ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ, 2023, № 12, с. 123–128

УДК 533.924

МОДИФИКАЦИЯ ПОВЕРХНОСТИ ЧАСТИЦ МЕЛАМИН-ФОРМАЛЬДЕГИДА В ПЛАЗМЕ Ne И Kr

© 2023 г. В. А. Полищук^{а, *}, М. В. Балабас^b, Е. С. Дзлиева^b,

А. П. Горбенко^b, М. А. Ермоленко^b, В. Ю. Карасев^{b, **}

^аГосударственный университет морского и речного флота им. адмирала С.О. Макарова, Санкт-Петербург, 198035 Россия ^bСанкт-Петербургский государственный университет, Санкт-Петербург, 199034 Россия *e-mail: vpvova2010@yandex.ru **e-mail: plasmadust@yandex.ru Поступила в редакцию 10.02.2023 г. После доработки 27.05.2023 г. Принята к публикации 27.05.2023 г.

Экспериментально исследовано изменение поверхности микрочастиц меламин-формальдегида микронного размера в пылевых структурах в плазме тлеющего разряда в Ne и Kr. Микрочастицы помещали в плазменно-пылевые структуры с последующим извлечением. В эксперименте установлены два эффекта, зависящие от времени экспозиции в плазме: всестороннее уменьшение размера частиц и изменение морфологии их поверхности. Рассмотрена модель, позволяющая оценить вклад различных механизмов взаимодействия заряженных частиц плазмы с поверхностью меламин-формальдегида. Полученные оценки хорошо согласуются с экспериментальными данными.

Ключевые слова: комплексная плазма, тлеющий разряд, меламин-формальдегид, пылевая структура, морфология поверхности, электронная микроскопия.

DOI: 10.31857/S102809602312021X, EDN: BJATLB

введение

Плазма, содержащая микрочастицы, называется пылевой плазмой, комплексной плазмой или плазмой с конденсированной дисперсной фазой. Ее активно исследуют с 80-х годов прошлого века [1-3]. Изучению влияния компонентов низкотемпературной плазмы на поверхность различных материалов посвящено много работ [4-6]. Взаимодействие плазмы с диэлектрическими частицами микронных размеров имеет ряд особенностей, которые обусловлены свойствами самой плазмы. Важным параметром плазмы является число заряженных частиц *n* (в среднем) в дебаевской сфере радиусом $r_{\rm D}$, которое должно быть больше единицы. Для плазмы газового разряда в условиях представленной работы $n \sim 10^4$, $r_D = 40$ мкм. Так как скорости электронов существенно превосхолят скорости ионов, при внесении в плазму диэлектрические частицы заряжаются до некоторого отрицательного равновесного или, как говорят, плавающего потенциала U. В этом случае диэлектрические частицы могут "левитировать" в разрядной камере в области сильного электрического поля. Если в плазменной ловушке имеется много диэлектрических частиц (размером несколько микрон), то потенциальная энергия их взаимодействия за счет большого заряда q = CUсущественно превышает тепловую, и в этом случае говорят о возникновении "пылевой" плазмы. Типичный заряд диэлектрической пылевой частицы диаметром ~1 мкм примерно равен 10³ элементарных зарядов. Поскольку диэлектрические микрочастицы "взвешены" в плазме и находятся в таком состоянии неограниченно долго, они подвергаются воздействию потоков электронов и ионов в естественном процессе поддержания равновесного заряда. При плавающем потенциале количество попадающих на образец ионов и электронов уравнивается, так как до него могут доходить лишь наиболее быстрые электроны и практически все ионы.

