УДК 621.793:548.735

ИССЛЕДОВАНИЕ СТРУКТУРЫ И МЕХАНИЗМОВ ИЗНАШИВАНИЯ ТВЕРДЫХ СМАЗОЧНЫХ ПОКРЫТИЙ СИСТЕМЫ Tin-Pb

© 2023 г. А. А. Лозован^{*a*, *,} С. Я. Бецофен^{*a*}, С. В. Савушкина^{*a*, **,} М. А. Ляховецкий^{*a*, ***, Л. Н. Лесневский^{*a*}, И. А. Николаев^{*a*}, Ю. С. Павлов^{*a*}, Е. П. Кубатина^{*a*}, Л. Е. Агуреев^{*b*}}

^а Московский авиационный институт (Национальный исследовательский университет), Москва, 125993 Россия

^bAO ГНЦ "Центр Келдыша", Москва, 125438 Россия *e-mail: loz-plasma@yandex.ru **e-mail: sveta_049@mail.ru ***e-mail: maxim.lyakhovetskiy@mai.ru Поступила в редакцию 17.12.2022 г. После доработки 14.01.2023 г. Принята к публикации 14.01.2023 г.

Получены композитные твердые смазочные покрытия TiN-Pb толщиной ~2 мкм методом одновременного распыления Ti- и Pb-катодов двух раздельных магнетронов на титановом сплаве BT6. Содержание Pb в покрытии в среднем составляет ~12 ат. %. Внутренний слой покрытия характеризуется равномерным распределением Pb, а верхний – наличием островков с повышенным содержанием Pb. Морфология поверхности покрытия глобулярная, преимущественно содержит кристаллиты нанометрового размера. Отсутствие столбчатой структуры в покрытиях связано с высоким содержанием Pb, который не растворяется в TiN матрице и прерывает рост кристаллитов. Рентгенофазовый анализ показал наличие в покрытиях фаз Pb, PbO и TiN, дифракционные линии которых уширены, что свидетельствует о размере кристаллитов покрытия ~10–20 нм. Трибологические испытания покрытия TiN-Pb проводили в условиях малоамплитудного трения — фреттингизноса в широком диапазоне изменения параметров нагружения. В режиме полного скольжения коэффициент трения составил ~0.25. При переходе из режима полного скольжения в режим возвратно-поступательного скольжения энергия, рассеиваемая при трении, падает более чем в три раза, что отражается и в резком снижении коэффициента трения с 0.25 до 0.05.

Ключевые слова: твердое смазочное покрытие, магнетронное распыление, поверхности, структура, текстура, фазы, нитрид титана, свинец, фреттинг, износ. **DOI:** 10.31857/S1028096023080095, **EDN:** OAUCTC

введение

Возрастающие нагрузки в узлах тепловых машин, а также стремление разработчиков к снижению веса изделий, приводит к постепенному отказу от жидкостной системы смазки в пользу альтернативных решений с "сухими" поверхностями: подшипников скольжения, газодинамических и магнитных подшипников и т.д. Их использование, ввиду особенностей эксплуатации, накладывает дополнительные требования к поверхностям трения, которые должны обладать повышенной износостойкостью и низким коэффициентом трения. Актуальным решением проблемы является создание твердых смазочных покрытий (ТСП), способных длительное время сопротивляться износу в условиях повышенной температуры и больших контактных давлений [1–5].

