00

Таблица 1. Содержание элементов в пленке Si_3N_4 после имплантации

спектр этого же образца после имплантации, снятый по кадру на рис. 3.

В табл. 1 приведено содержание этих элементов по тому же по кадру. Из рис. 4 и таблицы следует, что подповерхностный слой пленки Si₃N₄ после

имплантации содержит имплантированный Zn в количестве 5.4 ат. %. Численные значения матричных элементов пленки нитрида кремния приведены в табл. 1. Содержание остальных элементов находится в пределах погрешности метода.

На рис. 5 представлены различные РЭМ-изображения поверхности образца и соответствующие ЭДС-карты после отжига при 700°С. Из этих рисунков становится ясно, что наблюдаемые наночастицы состоят из оксида цинка, поскольку на картах кремния (рис. 5в) и азота (рис. 5г) присутствуют темные пятна, доказывающие отсутствие этих элементов на РЭМ-изображении (рис. 5а). Как на карте цинка (рис. 5д), так и на карте кислорода (рис. 5е) этим темным пятнам соответствуют светлые пятна, что подтверждает присутствие и цинка, и кислорода. Светлое марево на рис. 56 со-

Рис. 5. РЭМ-изображение (а) пленки нитрида кремния, полученное в режиме детектирования вторичных электронов, и соответствующие ЭДС-карты поверхности после отжига при 700°С: 6 – многослойная для C, O, N, Zn и Si; в – для Si $K_{\alpha 1}$; г – для N $K_{\alpha 1}$; д – для Zn $L_{\alpha 1.2}$; е –для O $K_{\alpha 1}$.

Si

Рис. 6. Энергодисперсионный спектр пленки нитрида кремния после отжига при 700°С по кадру на рис. 5.

0.5

Zn

1.0

Е, кэВ

1.5

2.0

ответствует тонкой пленке углеводородов на поверхности нитрида кремния. Из всего изложенного становится ясно, что яркие частицы (бугорки) на поверхности образца после отжига при 700°С (рис. 5а) представляют собой оксид цинка ZnO.

На рис. 6 представлен энергодисперсионный спектр образца после отжига при 700°С. В табл. 2 приведены концентрации элементов в слое Si_3N_4 после отжига при 700°С. Содержание остальных элементов находится в пределах погрешности метода. Из анализа табл. 2 следует, что в отожженном образце появилось значительное количество кислорода (8.15 ат. %) за счет диффузии молекул кислорода из окружающей атмосферы (воздуха)

Таблица 2. Содержание элементов в пленке Si_3N_4 после отжига при 700°C

Концентрация, ат. %

42.49

41.37

4.38

8.15

2.3

Линия

К-серия

К-серия

L-серия

К-серия

К-серия

Элемент

Si

N

Zn

0

С

Всего

Рис. 7. Спектры фотолюминесценции пленки Si_3N_4/Si имплантированной Zn (1) и затем отожженной при 400 (2), 600 (3), 700 (4) и 800°С (5) соответственно.

при отжиге. Содержание имплантированного цинка несколько уменьшилось как из-за его перераспределения после отжига, так и по причине обратной диффузии в окружающую атмосферу (как было отмечено выше, имплантированный цинк при высокотемпературных отжигах смещается к поверхности образца). В энергодисперсионном спектре появилось некоторое количество углерода, вероятно, за счет отжига на воздухе.

Исходя из вышеизложенного для отожженного образца, предполагаем, что яркие пятна (бугорки) на рис. 5 представляют собой Zn-содержащие наночастицы, предположительно, состава ZnO, возможно, с небольшим количеством фазы Zn₂SiO₄.

