УДК 539.1.074.8

РЕФРИЖЕРАТОР ³Не НА ОСНОВЕ ОХЛАЖДЕНИЯ КРИОКУЛЕРОМ ЗАМКНУТОГО ЦИКЛА

© 2023 г. А. Н. Черников^{а, *}

^аОбъединенный институт ядерных исследований, Дубна, Московская область, 141980 Россия *e-mail: chern@nf.jinr.ru

Поступила в редакцию 14.08.2022 г. После доработки 25.10.2022 г. Принята к публикации 25.10.2022 г.

В Лаборатории нейтронной физики Объединенного института ядерных исследований ведутся работы по созданию газовых детекторов нейтронов. Для приготовления рабочей смеси газов необходимо использовать чистый ³He, который получают путем вымораживания примесей. Для этой цели создан рефрижератор ³He. Рефрижератор также может использоваться для получения низких температур в физическом эксперименте. В настоящей работе исследованы режимы работы рефрижератора. В непрерывном режиме циркуляции ³He получена температура 0.78 К. При откачке паров ³He внешним насосом в разовом режиме охлаждения достигается температура 0.52 К. В работе также изучены релаксационные режимы, в которых в случае предварительно сконденсированного ³He роль насоса выполняет объем контейнера. Приведен режим, в котором температура испарителя релаксирует от 1 до 1.5 К в течение 11 суток.

Ключевые слова: сверхнизкие температуры, гелий-3, криокулеры, насос с активированным углем. **DOI:** 10.31857/S1028096023040040, **EDN:** KBSFHP

введение

В Лаборатории нейтронной физики им. И.М. Франка Объединенного института ядерных исследований (ЛНФ ОИЯИ) традиционно развивается направление разработки газонаполненных детекторов тепловых нейтронов [1-3]. Одним из компонентов смеси газов, наполняющих такие детекторы, является ³Не. Технология сборки детектора подразумевает добавление чистого ³Не в заранее подготовленную смесь остальных газов. По истечении срока службы необходимо повторное заполнение детектора смесью газов. В силу высокой цены ³Не использование для этих целей нового объема заводского ³Не высокой чистоты очень дорогостоящее. Более рациональным представляется извлечение ³Не из использованной ранее в детекторе смеси путем его вымораживания. Для этого смесь газов необходимо охлаждать до температур ниже 3.3 К, отвечающих жидкому состоянию ³Не. Эти температуры можно получить в гелиевых криостатах или с использованием криокулеров замкнутого цикла, например, типа Гиффорда-Макмагона (ГМ), и совмещая с ними рефрижератор, в котором происходит сжижение ³Не, а также откачка его паров.

В настоящей работе описана конструкция рефрижератора ³Не, предназначенного для очистки ³Не от примесей, с охлаждением криокулером ГМ. Также рассмотрены режимы работы этого рефрижератора, которые могут быть полезны для проведения нейтронных экспериментов с низкими температурами в области 1 К и ниже.

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Конструкцию установки во многом определил накопленный в ЛНФ ОИЯИ опыт использования криокулеров [4-6]. Так, в [4] исследовали шахтный криостат с вертикальной загрузкой для размещения образцов диаметром до 120 мм в холодной зоне. В этой конструкции шахта была изготовлена из тонкостенной трубы диаметром 150 мм из нержавеющей стали. Тепловой контакт образца со второй ступенью холодной головки криокулера обеспечивали с помощью теплообменного газа ⁴Не при давлении 1–10 мбар. При мощности холодной головки 0.7 Вт (температура 4.2 К), которая использовалась в криостате, финальная температура достигала 5 К. Она была ограничена конструктивными особенностями криостата, и влияние теплообменного газа на нее не было от-

Рис. 1. Схема криостата с рефрижератором ³He: *1* – основной фланец; *2* – контейнер; *3* – коллектор криостата; *4* – холодная головка; *5*, *6* – теплообменники; *7* – тепловой экран; *8* – вакуумный корпус криостата; *9* – трубка; *10* – патрубок; *11–14* – секции теплообменника; *15* – дроссель; *16* – испаритель; *17* – тонкостенная трубка; *18* – насос с активированным углем; 19 – тепловой экран; 71, T2, T3 – кремниевые диоды; T4 – терморезистор.

мечено. В дальнейшем были проведены измерения теплопритока вдоль шахты в диапазоне давлений 1—20 мбар при использовании теплообменного газа ⁴He [5]. Величина этого теплопритока оказалась незначительной и практически не влияла на конечную температуру.