В настоящее время для нанесения трибологических покрытий все более широкое применение в промышленности находят различным вариантам магнетронного распыления [6]. Постоянное совершенствование метода позволило расширить области его применения и дало возможность контролировать структуру покрытий. Эффективными современными направлениями улучшения функциональных свойств покрытий являются: нанесение многокомпонентных покрытий, когда наряду с основным металлическим компонентом (например, Ti, Zr) в состав покрытий вводят такие элементы как Al, Cr, Nb, Y, Si; формирование многослойных покрытий, в которых за счет присутствия частиц разного химического состава получают чередующиеся слои, толщина которых может варьироваться от нескольких нм до мкм; комбинирование методов нанесения покрытий и модифицирования поверхностных слоев, например, азотированием или ионной имплантацией [7-12]. При формировании ТСП в последнее время все больший интерес вызывают добавки мягких металлов, таких как Pb, Cu и In [13-17]. К примеру, в [13-15] медь была добавлена в покрытия TiN для достижения более высоких трибологических характеристик. Основным механизмом смазки является их повышенная пластичность и низкая прочность на сдвиг при высоких температурах. Таким образом, мягкие металлы могут пластически деформироваться во время скольжения и приспосабливаться к обеим взаимодействующим поверхностям, уменьшая трение и износ. Работы [16, 17] посвящены формированию твердых смазочных покрытий на основе TiN с добавлением Pb, получаемых методом магнетронного напыления при ионном ассистировании. В [16] показано преимущество использования композитного покрытия в виде матрицы с нановключениями смазочного компонента перед многослойной конструкцией с чередующимися слоями твердой матрицы и смазочного компонента. В работе [18] изучено трибологическое поведение покрытий TiN, нанесенных методом напыления конденсацией из газовой фазы с добавлением индия. Результаты трения показали улучшение трибологических характеристик по сравнению с немодифицированными тонкими пленками TiN вплоть до температуры 450°С, а наблюдаемое ухудшение характеристик при более высоких температурах объясняется окислением индия.

В настоящей работе методом одновременного распыления моноэлементных (Ті и Рb) катодов двух раздельных магнетронов формировали композитные ТСП системы TiN—Pb, исследовали их структуру и характер процесса изнашивания.

ОБОРУДОВАНИЕ И МЕТОДЫ ИССЛЕДОВАНИЯ

ТСП системы TiN-Рb формировали на образцах из титанового сплава ВТ6 размером 20.0 × $\times 20.0 \times 1.5$ мм и ситалла в процессе реакционного магнетронного одновременного распыления двух раздельных моноэлементных катодов (титана марки ВТ1-0 и свинца чистотой 99.5%). Протяженные планарные магнетроны с размером обеих мишеней 273 × 112 × 10 мм были вертикально размещены в камере на дистанциях мишень-подложка d = 220 мм под углом 120° друг к другу и 30° от нормали к подложке (рис. 1). Протяженный ионный источник был вертикально установлен напротив подложки на расстоянии 250 мм от нее. Для снижения возможного переноса распыленных атомов с одного магнетрона на другой рядом с ними установили экраны из стали марки AISI

Рис. 1. Схема напыления покрытий TiN–Pb. *d* – Расстояние от магнетронов до подложки; *d*₁ – расстояние между магнетронами.

304. Газы Ar и N в вакуумную камеру подавали через ионный источник.

Образцы перед напылением очищали ультразвуковой ванне в бензине в течение 10 мин, затем устанавливали в камере и проводили ее откачку до давления 4.0×10^{-6} мм рт. ст. Образцы очищали с помощью ионного источника в течение 20 мин при $P_{\rm Ar}=1.0$ × 10^{-3} мм рт. ст. при расходе Ar 6.49 см³/мин. Затем ионный источник отключали и проводили напыление слоя Ті в течение 5 мин, слоя TiN в течение 5 мин и основного слоя покрытия Ti + Pb + N₂ в течение 350 мин. Распыление Ті проводили в режиме постоянного тока со стабилизацией по току, а распыление Pb проводили в среднечастотном режиме при 40 кГц и коэффициенте заполнения T = 80%. Основные параметры процесса напыления покрытий приведены в табл. 1. Общее время напыления составляло 360 мин.