Изменение размера частиц в пылевой плазме было обнаружено экспериментально в работах, использующих ВЧ-разряд в кислородной плазме [7, 8]. В [7] с помощью оптических методов было зарегистрировано уменьшение размера частиц меламин-формальдегида на 20%. В стратифицированном разряде постоянного тока в неоне потоки плазмы и температура электронов выше по сравнению с пылевой ловушкой в ВЧ-разряде [9, 10]. В [11] за 25 мин нахождения в разряде в Ne наблюдалось уменьшение диаметра частиц меламин-формальдегида на 1.6 мкм по сравнению с исходным размером 7.3 мкм. Наряду с существенным уменьшением размера был обнаружен эффект модификации структуры поверхности частиц [11].

В настоящей работе впервые исследовано воздействие плазменных потоков тяжелого инертного газа криптона на "мягкие" диэлектрические частицы меламин-формальдегида диаметром 4 мкм. Для удержания их в разряде криптона использован стратифицированный разряд постоянного тока. Проведена оценка влияния времени пребывания частиц меламин-формальдегида в плазме. Определение размеров частиц и анализ структуры поверхности после взаимодействия с плазмой осуществляли с помощью растрового электронного микроскопа (РЭМ) Merlin. Для выявления роли массы ионов в плазме Кг проведены контрольные исследования в Ne.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Экспериментальная установка была детально описана в [12–14]. Эксперименты проводились в стратифицированном тлеющем разряде инертных газов — неона, криптона. В качестве диэлектрических частиц был использован меламинформальдегид $C_3H_6N_6$ в виде сфер диаметром 4— 10 мкм.

Разработанная ранее методика извлечения пылевых частиц из разряда была реализована в модифицированной разрядной камере. Камера состояла из стеклянной трубки с внутренним диаметром 18 мм, с длиной вертикального участка 120 мм и имела два верхних и два нижний боковых отростка. В одном верхнем отростке располагался контейнер с порошкообразным образцом меламин-формальдегида, в другом – анод. В нижних отростках находился катод, а также устройство для сбора и извлечения из разряда "левитирующих" частиц. Устройство представляло собой металлическую пластину - "каретку", перемещаемую с помощью магнита по горизонтальному отростку, на которую монтировали площадку полированного кремния размером $10 \times 25 \times 0.5$ мм. Собранные из разряда на кремниевую площадку частицы меламин-формальдегида помещали в РЭМ для определения размеров частиц и получения изображений поверхности. Детальное исследование изображений проводили с использованием программ SmartTiff, Gvidion и DigitalMicrograph.

Параметры плазмы при проведении эксперимнтов с частицами были выбраны для разряда в Ne и Kr: давление p = 0.3 Торр, ток разряда $i_p = 2$ мА. Время экспозиции частиц в плазме было увеличено по сравнению с экспериментами с большими частицами [15–17] до 70 мин. Примеры РЭМ-изображений поверхности частиц представлены на рис. 1–5. Как и в ранее проведенных экспериментах с частицами других размеров, форма пылевых частиц после находжения в плазме остается сферической, т.е. осуществляется всесторонняя модификация подвешенных в плазме образцов. Далее обсудим выявленные закономерности различного по продолжительности нахождения частиц в плазме различных газов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Эксперименты в неоне

На рис. 1 представлены РЭМ-изображения морфологии поверхности частиц меламин-формальдегида. На рис. 1а показана поверхность частицы до помещения в плазму, на рис. 16 — результат экспозиции в плазме Ne в течение 35 мин. В результате анализа изображений были выявлены

Рис. 1. РЭМ-изображение поверхности частиц меламин-формальдегида: а – исходная морфология; б – модифицированная поверхность после воздействия плазмы в Ne в течение 35 мин.

Рис. 2. Изменение поверхности частицы меламинформальдегида под действием компонентов плазмы. На нижней вставке – увеличенная область двумерного изображения поверхности, на верхней вставке – 3D-изображение той же поверхности.

Рис. 3. РЭМ-изображение поверхности частиц меламин-формальдегида после экспозиции в разряде Кг в течение 10 мин.

Рис. 4. РЭМ-изображение поверхности частиц меламин-формальдегида после экспозиции в разряде Кг в течение 45 мин.

