УДК 621.382

# ИЗМЕНЕНИЕ ЭНЕРГЕТИКИ ПОВЕРХНОСТНЫХ АДСОРБЦИОННЫХ ШЕНТРОВ ZnO ПРИ ЛЕГИРОВАНИИ ОЛОВОМ

© 2023 г. З. В. Шомахов<sup>*a*, \*, С. С. Налимова<sup>*b*, \*\*, В. М. Кондратьев<sup>*c*, *d*</sup>, А. И. Максимов<sup>*b*</sup>, А. А. Рябко<sup>*e*</sup>, В. А. Мошников<sup>*b*</sup>, О. А. Молоканов<sup>*a*</sup></sup></sup>

<sup>а</sup>Кабардино-Балкарский государственный университет им. Х.М. Бербекова, Нальчик, 360004 Россия <sup>b</sup>Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, 197022 Россия <sup>c</sup>Санкт-Петербург, 194021 Россия <sup>d</sup>Московский физико-технический институт, Долгопрудный, Московская область, 141701 Россия <sup>e</sup>Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, 194021 Россия \*e-mail: shozamir@yandex.ru \*\*e-mail: sskarpova@list.ru Поступила в редакцию 15.12.2022 г. После доработки 17.02.2023 г.

В настоящее время актуальной задачей является разработка наноструктур тройной оксидной системы Zn–Sn–O, представляющих практический интерес для различных областей, включая газовые сенсоры и фотокатализаторы, литий-ионные аккумуляторы, солнечные элементы. Наностержни станната цинка были синтезированы при гидротермальной обработке в растворе станната калия и карбамида предварительно полученных наностержней оксида цинка. С помощью методов растровой электронной микроскопии и дифракции обратно рассеянных электронов установлено, что полученные образцы имеют структуру  $Zn_2SnO_4$ , а их геометрические размеры по сравнению с исходными наностержнями оксида цинка не изменяются. Диаметр полученных структур составляет около 300 нм, а длина порядка 2 мкм. По данным рентгеновской фотоэлектронной спектроскопии, в результате гидротермальной обработки структура поверхности изменяется, атомы олова встраиваются в кристаллическую структуру оксида цинка. Исследование газочувствительных свойств слоев  $Zn_2SnO_4$  показало, что они более эффективны при детектировании паров изопропилового спирта по сравнению с исходным наностержнями оксида цинка. Слои  $Zn_2SnO_4$  позволяют детектировать пары изопропилового спирта уже при температурах порядка 150°С. Сенсорный сигнал по отношению к 1000 млн<sup>-1</sup> C<sub>3</sub>H<sub>7</sub>OH составляет 3.79.

Ключевые слова: станнат цинка, Zn<sub>2</sub>SnO<sub>4</sub>, гидротермальный синтез, наностержни, наноструктуры, газовые сенсоры, рентгеновская фотоэлектронная спектроскопия, химический сдвиг, оксид цинка, пары изопропилового спирта.

DOI: 10.31857/S1028096023080137, EDN: OADAEC

#### **ВВЕДЕНИЕ**

В последнее время в наноматериаловедении все большую роль играет направление, которое называют атомно-молекулярным дизайном и наноархитектоникой. Сущность направления заключается в разработке новых физико-химических методов контроля морфологии поверхности и изменения энергетики адсорбционных поверхностных центров для создания новых функциональных материалов. Традиционное физико-химическое направление заключается в том, что "термодинамические, кинетические условия получения и обработки материалов обеспечивают заданный состав и, соответственно, предопределяют функциональные свойства материалов" [1]. С развитием наноматериалов классическое определение потребовало дополнительной коррекции, так как свойства нанообъектов зависят от их размеров, формы, а также от свойств лигандов и границ раздела.

Большое распространение получили методы анализа кислотно-основных свойств (метод Та-

набе) для определения энергетики поверхностных адсорбционных центров [2, 3]. Для достоверности результатов передовые научные школы привлекают данные рентгеновской фотоэлектронной спектроскопии для оценки перераспределения электронной плотности.

Одними из наиболее интересных материалов, активно изучаемых в разных странах, являются наноструктурированные тройные оксидные системы Zn-Sn-O. Такие материалы применяются в различных областях, так как обладают высокой электропроводностью и подвижностью электронов, малым коэффициентом поглошения света в видимой области. В сложных тройных оксидах, таких как станнат кадмия (Cd<sub>2</sub>SnO<sub>4</sub>), станнат цинка ( $Zn_2SnO_4$ ) и титанат цинка ( $ZnTiO_3$ ), могут образовываться дополнительные фазы, а также большую роль могут играть гетероконтакты между функциональными материалами. Zn<sub>2</sub>SnO<sub>4</sub> является перспективным материалом с шириной запрещенной зоны 3.6 эВ, он также обладает хорошей химической и термической стабильностью. Станнат цинка может использоваться как прозрачный проводящий оксид [4], в качестве фотоэлектродов в сенсибилизированных красителями солнечных элементах [5], анодов для литий-ионных аккумуляторов [6], сенсоров [7] и фотокатализаторов [8].