Морфологию и состав покрытий исследовали с помощью растровой электронной микроскопии (РЭМ) на приборе Quanta 600 с оборудованием для энергодисперсионного рентгеновского анализа TRIDENT XM4. Толщину покрытий определяли на поперечном сколе образцов с помощью РЭМ. Рентгенофазовый анализ выполняли на дифрактометре ДРОН-7 в Си K_{α} -излучении с длиной волны $\lambda_{cp} = 1.54178$ Å.

Трибологические испытания образцов проводили с помощью машины трения 1407, позволяющей моделировать условия возвратно-поступательного фреттинг-изнашивания [16], в следующем диапазоне изменения параметров нагружения: перемещение D = 5-60 мкм; нормальная нагруз-

Слой покрытия	<i>P</i> _{Ar} , мм рт. ст.	<i>P</i> _{Ar+N2} , мм рт. ст.	$Q_{ m Ar}$, см 3 /мин	$Q_{ m N_2},~{ m cm}^3/{ m мин}$	I _{Ti} , A	$I_{\rm Pb}, { m A}$	τ, мин
Ti	1.0×10^{-3}	—	6.49	—	3.5	—	5
TiN	_	1.8×10^{-3}	6.49	5.18	3.5	_	5
TiN–Pb	_	1.8×10^{-3}	6.49	5.18	3.5	0.1	350

Таблица 1. Параметры процесса напыления покрытий: давление газов P_{Ar} , P_{Ar+N_2} ; расходы газов Q_{Ar} , Q_{N_2} ; токи разрядов I_{Ti} , I_{Pb} ; продолжительность напыления τ

ка в контакте $F_n = 1-13$ H; частота перемещения f = 20 Гц; количество циклов $n = 10^4$. В качестве контртела использовали сферу из стали ШХ-15 диаметром 12.6 мм. Окружающая среда – атмосфера лаборатории. В результате испытаний получены трибологические параметры трения: коэффициент трения, механизм взаимодействия тел.

Исследование пятен повреждения проводили с помощью РЭМ с использованием энергодисперсионного анализа методом картирования, а измерение профилей износа с помощью лазерного измерительного микроскопа Olympus LEXT OLS 5000.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Для поверхности покрытия TiN—Pb характерна глобулярная морфология (рис. 2а). Средний размер глобул составляет ~1.3 мкм. При этом глобулы состоят из ориентированных в различных направлениях кристаллитов размером менее 0.1 мкм (рис. 2б).

Содержание Рb в покрытии в среднем составляет 12 ат. %. Для покрытия характерно высокое содержание кислорода (до 40 ат. %), что в основном связано с окислением свинца в составе покрытия, а также возможным формированием оксинитридов. При энергодисперсионном анализе методом картирования выявлено, что на поверхности покрытия присутствуют области с преимущественным содержанием Pb и O размером до 2.5 мкм (рис. 3). Рентгенофазовый анализ (рис. 4) обнаружил присутствие в покрытии помимо TiN также Pb и PbO.

Общая толщина покрытий составляет ~2.0 мкм (рис. 5): толщины переходных слоев Ti и TiN приблизительно по 0.05 мкм, а основного слоя покрытия TiN—Pb ~1.8 мкм (рис. 5а). Неоднородность толщины покрытия обусловлена глобулярной морфологией поверхности (размер глобул достигал 0.3 мкм). Основной слой покрытия можно разделить на два слоя: внутренний, на границе с переходными слоями, который характеризуется равномерным распределением Pb, и верхний толщиной ~0.6 мкм (рис. 5б), характеризующийся наличием островков с повышенным содержанием Pb (белые пятна во 2 слое на рис. 5в). Характерное метастабильное состояние для процесса формирования покрытия может приводить к фазовой миграции мягкого и легкоплавкого компонента, и получению его более высокой концентрации в поверхностном слое покрытия, как это было показано также в работе [14].