Фотолюминесценция

На рис. 7 представлены спектры фотолюминесценции имплантированного и отожженного на воздухе образцов в температурном диапазоне $400-800^{\circ}$ С с шагом 100° С. Из рисунка следует, что после имплантации пленки Si₃N₄ ионами ⁶⁴Zn⁺ сигнал фотолюминесценции практически отсутствует. После первого термического отжига при 400°С сигнал несколько возрос, теперь спектр представляет собой широкую полосу с максимумом около 420 нм, которая, вероятно, связана с образованием радиационных точечных дефектов и их кластеров в пленке Si₃N₄ [21]. Отжиги при 500 и 600°С приводят к росту интенсивности наблюдаемой широкой полосы фотолюми-

10000

8000

6000

4000

2000

0

0

Счет

несценции без изменения структуры спектра и с сохранением спектрального распределения интенсивности люминесценции. После отжига при 700°С продолжается рост интенсивности фотолюминесценции, в спектре появляется узкая линия на длине волны 370 нм, связанная с экситонной рекомбинацией в фазе ZnO. Другими словами, после отжига на воздухе при температуре 700°С в течение 1 ч появляется устойчивая фаза ZnO в пленке Si₃N₄ [22]. После отжига при 800°С наблюдается сильное гашение интенсивности широкой полосы фотолюминесценции, что может быть связано с отжигом радиационных точечных дефектов и их кластеров в пленке Si₃N₄. Также происходит сильное гашение интенсивности пика на длине волны 370 нм, что свидетельствует о деградации фазы ZnO в пленке нитрида кремния, например, вследствие превращения фазы ZnO в фазу Zn_2SiO_4 . Очевидно, что атомы Zn во время высокотемпературного ступенчатого отжига перемещаются из своего положения после имплантации (максимум на глубине $R_p = 20$ нм) в основном к поверхности, которая является для них неограниченным стоком.

выводы

После имплантации пленки Si₃N₄ ионами $^{64}{\rm Zn^+}$ с энергией 40 кэВ и дозой 5 × 10 16 см $^{-2}$ на глубине около $R_p = 20$ нм и на поверхности нитрида кремния были синтезированы кластеры металлического Zn со средним размером 100 нм и менее. В процессе последовательных изохронных ступенчатых отжигов в окислительной среде (на воздухе) в течение 1 ч на каждом шаге 100°С в температурном диапазоне от 400 до 800°С происходило превращение фазы металлического Zn в оксидную (ZnO) и силицидную (Zn₂SiO₄) фазы. После отжига при 700°С Zn-содержащие кластеры состояли преимущественно из фазы ZnO со средним размером около 100 нм. После отжига при 800°С и выше кластеры состоят преимущественно из фазы Zn₂SiO₄.

БЛАГОДАРНОСТИ

Работа выполнена частично в рамках госзадания ИФТТ РАН и частично в рамках госзадания ФНЦ ФГУ НИИСИ РАН № FNEF-2022-0003 "Исследование нейроморфных систем обработки больших данных и технологии их изготовления" (1021060808723-2-1.2.1).