На основании этих измерений было принято решение поместить регенеративную часть холодной головки внутрь вертикальной шахты, аналогичной по размерам шахте в [4]. При заполнении шахты газообразным гелием с давлением до 20 мбар следовало ожидать, что криокулер будет работать без существенной потери холодопроизводительности.

В настоящей работе криостат был оснащен криокулером ГМ производительностью 1.5 Вт при 4.2 К. На холодной головке криокулера был размещен рефрижератор ³Не. Холодная головка и узлы рефрижератора были ориентированы вертикально сверху вниз. Конструкция криостата представлена на рис. 1. Рефрижератор ³Не представляет собой колонку теплообменников, расположенных на регенеративной части холодной головки. Внизу основного фланца 1 смонтирован контейнер 2, труба диаметром 150 мм из тонкостенной нержавеющей стали и длиной 390 мм. На коллекторе криостата 3 соосно с контейнером 2 установлена холодная головка 4. Длину контейнера определяли исходя из требования размещения в ней холодной головки и теплообменников.

На первую и вторую ступень установлены теплообменники 5 и 6, соответственно, которые обеспечивают тепловую связь между стенкой контейнера, ступенями криокулера и гелием. Теплопередача между внешней поверхностью теплообменника и внутренней стенкой контейнера осуществляется за счет теплопроводности гелия в тонком зазоре. Тепловой экран 7 соединен механически со стенкой контейнера на уровне первой ступени криокулера; 8 – вакуумный корпус криостата. ³Не подается в контейнер через трубку 9, а откачивается через патрубок 10. Трубка 9 переходит в трубчатый теплообменник, состоящий из нескольких последовательно соединенных секций 11-14. Теплообменник 14 оканчивается дросселем 15, обеспечивающим необходимое давление конденсании ³Не. Жилкий ³Не скапливается в испарителе 16, который соединен с контейнером посредством тонкостенной трубки 17 из нержавеющей стали диаметром 12 мм и длиной 60 мм. Между секциями теплообменников установлен насос с активированным углем 18, который поглощает примеси, находящиеся в ³Не. Пары гелия ³Не из испарителя поступают в контейнер и затем откачиваются через патрубок 10. Важным элементом рефрижератора является тепловой экран 19, который принимает температуру, близкую к температуре второй ступени холодной головки, и минимизирует теплоприток к испарителю.

Температуру измеряли датчиками — кремниевыми диодами T1, T2, T3 и терморезистором T4. Датчик температуры T1 расположен на второй ступени холодной головки; датчик T2 расположен на 4 см выше теплообменника 6, датчик T3 расположен внизу теплового экрана 7, датчик T4 установлен снаружи испарителя ³Не. Датчик T2 находился внутри колбы из теплоизоляционного материала. Тепловую связь этого датчика с гелием осуществляли по медному теплопроводу, который выводился из колбы и имел поверхность теплообмена с гелием около 2 мм². Предполагалось, что при работе с ⁴Не по его показаниям можно регистрировать появление уровня жидкого гелия.

На рис. 2 представлено фото системы теплообменников, на рис. 3 — фото низкотемпературной части рефрижератора. На рис. 2, 3 нумерация элементов совпадает с нумерацией на рис. 1.

РЕЗУЛЬТАТЫ

Эксперименты с ⁴Не

Для проверки работоспособности криокулера, заключенного в контейнер, первоначально были проведены эксперименты, в которых использовался ⁴Не. Было сжижено 100 л ⁴Не, при этом произошло охлаждение до 2.3 К без использования откачки. Эта температура соответствует паспорт-

Рис. 2. Система теплообменников рефрижератора. Обозначения как на рис. 1.

ной финальной температуре криокулера, если бы он эксплуатировался в вакуумном криостате. Для удержания температуры второй ступени 4.2 К потребовалась мощность 1.6 Вт, что немного больше ожидаемой паспортной мощности 1.5 Вт.

Эксперименты с ³Не

После включения криокулера ³Не в количестве около 20 л поступал в контейнер рефрижератора через патрубок *10* (рис. 1). Далее охлаждение проводили в два этапа. На первом этапе длительностью 25 ч циркуляция ³Не через теплообменники не осуществлялась. На втором этапе включали герметичный спиральный вакуумный насос производительностью 35 м³/ч. ³Не откачивался через патрубок *10* и возвращался обратно через трубку *9* в систему теплообменников и дроссель, после чего выходил в испаритель. Всего для охлаждения испарителя до температуры 2.3 К потребовалось 36 ч. Процесс охлаждения отображен на рис. 4.