Обычно покрытие TiN, полученное методами осаждения, имеет ярко выраженную столбчатую структуру. Такое строение в подавляющем большинстве случаев сочетается с выраженной текстурой, с преимущественной ориентацией зерен параллельно кристаллографической плоскости (111). Однако рентгенограмма TiN-Pb покрытия (рис. 4) свидетельствует об отсутствии текстуры у покрытия. Дифракционные линии всех присутствующих фаз, включая Pb, PbO и TiN, характеризуются значительным уширением, свидетельствующим о том, что размер кристаллитов покрытия составляет ~10-20 нм. Можно предположить, что отсутствие столбчатой структуры покрытия связано с его прерывистым ростом, обеспечиваемым Pb, который не растворяется в TiN матрице и имеет слабую склонность к нитридизации. В результате образования на поверхности кристаллитов TiN зародышей Pb и PbO фаз происходит прерывание их роста и сохранение размера зерен менее 100 нм. Кроме того, частицы Рb и РbO фаз стимулируют

Рис. 2. РЭМ-изображения во вторичных электронах морфологии поверхности покрытия TiN-Pb на подложке из титанового сплава BT6 (а) и отдельных глобул (б).

Рис. 3. РЭМ-изображение во вторичных электронах поверхности покрытия TiN–Pb на подложке из титанового сплава ВТ6 (а) и суммарная карта распределения элементов по данной области, полученная с помощью рентгеновского спектрального анализа (б).

формирование произвольно ориентированных зародышей TiN, что препятствует формированию выраженной текстуры. В работе [17] показано, что увеличение текстурного компонента (111) в покрытии TiN приводит к уменьшению износостойкости. Таким образом, полученная структура покрытия TiN способствует увеличению микротвердости и износостойкости: чередование кристаллических и аморфных областей и уменьшение зерен обеспечивают упрочнение в соответствии с законом Холла-Петча. Похожий эффект был показан для покрытия TiN–Cu в работах [13–15].

В двухкомпонентных покрытиях текстура стабильно воспроизводится в широких пределах вариации параметров напыления. Многокомпо-

Рис. 4. Рентгенограмма TiN-Pb покрытия на подложке (П).

нентные покрытия, к которым можно отнести и TiN-Pb, имеют отличающийся от двухкомпонентных механизм формирования структуры, о чем свидетельствуют радикальные изменения текстуры [7]. К примеру, в работах [8, 9] найдено, что добавление Al и Si в состав покрытий TiN сопровождается изменением текстуры, когда выраженная текстура с преимущественной ориентацией зерен параллельно (111), характерная для TiN покрытий, переходит в состояние без выраженной текстуры. Этот процесс сопровождается значительным уширением дифракционных линий, свидетельствующим об уменьшении размера кристаллитов и формировании псевдоаморфной структуры, которой соответствует размер зерен <10 нм.

Трибологические испытания покрытия TiN— Pb проведены в условиях малоамплитудного трения — фреттинг-износа. В этих условиях взаимодействие трущихся тел может происходить в режимах, отличающихся различными механизмами разрушения поверхностей, в которых могут превалировать усталостные процессы, абразивное повреждение продуктами износа, либо адгезионное изнашивание [19, 20].

Для диагностики механизма трения при фреттинге в работе был использован энергетический подход [21], заключающийся в определении энергии диссипации в контакте путем измерения мгновенных значений силы трения и перемещения с частотой, как минимум в 20 раз превышающей частоту перемещения тел. Анализ полученных данных через петли фрикционного гистерезиса (рис. 6) позволяет оценить путем расчета индекса скольжения (*S*) [22] режимы взаимодей-

Рис. 5. РЭМ-изображения во вторичных электронах структуры покрытий TiN–Pb на поперечном сколе подложки из ситалла (а, б), в обратно отраженных электронах с обозначением слоев покрытия (в).

ствия трущихся тел непосредственно в процессе эксперимента и построить карту фреттинга [23]. Такой метод оценки режимов трения по динамическому состоянию системы имеет преимущества в скорости построения карты. Более точный, но при этом трудоемкий метод — оценка по состоянию материала после испытаний — требует, в том числе, и металлографических исследования для выявления трещин.