две тенденции изменения поверхности частиц. С увеличением времени экспозиции в плазме увеличиваются размер и микронеровности поверхности, обусловленные строением тела частицы. На вставках рис. 2 отчетливо видно возрастание углублений (каверн), связанных с действием компонентов плазмы.

Эксперименты в криптоне

Во всех экспериментах наблюдается уменьшение размера частиц меламин-формальдегида со

Рис. 5. РЭМ-изображение поверхности частиц меламин-формальдегида после экспозиции в разряде Кг в течение 60 мин.

временем. При одинаковых параметрах разряда Ne и Kr размер частиц в плазме криптона изменяется быстрее, чем в плазме неона. При временах более 30 мин в криптоне размер частиц уменьшается на ~0.5 мкм. Видоизменяется и морфология поверхности. На рис. 3, 4 представлены РЭМизображения поверхности частиц после различной экспозиции в плазме Kr.

Приведенные примеры позволяют сделать вывод, что потоки заряженных частиц в разряде равномерно со всех сторон бомбардируют поверх-

Рис. 6. Зависимость размера (диаметра) сферической частицы меламин-формальдегида от времени нахождения в плазменной ловушке в стратах в Ne и Kr плазме.

ность меламин-формальдегида, что доказывает сохранение сферичности частиц. Однако возможно возникновение ситуации, когда в распределении потоков компонентов плазмы возникает анизотропия, которая приводит к резкому изменению воздействия на поверхность частицы. Такой случай показан на рис. 5. Близкое расположение частиц, вероятно, привело к изменению электрического поля в их окрестностях, что и повлияло на потоки заряженных частиц компонентов плазмы.

Во всех экспериментах наблюдается уменьшение размера пылевых частиц со временем. На рис. 6 представлена зависимость диаметров изучаемых частиц от времени нахождения в плазме. В неоне за время 70 мин частица потеряла 28% своего объема. Скорость уменьшения размера монотонная, но не постоянная. Как и в измерениях с частицами больших размеров в неоне [5–7], сначала наблюдается фаза медленного уменьшения размера, затем фаза более быстрого уменьшения размера.

В эксперименте установлены два эффекта: всестороннее уменьшение размера частиц, зависящее от продолжительности экспозиции в плазме, и изменение морфологии поверхности частиц. Оба эффекта коррелируют между собой во времени, морфология поверхности трансформируется только у частиц, изменивших свой размер. Оба наблюдаемых изменения не равномерны во времени и зависят от свойств плазмы. На рис. 6 представлена зависимость размера частиц от времени экспозиции в плазме Ne и Kr. Видно, что уменьшение размера частиц сначала происходит медленно, а с некоторого момента времени процесс ускоряется. Согласно [15, 16], в случае частиц размером 7 и 12 мкм и больших времен процессы деградации снова замедляются, но в случае частиц размером 4 мкм это не наблюдалось. Согласно предложенной модели деградации поверх-

Рис. 7. Схема взаимодействия компонентов плазмы на частцу меламин-формальдегида.

ности [17], налетающие на пылевую частицу ионы выбивают материал с ее поверхности неравномерно, что приводит к наблюдаемым эффектам. Размер частиц начинает интенсивно уменьшаться с некоторго момента времени, что связывается в [17] с разогревом/размягчением частиц.

Согласно [18, 19], существенное изменение свойств материала меламина происходит при температурах до 354°С. Используя результаты измерений размеров частиц, полученные для плазмы Ne и Kr с существенно отличными потенциалами ионизации и массами, можно сопоставить экспериментальные результаты с численными оценками.