По достижении этой температуры происходило сжижение ³He, и температура испарителя становилась ниже 1 К. В итоге температура испарителя достигала 0.78 К и могла держаться сколь угодно длительное время при постоянной конденсации ³He. Так осуществляется непрерывный режим работы рефрижератора (рис. 5). Температура 0.78 К определяется проводимостью патрубка *10* (рис. 1), который имеет диаметр 16 мм и длину 100 мм, а также скоростью откачки используемого насоса.

Рис. 3. Низкотемпературная часть рефрижератора. Обозначения как на рис. 1.

В разовом режиме работы рефрижератора, в котором ³Не в систему теплообменников не подается, температура испарителя понижается до 0.52 К. На рис. 6 показана временная зависимость температуры испарителя при переходе от непрерывного режима к разовому и обратно. Переход осуществлялся путем открытия—закрытия вентиля подачи ³Не в теплообменники. При этом температура испарителя изменялась от 0.78 до 0.52 К.

Рис. 4. Процесс охлаждения рефрижератора – графики изменения температуры датчиков T1–T4 во времени.

Рис. 5. Непрерывный режим работы рефрижератора — графики изменения температуры датчиков T1, T2, T4 во времени.

Рис. 7. Режим релаксации – график изменения температуры датчика Т4 во времени. Температура испарителя медленно возрастает от 0.85 до 1 К в интервале от 8 до 20 ч.

Режимы релаксации

На следующем этапе изучали режимы работы рефрижератора с нулевой скоростью внешней откачки ³Не при предварительно заполненном жидким ³Не испарителе. Эти режимы можно назвать режимами релаксации. Отметим, что в этих режимах криокулер не останавливается.

Была исследована временная зависимость температуры испарителя после отключения спирального насоса откачки ³He. В этом случае ³He испарялся в контейнер, который выполнял роль насоса. Если после осуществления разового ре-

Рис. 6. Переход от непрерывного режима к разовому и обратно – графики изменения температуры датчиков T1, T4 во времени.

Рис. 8. Режим релаксации – графики изменения температуры датчиков Т1, Т2, Т4 во времени. Температура испарителя медленно возрастает от 1.05 до 1.5 К в течение 11 суток.

жима и достижения 0.52 К внешней откачке отключали, то температура испарителя достаточно быстро достигала 0.85 К и затем медленно возрастала до 1 К (рис. 7). Далее происходило полное осушение испарителя, его температура быстро возрастала до 2.7 К и стабилизировалась. Аналогично, если прекращался непрерывный режим при 0.78 К и останавливалась внешняя откачка и конденсация, то температура испарителя достаточно быстро достигала 1.05 К и затем возрастала до температуры 1.53 К в течение 11 суток до осушения испарителя (рис. 8). Далее, как и в первом случае, происходил резкий скачок температуры до 2.5 K.

ЗАКЛЮЧЕНИЕ

В настоящее время представленный криостат используется для криогенной очистки ³Не от примесей. Процесс очистки и заправки детектора проводится в несколько этапов. Газовая смесь скачивается из детектора в баллон низкого давления (менее 1 бар). Затем смесь перекачивается в другой баллон через активированный уголь, охлажденный при помощи жидкого азота. Следующий этап очистки обеспечивает представленный в работе криостат. Однако для наполнения детектора необходимо давление не менее 7 бар. Для этого полученный чистый ³Не сжимается сорбционным насосом, охлажденным до 3.8 К криокулером замкнутого цикла, который расположен в другом криостате. Сорбционный насос представляет собой камеру объемом 200 см³ с высокопрочными стенками, 25% которой заполнены активированным углем. При температуре 3.8 К насос поглощает 25 л ³Не, который после нагрева до комнатной температуры создает давление 125 бар. Количество ³Не, полученного таким образом, обеспечивают заправку любого детектора, эксплуатируемого в ЛНФ. Отметим, что сорбционные насосы с охлаждением криокулером разработаны автором ранее и представлены, например, в [7-9].

Криостат может быть использован для физических исследований в области физики твердого тела. В этом случае образец устанавливают снаружи в нижней части испарителя. В дальнейшем подобная конструкция будет использована в качестве источника жидкого ⁴He, жидкого или охлажденного ³He, который внутри вакуумного криостата может питать другие устройства, например, рефрижераторы растворения ³He в ⁴He [10]. Эта конструкция может быть прогреваемой системой, в этом случае в режиме релаксации ее можно использовать в качестве охладителя туннельного сканирующего микроскопа на температурном уровне 1 К наряду с установкой [11, 12], работающей при температуре 4.2 К.

БЛАГОДАРНОСТИ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования (соглашение № 075-10-2021-115 от 13 октября 2021 г., внутренний номер 15. СИН.21.0021).