Для построения карты фреттинга эксперименты проводили в широком диапазоне изменения параметров нагружения. Полученная карта фреттинга на основе анализа форм и характеристик фрикционного гистерезиса приведена на рис. 7.

Как известно [24], в режиме полного скольжения при фреттинге превалирует процесс абразивного и адгезионного взаимодействия тел (режим полного скольжения обозначен квадратами на рис. 7); в смешанном режиме — быстропротекающее разрушение усталостного характера (кресты); в режиме частичного проскальзывания усталостное разрушение с низкой скоростью образования трещин (треугольники). Как видно из рис. 7, часть результатов экспериментов вошло в зону возвратно-поступательного скольжения (окружности), что соответствует обычному процессу трения без характерных

Рис. 6. График фрикционного гистерезиса при возвратно-поступательном перемещении: $A_{\rm s}$ – амплитуда скольжения; $A_{\rm d}$ – амплитуда смещения; $F_{\rm s}$ – статическая (максимальная) сила трения; $F_{\rm d}$ – динамическая сила трения, измеренная при нулевом смещении и максимальной скорости скольжения; $E_{\rm d}$ – рассеиваемая энергия.

Рис. 7. Карта фреттинга ТСП системы TiN–Pb, полученной на подложке из титанового сплава BT6 (a): I – режим частичного проскальзывания (б); II – смешанный режим (в); III – режим полного скольжения (г); IV – режим возвратно-поступательного скольжения (д).

для фреттинга особенностей взаимодействия, трущихся тел.

Обозначенные механизмы разрушения материалов, полученные из расчета петель фрикционного гистерезиса, были подтверждены морфологией пятен износа после испытаний. Так на рис. 8 приведено изображение пятна износа, полученного при D = 5 мкм и $F_n = 13$ Н. Как видно, пятно износа представляет собой небольшое неравномерное повреждение с характерными размерами

Рис. 8. РЭМ-изображения в обратно отраженных электронах повреждения покрытия TiN—Pb на подложке из титанового сплава BT6, полученного при D = 5 мкм и $F_n = 13$ Н: общий вид морфологии области повреждения (а), микротрещины в области повреждения (б).

~100 мкм вдоль оси перемещения и ~250 мкм поперек. При большем увеличении (рис. 8б) обнаружены трещины на поверхности покрытия длиной до 15 мкм, которые находятся строго перпендикулярно к направлению трения тел. Таким образом, механизм разрушения поверхности покрытия соответствует превалирующим процессам для режима частичного проскальзывания усталостному разрушению, которое возникает в результате действия знакопеременной силы трения в контакте в совокупности с наличием перехода между зонами скольжения и упругого взаимодействия тел.

В смешанном режиме (D = 15 мкм, $F_n = 10$ H) процесс усталостного разрушения при той же базе испытаний значительно усугубляется — формируется ярко выраженная сеть трещин на всей площади пятна контакта на поверхности покрытия (рис. 9). Процесс дальнейшего разрушения может привести к отслаиванию крупных агломе-

Рис. 9. РЭМ-изображение в обратно отраженных электронах повреждения покрытия TiN-Pb на подложке из титанового сплава BT6, полученного при $D = 15 \text{ мкм}, F_n = 10 \text{ H}.$

ратов покрытия в процессе трения и взаимодействию контртела с подложкой, а также, при определенных условиях, к переходу трещин с покрытия в поверхностный слой металла.

В режиме полного скольжения (D = 30 мкм, $F_n = 3$ H) механизм разрушения полностью изменяет свой характер: начинают превалировать процессы абразивного взаимодействия (рис. 10). Благодаря добавлению в состав композиционного покрытия пластичного компонента — свинца, образуется характерный сдвиговый рельеф покрытия вдоль направления движения тел (рис. 10а).