Пылевая частица получает энергию от налетающих электронов и ионов и вследствие их рекомбинации. Потеря энергии может происходить через теплопроводность газа и излучение, а также от реакционных процессов, таких как ассоциация атомов материала меламин-формальдегида. Но основные процессы, которые приводят к разогреву частицы, можно представить в виде упрощенной схемы (рис. 7). Тогда количество энергии, получаемое частицей, можно записано как

$$Q_1 = Q_i + Q_{\rm rec},\tag{1}$$

где Q_i – кинетическая энергия ионов, Q_{rec} – энергия рекомбинации ионов и электронов. Часть энергии Q_2 идет на передачу тепла газу за счет теплопроводности, нагрев частицы Q_3 , ее плавление Q_4 . На начальном этапе нахождения частицы в плазме, пока она еще не разогрета, тепло идет на нагрев частицы $Q_1 = Q_3$, на этапе начала быстрой деградации поверхности $Q_1 = Q_2$.

Оценим время t_1 , требуемое для начала деградации частицы. Примем в качестве удельной теплоемкости материала частицы величину c == 155 Дж/(моль · K), а в качестве температуры плавления меламин-формальдегида температуру 354°C [18]. Количество теплоты, требуемое для нагрева всей частицы от комнатной температуры до температуры плавления, $Q_3 = cm\Delta T$ равно 2.2 × × 10⁻⁸ Дж.

Ионы и электроны достигают поверхности пылевой частицы в процессе поддержания ее стационарного заряда, который в низкотемпературной плазме описывается в рамках модели ограниченных орбит [2]. Плазма на расстоянии от пылевой частицы, равном дебаевской длине, предполагается невозмущенной, и пылевая частица имеет установившийся отрицательный заряд. В условиях эксперимента использовались следующие плазменные характеристики: концентрация плазмы $n_i = 1 \times 10^8$ см⁻³, электронная температура в неоне $T_e = 8 \Rightarrow B$ [9, 10], в криптоне ее принимают равной $T_e = 4.5 \Rightarrow B$ [12], температура ионов равнялась температуре газа $T_i = 0.025 \Rightarrow B$.

Энергия одного иона Q_{11} , попадающего на поверхность пылевой частицы, может быть оценена из соотношения:

$$\frac{mv_{\rm is}^2}{2} = \frac{mv_{T_{\rm i}}^2}{2} + eU,$$
 (2)

где m — масса иона, v_{is} — скорость иона на поверхности частицы, v_{T_i} — тепловая скорость иона, U потенциал частицы относительно плазмы (плавающий потенциал):

$$\frac{eU}{kT_e} = \ln\left(0.77\sqrt{\frac{M_i}{m_e}}\right).$$
(3)

Тепловой энергией иона 0.025 эВ в (2) можно пренебречь, поскольку скорость иона при попадании на частицу на порядок больше тепловой. Например, для неона, где $U \sim 30$ В, скорость v_{is} будет существенной ~ 10^4 м/с. Таким образом, существует непрерывный процесс переноса энергии к пылевой частицы ионами. Электроны только на расстоянии от частицы, равном дебаевской длине, имеют энергию порядка ~10 эВ, и по мере приближения к пылевой частице их энергия будет уменьшаться, и их вклад мал.

Так как материал меламин-формальдегид известен как химическое соединение $C_3H_6N_6$, энергия связи молекулы неизвестна, ее оценили как для меламина $C_3H_6N_6$. Тогда при энергии связи молекулы 3 эВ при ударе иона с энергией порядка 10 эВ от поверхности будут отрываться молекулы материала частицы.

Второй процесс, играющий роль в переносе энергии к частице, — это рекомбинация ионов и электронов на ее поверхности. У неона потенциал ионизации 21.55 эВ, у криптона 13.9 эВ. Принимая, что вся энергия в неупругом процессе передается частице, добавляем эту величину к энергии одного иона Q_{11} .