СПИСОК ЛИТЕРАТУРЫ

- Белушкин А.В., Богдзель А.А., Журавлев В.В. и др. // Физика твердого тела. 2010. Т. 52. № 5. С. 961. (Belushkin A.V., Bogdzel' A.A., Zhuravlev V.V. et al. Phys. Solid State. 2010. V. 52. Р. 1025). https://doi.org/10.1134/S1063783410050306
- Белушкин А.В., Богздель А.А., Буздавин А.П. и др. // Письма в ЭЧАЯ. 2013. Т. 10. № 5. С. 713. (Belushkin A.V., Bogdzel' А.А., Buzdavin A.P. et al. Phys. Particles Nucl. Lett. 2013. V. 10. P. 436). https://doi.org/10.1134/S154747711305004X
- Churakov A.V., Belushkin A.V., Bogdzel A.A. et al. // J. Phys. Conf. Ser. 2018. V. 1021. № 1. P. 012021. https://doi.org/10.1088/1742-6596/1021/1/012021
- Черников А.Н., Буздавин А.П., Журавлев В.В., Чол Р.К., Глазков В.П. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2010. № 11. С. 29. (Chernikov A.N., Buzdavin A.P., Zhuravlev V.V., Ryom Gwang Chol, Glazkov V.P. J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2010. V. 4. P. 898). https://doi.org/10.1134/S1027451010060042
- Chernikov A.N., Buzdavin A.P. // Phys. Part. Nucl. Lett. 2019. V. 16. P. 112. https://doi.org/10.1134/S1547477119020031
- Chernikov A.N., Dobrin I., Kovalenko N., Kulikov S.A., Culicov O., Popovichi I., Enache D., Dobrin A. // J. Phys. Conf. Ser. 2018. V. 1021 № 1. P. 012048 https://doi.org/10.1088/1742-6596/1021/1/012048
- 7. Черников А.Н., Трофимов В.Н. // Приборы и техника эксперимента. 2003. Т. 46. № 4. С. 157. (Trofimov V.N., Chernikov A.N. Instruments and Experimental Techniques. 2003. V.46. № 4. С. 576). https://doi.org/10.1023/A:1025119107332
- 8. *Vystavkin A.N., Shitov S.V., Bankov S.E. et al.* // Radiophys. Quantum Electronics. 2007. V. 50. № 10. P. 852. https://doi.org/10.1007/s11141-007-0077-x
- 9. Черников А.Н., Трофимов В.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2014. № 9. С. 108. (Chernikov A.N., Trofimov V.N. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2014. V. 8. P. 956). https://doi.org/10.1134/S1027451014040028
- Лоунасмаа О.В. Принципы и методы получения температур ниже 1 К. М.: Мир, 1977. 356 с. (Lounasmaa O.V. Experimental Principles and Methods Below 1 K, Academic Press, London. 1974),
- Патент № 62691 (РФ). Система охлаждения сканирующего сверхвысоковакуумного туннельного микроскопа / ОИЯИ. Трофимов В.Н., Черников А.Н., Зайцев-Зотов С.В. // Приоритет от 12.06.2006.
- Трофимов В.Н., Черников А.Н., Зайцев-Зотов С.В., Дюжиков И.Н., Шевлюга В.М., Ельцов К.Н. // Приборы и техника эксперимента. 2007. Т. 50. № 6. С. 128. (Trofimov V.N., Chernikov A.N., Zaitsev-Zotov S.V., Dyuzhikov I.N., Shevlyuga V.M., Eltsov K.N. // Instruments and Experimental Techniques. 2007. V. 50. № 6. С. 838). https://doi.org/10.1134/S002044120706022X

ЧЕРНИКОВ

³He Refrigerator Based on Closed Cycle Cryocooler Cooling

A. N. Chernikov^{1, *}

¹Joint Institute for Nuclear Research, Dubna, Moscow region, 141980 Russia *e-mail: chern@nf.jinr.ru

In the Laboratory of Neutron Physics of the Joint Institute for Nuclear Research, work is underway to create gaseous neutron detectors. To prepare a working mixture of gases, it is necessary to use pure ³He, which is obtained by freezing impurities. The ³He refrigerator was created for this purpose. The refrigerator can also be used to obtain low temperatures in a physics experiment. In this work, the operating modes of the refrigerator are studied. In the continuous mode of ³He circulation, a temperature of 0.78 K was obtained. When ³He vapor is pumped out by an external pump in a single cooling mode, a temperature of 0.52 K is reached. We also study relaxation modes in which, with pre-condensed ³He, the volume of the container plays the role of a pump. A regime is presented in which the temperature of the evaporator relaxes from 1 to 1.5 K within 11 days.

Keywords: ultralow temperatures, helium-3, cryocoolers, activated carbon pump.