СПИСОК ЛИТЕРАТУРЫ

- Nickel N.H., Terukov E. Zinc Oxide A Material For Micro- and Optoelectronic Applications. Dordrecht: Springer, 2005.
- Özgür Ü., Alivov Ya. I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. P. 041301.
- 3. *Кузьмина И.П., Никитенко В.А.* Оксид цинка. Получение и свойства. М.: Наука, 1984. 166 с.
- 4. *Litton C.W., Collins T.C., Reynolds D.S.* Zinc Oxide Materials for Electronic and Optoelectronic Device Application. Chichester: Wiley, 2011.
- 5. *Liu Y.X., Liu Y.C., Shen D. et al.* // J. Cryst. Growth. 2002. V. 240. P. 152.
- Urfa Y., Çorumlu V., Altındal A. // Mater. Chem. Phys. 2021. V. 264. P. 124473.
- Sirelkhatim S., Mahmud A., Seeni N.H.M. et al. // Nano-Micro Lett. 2015. V. 7. P. 219.
- Inbasekaran S., Senthil R., Ramamurthy G., Sastry T.P. // Int. J. Innov. Res. Sci. Engin. Technol. 2014. V. 3. P. 8601.
- Smestad G.P., Gratzel M. // J. Chem. Educ. 1998. V. 75. P. 752.
- Straumal B.B., Mazilkin A.A., Protasova S.G. et al. // Phys. Rev. B. 2009. V. 79. P. 205206.
- 11. Amekura H., Ohnuma M., Kishimoto N., Buchal Ch., Mantl S. // J. Appl. Phys. 2008. V. 104. P. 114309.
- 12. Amekura H., Takeda Y., Kishimoto N. // Mater. Lett. 2011. V. 222. P. 96.
- Yang J., Liu X., Yang L. et al. // J. Alloys Compd. 2009. V. 485. P. 743.
- Shen Y., Li Z., Zhang X. et al. // Opt. Mater. 2010. V. 32. Iss. 9. P. 961.
- Zatsepin D., Zatsepin A., Boukhvalov D.W. et al. // J. Non-Cryst. Solids. 2016. V. 432. P. 183.
- Jiang C.Y., Sun X.W., Lo G.Q. et al. // Appl. Phys. Lett. 2007. V. 90. P. 263501.
- 17. Privezentsev V.V., Makunin A.V., Batrakov A.A. et al. // Semiconds. 2018. V. 52. P. 645.
- Kim S., Kim H., Jung S. et al. // J. Alloys. Compd. 2016. V. 663. P. 419.
- 19. Ziegler J.F., Biersack J.P. SRIM 2008 (http://www.srim.org).
- 20. *Pelleg J.* // Solid Mechanics and Its Applications. Springer Series / Ed. Barber J.R. 2016. V. 221. P. 423.
- 21. Lin B., Fu Z., Jia Y. // Appl. Phys. Lett. 2001. V. 79. P. 943.
- Rodnyi P.A., Khodyuk I.V. // Opt. Spectr. 2011. V. 111. Iss. 5. P. 776.

ТЕРЕЩЕНКО и др.

Formation of Zn-Containing Clusters in Implanted Si₃N₄ Film

A. N. Tereshchenko^{1,} *, V. V. Privezentsev², A. A. Firsov², V. S. Kulikauskas³, V. V. Zatekin³, and M. I. Voronova⁴

¹Osipyan Institute of Solid State Physics RAS, Chernogolovka, Moscow region, 142432 Russia

²Federal Research Center "Scientific Research Institute for System Analysis RAS", Moscow, 117218 Russia

³Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, 119991 Russia

⁴National Technological Institute "MISiS", Moscow, 119049 Russia

*e-mail: tan@issp.ac.ru

The results of the synthesis and study of Zn-containing clusters at the interface of a Si₃N₄/Si film implanted with ⁶⁴Zn⁺ ions with a dose of 5×10^{16} cm⁻² and an energy of 40 are presented. The Si₃N₄ film was preliminarily deposited on a silicon substrate from chemical vapor. Then, the implanted samples 10×10 mm in size were annealed in an oxidizing atmosphere (in air) with a step of 100° C for 1 h at each step in the temperature range 400–800°C. To study the profiles of zinc during annealing, the Rutherford backscattering method was used. The structure and composition of the film were studied using scanning electron microscopy in combination with energy dispersive spectroscopy, as well as photoluminescence. After implantation, individual clusters of metallic zinc with a size of about 100 nm or less were recorded near the surface of the Si₃N₄ film. It has been established that, during annealing, Zn clusters grow in the sample and the phase of metallic Zn gradually transforms into phases of its oxide ZnO and then, presumably, Zn₂SiO₄ silicide. After annealing at temperature of 700°C, which is the most optimal for obtaining the ZnO phase, zinc oxide clusters about 100 nm in size are formed in the Si₃N₄ film. A peak appears in the photoluminescence spectrum at a wavelength of 370 nm due to exciton luminescence in zinc oxide. After annealing at 800°C, the ZnO phase degrades and, presumably, the zinc silicide phase Zn₂SiO₄ is formed.

Keywords: silicon substrate, Si_3N_4 film, zinc implantation, clusters, annealing in an oxidizing environment, zinc oxide.