Также надо отметить, что уровень энергии диссипации в режиме полного скольжения наиболее высокий, что косвенно говорит о достаточно большой скорости изнашивания. Элементный анализ пятна износа показывает появление в центре пятна зон с повышенным содержанием титана (рис. 10б), связанных с началом процесса полного изнашивания покрытия до металла-подложки.

Представляет интерес тот факт, что при переходе из режима полного скольжения в режим возвратно-поступательного скольжения энергия диссипация падает более чем в три раза, что отражается и в резком снижении коэффициента трения с 0.25 до 0.05.

При анализе пятен повреждений для режима возвратно-поступательного и полного скольжения с помощью лазерного микроскопа можно наблюдать взаимосвязь между шириной петли гистерезиса и глубиной пятна повреждения (рис. 11): скорость изнашивания покрытия достаточно сильно зависит от прикладываемой нормальной нагрузки, что с одной стороны говорит о необходимости повышения несущей способности покрытия,

Рис. 10. РЭМ-изображение в обратно отраженных электронах повреждения покрытия TiN—Pb на подложке из титанового сплава BT6, полученного при D = 30 мкм и $F_n = 3$ H (а) и суммарная карта распределения элементов по данной области (б).

а с другой о положительном влиянии добавки свинца для снижения коэффициента трения.

Таким образом, режим возвратно-поступательного скольжения, как и режим частичного проскальзывания, для твердого смазочного покрытия системы TiN-Pb возникает в узких диапазонах нагрузок и перемещений. Основным режимом трения при фреттинге является режим полного скольжения. Смешанный режим также возникает в узком диапазоне нагрузок, с образованием сети трещин, которая может привести к его отслаиванию. В режиме полного скольжения устанавливается коэффициент трения равный ~0.25, что значительно ниже коэффициента трения TiN без добавок Pb, который находится в диапазоне ~0.75-0.9 [25, 26]. Стоит отметить, что скорость изнашивания покрытия достаточно высока, что к концу испытания приводит к локальному разрушению покрытия.

Рис. 11. Изменение формы петли гистерезиса в ходе эксперимента и вид пятна износа на поверхности образца в конце эксперимента при D = 30 мкм и $F_n = 1$ (a); 2 (б); 3 H (в).

ЗАКЛЮЧЕНИЕ

Методом одновременного распыления моноэлементных (Ті и Рb) катодов двух раздельных магнетронов на подложке из титанового сплава ВТ6 получены композитные твердосмазочные покрытия TiN-Pb толщиной ~2 мкм. По данным рентгеновского спектрального анализа содержание Рb в покрытии в среднем составляет ~12 ат. %. Для покрытия характерна глобулярная морфология, а основной его слой можно разделить на две области: внутреннюю, которая характеризуется равномерным распределением Pb, и верхнюю с повышенным содержанием Pb, что связано с фазовой миграцией легкоплавкого компонента. Покрытие TiN–Pb обладает дисперсной структурой с кристаллитами размером до нескольких десятков нанометров, ему не свойственна характерная для TiN покрытий столбчатая структура, а также обычно сочетающаяся с ней выраженная текстура с преимущественной ориентацией зерен параллельно кристаллографической плоскости (111). Эти свойства обусловлены воздействием частиц Pb и PbO, которые стимулируют зарождение произвольно ориентированных кристаллитов TiN и препятствуют их росту. В режиме полного скольжения наблюдается приемлемый для TCП коэффициент трения ~0.25. В режиме возвратно-поступательного скольжения коэффициент трения устанавливался на уровне ~0.05. Для повышения трибологических свойств в режиме полного скольжения требуется увеличение несущей способности покрытий системы TiN–Pb.

БЛАГОДАРНОСТИ

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 22-19-00754).