Необходимо определить, почему потеря материала во времени неравномерная. Количество

ионов, попадающих за секунду на пылевую частицу, площадь поверхности которой $4\pi a^2$, в модели ограниченных орбит можно получить из выражения для ионного тока на зонд [14, 15]:

$$I = e\sqrt{8\pi a^2} n_{\rm i} v_{T_{\rm i}} \left(1 + \frac{eU}{kT_{\rm i}} \right).$$
 (4)

Для частицы диаметром 4.1 мкм в условиях эксперимента эта величина составляет порядка $N = 5 \times 10^9$. Находясь в плазме, пылевая частица в единицу времени получает энергию от ионов NeU, оцениваемую как 2.4×10^{-8} Дж. С учетом всей энергии рекомбинации, получаемая частицей в единицу времени энергия будет порядка $Q_1 = 4 \times 10^{-8}$ Дж. Но если комбинировавший атом находится в возбужденном состоянии, то данную цифру нужно уменьшить в соответствии с разницей между энергией ионизации и энергией возбуждения.

Разогреваемая частица охлаждается за счет теплопроводности нейтрального газа разряда через стенку трубки. Отводимый поток тепла:

$$Q_2 = \alpha \frac{dT}{dr} s \Delta t. \tag{5}$$

При теплопроводности неона $\alpha = 10^{-2}$ Вт/(м · град) и температуре поверхности 354°С от частицы за 1 с отводится тепло, оцениваемое как $Q_2 = 1.5 \times 10^{-8}$ Дж.

Исходя из оценок величины Q_1 и Q_2 достаточно близки. Возможно, некоторая часть тепла ΔQ (на порядок—два меньшая, чем Q_1) идет на нагрев Q_3 и плавление Q_4 . Тогда для полного разогрева и плавления частицы потребуется время t_1 порядка 10^2-10^3 с, соответствующее наблюдению в неоне и криптоне в течение 24 и 13 мин.

Можно сравнить времена начала деградации частиц в двух газах другим способом. На начальной стадии нахождения в плазме частица еще не разогрета до высокой температуры, и отводимый поток (5) еще не установился. Тогда время разогрева можно оценивать, как отношение Q_3/Q_1 . Приближенно отношение времен t_1 для неона и криптона можно записать как

$$\frac{t_{l}^{\rm Ne}}{t_{l}^{\rm Kr}} = \frac{Q_{l}^{\rm Kr}}{Q_{l}^{\rm Ne}}.$$
(6)

Число N для Kr, оцениваемое по (4), примерно в пять раз больше, чем для Ne. Энергия Q_1 в Kr в 1.5–2 раза меньше за счет меньших значений плавающего потенциала U и энергии ионизации. В итоге, отношение (6) достаточно хорошо соответствует экспериментальным наблюдениям в течение 24 и 13 мин.

ЗАКЛЮЧЕНИЕ

Экспериментально исследована деградация размеров частиц и поверхности в плазме двух газов Ne и Kr. Впервые обнаружено влияние параметров плазмы на формирование морфологии поверхности. Элементарные численные оценки согласуются с предположением о механизме деградации размера пылевых частиц меламин-формальдегида в пылевой плазме под действием потока ионов, имеющих тепловую энергию 0.025 эВ, но приобретающих значительную скорость в процессе поддержания стационарного заряда пылевой частицы.

БЛАГОДАРНОСТИ

Работа поддержана РНФ (грант № 22-12-00002).

Конфликт интересов: авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ясуда X*. Полимеризация в плазме. М.: Мир, 1988. 374 с.
- Фортов В.Е., Храпак А.Г., Храпак С.А., Молотков В.И., Петров О.Ф. // УФН. 2004. Т. 174. № 5. С. 495. https://doi.org/10.3367/UFNr.0174.200405b.0495
- 3. Complex and Dusty Plasmas: From Laboratory to Space / Ed. Fortov V.E., Morfill G.E. Boca Raton: CRC Press, 2009. https://doi.org/10.1201/9780367802882
- Svirachev D.M., Tabaliov N.A. // Bulg. J. Phys. 2005. V. 32. P. 22.
- Slepička P., Trostová S., Slepičková N., Kasálková Z., Kolská P., Švorčík V. // Plasma Processes and Polymers. 2012. V. 9. P. 197.