Конфликт интересов: авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Патент на изобретение 2416675 (РФ) Способ формирования композитных твердосмазочных покрытий на рабочих поверхностях узлов трения / Лесневский Л.Н., Тюрин В.Н., Ушаков А.М. Московский авиационный институт. 2011. 7 с.
- Aouadi S.M., Luster B., Kohli P., Muratore C., Voevodin A.A. // Surf. Coat. Technol. 2009. V. 204. № 6. P. 962.

https://www.doi.org/10.1016/j.surfcoat.2009.04.010

- Aouadi S.M., Gao H., Martini A., Scharf T.W., Muratore C. // Surf. Coat. Technol. 2014. V. 257. P. 266. https://www.doi.org/10.1016/j.surfcoat.2014.05.064
- Кондратьев В.А., Лесневский Л.Н., Тюрин В.Н., Ушаков А.М. // Проблемы машиностроения и надежности машин. 2004. № 2. С. 49.
- Lesnevskii L.N., Lezhnev L.Yu., Lyakhovetskii M.A. et al. // J. Machinery Manufacture Reliability. 2017. V. 46. P. 25. https://www.doi.org/10.3103/S1052618817010101
- Turkin A.A., Pei Y.T., Shaha K.P. et al. // J. Appl. Phys. 2010. V. 108. № 9. P. 094330-1. https://www.doi.org/10.1063/1.3506681
- Hasegava H., Kimura A., Suzuki T. // Surf. Coat. Technol. 2000. V. 132. № 1. P. 76. https://www.doi.org/10.1016/S0257-8972(00)00737-4
- Yoo Y., Le D.P., Kim J.G. et al. // Thin Solid Films. 2008. V. 516. № 11. P. 3544. https://www.doi.org/10.1016/j.tsf.2007.08.069
- 9. Betsofen S.Ya., Plikunov V.V., Petrov L.M., Bannykh I.O. // Aviation Industry. 2007. № 4. P. 9.
- Tan S., Zhang X., Wu X., Fang F., Jiang J. // Appl. Surf. Sci. 2011. V. 257. № 6. P. 1850. https://www.doi.org/10.1016/j.apsusc.2010.08.114.
- 11. Chang Ch.-L., Lin Ch.-T., Tsai P.-Ch., Ho W.-Y., Wang D.-Y. // Thin Solid Films. 2008. V. 516. № 16.

P. 5324.

https://www.doi.org/10.1016/j.tsf.2007.07.087.

- 12. Discerens M., Patscheider J., Levy F. // Surf. Coat. Technol. 1998. V. 108. P. 241. https://www.doi.org/10.1016/S0257-8972(98)00560-X.
- 13. Блинков И.В., Волхонский А.О., Лаптев А.И., Свиридова Т.А., Табачкова Н.Ю., Белов Д.С., Ершова А.В. // Известия вузов. Порошковая металлургия и функциональные покрытия. 2013. № 2. С. 55. https://www.doi.org/10.17073/1997-308X-2013-2-54-59
- 14. Yea F., Suna X. // Prog. Nat. Sci.: Mater. Int. 2018.
 V. 28. № 1. P. 40. https://www.doi.org/10.1016/j.pnsc.2018.01.001.
- 15. Семенов А.П., Цыренов Д.Б., Семенова И.А., Смирнягина Н.Н. Синтез нанокристаллических покрытий TiN-Си на принципе сопряжения процессов вакуумно-дугового испарения Ті и магнетронного распыления Си в вакуумной установке ВУ-1Б. Издательства БНЦ СО РАН. Сборники, 2018. 134 с.
- Lozovan A.A. et al. // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 52. № 39. https://www.doi.org/10.1088/1757-899X/387/1/012048
- Лозован А.А., Бецофен С.Я., Ляховецкий М.А., Павлов Ю.С., Грушин И.А., Кубатина Е.П., Николаев И.А. // Известия вузов. Цветная металлургия. 2021. Т. 27. № 4. С. 70. https://www.doi.org/10.17073/0021-3438-2021-4-70-77
- Guleryuz C.G., Krzanowski J.E., Veldhuis S.C., Fox-Rabinovich G.S. // Surf. Coat. Technol. 2009. V. 203. P. 3370.
- Suciu C.V., Uchida T. // Parallel Grid Cloud Internet Computing. 2010. P. 560. https://www.doi.org/10.1109/3PGCIC.2010.96.
- Lesnevskiy L.N., Lyakhovetskiy M.A., Savushkina S.V. // J. Friction Wear. 2016. V. 37. № 3. P. 268. https://www.doi.org/10.3103/S1068366616030107
- Fouvry S., Kapsa Ph., Vincent L. // Wear. 1996. V. 200. № 1. P. 186. https://www.doi.org/10.1016/S0043-1648(96)07306-1
- Ma L., Eom K., Geringer J., Jun T-S., Kim K. // Coatings. 2019. V. 9. №. 8. P. 501. https://www.doi.org/10.3390/coatings9080501
- 23. Fouvry S., Kapsa Ph., Vincent L. // Fretting Fatigue: Current Technol. Practices. ASTM STP 2000. 1367. P. 49. https://www.doi.org/10.1520/STP14721S
- Kapsa P., Fouvry S., Vincent L. // Wear Mechanisms Mater. Practice. 2005. P. 317. https://www.doi.org/10.1002/9780470017029.ch13
- Holleck H., Schier V. // Surf. Coat. Technol. 1995. V. 76. № 1. P. 328. https://www.doi.org/10.1016/0257-8972(95)02555-3
- Liu A., Deng J., Cui H., Chen Y., Zhao J. // Int. J. Refractory Metals Hard Mater. 2012. V. 31. P. 82. https://www.doi.org/10.1016/j.ijrmhm.2011.09.010

Study of the Structure and Mechanisms of Wear of Solid-Lubricant Coatings of the TiN-Pb System

A. A. Lozovan^{1, *}, S. Ya. Betsofen¹, S. V. Savushkina^{1, **}, M. A. Lyakhovetsky^{1, ***}, L. N. Lesnevsky¹, I. A. Nikolaev¹, Yu. S. Pavlov¹, E. P. Kubatina¹, L. E. Agureev²

¹Moscow Aviation Institute (National Research University), Moscow, 125993 Russia

²JSC State Research Center "Keldysh Center", Moscow, 125438 Russia *e-mail: loz-plasma@vandex.ru

**e-mail: sveta 049@mail.ru

***e-mail: maxim.lvakhovetskiy@mai.ru

Composite solid lubricating coatings TiN–Pb with a thickness of ~2 μ m were produced by co-sputtering of Ti and Pb cathodes of two separate magnetrons on titanium alloy VT6. The Pb content in the coating averages ~12 at. %. The inner layer is coating characterized by a uniform distribution of Pb, and the upper layer is characterized by the presence of islands with a high content of Pb. The coating structure is globular, predominantly containing nanometer-sized crystallites. The absence of a columnar structure of the coating is associated with a high content of Pb, which is insoluble in the TiN matrix and interrupts the growth of crystallites. X-ray diffraction analysis showed the presence of Pb, PbO, and TiN phases in the coating. The diffraction lines are broadened, which indicates that the crystallite size is ~10–20 nm in the coating. Tribological tests of the TiN–Pb coating were carried out under conditions of low-amplitude friction – fretting wear in a wide range of loading parameters. In the full slip mode, a friction coefficient of ~0.25 is observed. During the transition from the full slip mode to the reciprocating slip mode, the energy dissipated during friction drops by more than three times, which is also reflected in a sharp decrease in the friction coefficient from 0.25 to 0.05.

Keywords: coating, magnetron sputtering, structure, texture, phases, titanium nitride, lead, solid lubricant coating, fretting, wear.