- Rachel M., Thurston J.D., ClayMichael D. // J. Plastic Film Sheeting. 2007. V. 23. P. 63.
- Stoffels W.W., Stoffels E., Swinkels G.H.P.M., Boufnichil M., Kroesen G.M.W. // Phys. Rev. E. 1999. V. 59. P. 2302. https://doi.org/10.1103/PhysRevE.59.2302
- Hayashii Y., Tachibana K. // Jpn. J. Appl. Phys. 1994.
 V. 33. № 6A. P. L804.
- Golubovskii Y., Karasev V., Kartasheva A. // Plasma Sources Sci. Technol. 2017. V. 26. P. 115003. https://doi.org/10.1088/1361-6595/aa8fa9
- Golubovskii Y.B., Kozakov R., Maiorov V., Behnke J., Behnke J. // Phys. Rev. E. 2000. V. 62. P. 2707. https://doi.org/10.1103/PhysRevE.62.2707
- Карасев В.Ю., Дзлиева Е.С., Горбенко А.П., Машек И.Ч., Полищук В.А., Миронова И.И. // Журн. техн. физики. 2017. Т. 87. Вып. 3. С. 473.
- Karasev V.Yu., Dzlieva E.S., Eikhval'd A.I., Ermolenko M.A., Golubev M.S., Ivanov A.Yu. // Phys. Rev. E. 2009. V. 79. P. 026406. https://doi.org/10.1103/PhysRevE.79.026406
- Karasev V., Dzlieva E., Pavlov S., Matvievskaya O., Polischuk V., Ermolenko M., Eichvald A., Gorbenko A. // Contrib. Plasma Phys. 2019. V. 59. № 4–5. P. e201800145.
- 14. Дзлиева Е.С., Ермоленко М.А., Карасев В.Ю. // Журн. техн. физики. 2012. Т. 82. Вып. 1. С. 147.
- Ермоленко М.А., Дзлиева Е.С., Карасев В.Ю., Павлов С.И., Полищук В.А., Горбенко А.П. // Письма в ЖТФ. 2015. Т. 41. Вып. 24. С. 77.
- Карасев В.Ю., Полищук В.А., Горбенко А.П., Дзлиева Е.С., Ермоленко М.А., Макар М.М. // ФТТ. 2016. Т. 58. Вып. 5. С. 1007.
- Karasev V., Polischuk V., Dzlieva E., Pavlov S., Gorbenko A. // J. Phys.: Conf. Ser. 2020. V. 1556. P. 012080. https://doi.org/10.1088/1742-6596/1556/1/012080
- Воробьев А. // Компоненты и технологии. 2004. № 3. С. 178.
- 19. Рабинович В.А., Хавин З.Я. Краткий химический справочник. Л.: Химия, 1977. 376 с.

Surface Modification of Melamine-Formaldehyde Particles in Ne and Kr Plasma

V. A. Polischuk^{1, *}, M. V. Balabas², E. S. Dzlieva², A. P. Gorbenko², M. A. Ermolenko², V. Yu. Karasev^{2, **}

¹Admiral Makarov State University of Maritime and Inland Shipping, Saint-Petersburg, 198035 Russia ²Saint Petersburg State University, Saint Petersburg, 199034 Russia

*e-mail: vpvova@rambler.ru

**e-mail: plasmadust@yandex.ru

Changes in the surface of micron-sized melamine-formaldehyde microparticles in dusty structures in a glowdischarge plasma in Ne and Kr were experimentally studied. Microparticles were placed in plasma-dust structures with subsequent extraction. Two effects depending on the exposure time in plasma were established in the experiment: a comprehensive decrease in the particle size and a change in the morphology of their surface. A model was considered, which makes it possible to estimate the contribution of various mechanisms of the interaction of charged plasma particles with the surface of melamine-formaldehyde. The estimates obtained are in good agreement with the experimental data.

Keywords: complex plasma, glow discharge, melamine-formaldehyde, dust structure, surface morphology, electron microscopy.