Существует метастабильный ZnSnO<sub>3</sub> с гранецентрированной решеткой перовскита и стабильный  $Zn_2SnO_4$  с кубической структурой шпинели [9]. При кристаллизации в твердотельной реакции метастабильный станнат (метастаннат) можно получить термической диссоциацией гидроксистанната цинка при температурах в диапазоне от 300 до 500°С. Метастаннат распадается на стабильный ортостаннат цинка при нагревании выше 600°С и проявляет как диамагнитные, так и полупроводниковые свойства. Известны различные методы получения Zn<sub>2</sub>SnO<sub>4</sub>, например, высокотемпературная твердотельная реакция, механическое измельчение, термическое испарение, соосаждение, золь-гель синтез и гидротермальный метод [10]. Среди всех перечисленных способов гидротермальный метод выделятся простотой реализации, экономической эффективностью, возможностью массового производства и экологичностью.

Полые кубические нанокристаллы  $Zn_2SnO_4$ , полученные гидротермальным методом, могут детектировать ацетон на уровне 175 млрд<sup>-1</sup> при рабочей температуре 450°C [11]. Иерархические 3D структуры  $Zn_2SnO_4$  в форме цветов позволяют определять пары этанола при 380°C [12]. В [13] синтезированы 2D листы  $ZnSnO_3$ , которые могут быть использованы для создания сенсора формальдегида, работающего при температуре 100°C. Таким образом, разработка наноструктур тройной оксидной системы Zn–Sn–O представляет интерес для создания сенсоров в детектировании различных газов. Большое значение имеет дальнейшее усовершенствование газочувствительных свойств. Целью настоящей работы было исследование механизмов формирования, структуры и сенсорных свойств наноструктур системы Zn– Sn–O, полученных в результате модифицирования наностержней оксида цинка.

#### ЭКСПЕРИМЕНТ

Для получения образца системы Zn-Sn-O (ZTO) наностержни оксида цинка, полученные гидротермальным способом по методике [14-17], подвергали дополнительной гидротермальной обработке в водно-спиртовом растворе тригидрата станната калия  $K_2$ SnO<sub>3</sub> · 3H<sub>2</sub>O и карбамида (NH<sub>2</sub>)<sub>2</sub>CO концентрацией 0.005 и 0.155 моль/л соответственно. Гидротермальный процесс проводили в автоклаве при 170°С в течение 30 мин. Исследования условий синтеза [18, 19] показали, что в данных условиях изменяется химический состав наностержней без разрушения их одномерной структуры. После этого полученные образцы отжигали при 500°С в течение 30 мин. Заключительным этапом был процесс сушки с последующим отжигом в течение 15 мин при температуре 500°С. Образцы были синтезированы на подложках кремния и сенсорной платформе, представляющей собой керамическую подложку с встречно-штыревыми золотыми измерительными электродами.

Структура и фазовый состав образца тройной оксидной системы Zn-Sn-O были исследованы методами растровой электронной микроскопии (РЭМ) и дифракции обратно рассеянных электронов. В работе использовали микроскоп Zeiss Supra 25 (Zeiss, Германия), позволяющий проводить исследования методами рентгеноспектрального микроанализа и дифракции обратно рассеянных электронов. Химический состав поверхности был проанализирован с помощью рентгеновской фотоэлектронной спектроскопии. Экспериментальные спектры синтезированных композитных образцов и исходных наностержней оксида цинка были получены на рентгеновском фотоэлектронном спектрометре K-Alpha фирмы Thermo Scientific (США). Обзорные спектры, позволяющие определить все присутствующие в образцах элементы, были получены в диапазоне энергии связи 0-1350 эВ. Спектры отдельных элементов были сняты с целью более точного определения положения пиков.

Сенсорные свойства были протестированы при воздействии паров изопропилового спирта при различных температурах детектирования на специально разработанном лабораторном стенде [20, 21]. Величину сенсорного сигнала определяли как отношение сопротивления оксидного слоя в атмосфере воздуха к его сопротивлению в присутствии паров изопропилового спирта.

## РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведено РЭМ-изображение образца ZTO, полученного по описанной методике. Установлено, что образец представляет собой неупорядоченный массив одномерных нанообъектов диаметром ~300 нм и длиной ~2 мкм. Исследование образца ZTO методом дифракции обратно рассеянных электронов показало, что в результате гидротермальной обработки наностержней оксида цинка формируется соединение  $Zn_2SnO_4$ (рис. 2).

На рис. 3 показаны обзорные рентгеновские фотоэлектронные спектры наностержней оксида цинка до гидротермальной обработки и образца тройной оксидной системы Zn–Sn–O. На поверхности образца ZTO наблюдаются элементы Zn, Sn, O и C, а на поверхности исходных наностержней оксида цинка – Zn, O и C. Наличие пиков углерода связано с адсорбцией углеводородов на поверхности образцов.

Установлены закономерности изменения энергетики поверхностных адсорбционных центров. Основные результаты сводятся к следующему. Проанализированы спектры остовных уровней кислорода, цинка и олова. Проведено сравнение положения пиков цинка и кислорода в образцах ZTO и ZnO. Результаты представлены на рис. 4. В случае наностержней оксида цинка пики уровня Zn2p наблюдаются при 1021.2 эВ (Zn2p<sub>3/2</sub>) и 1044.3 эВ (Zn2 $p_{1/2}$ ), что соответствует заряженному состоянию Zn<sup>2+</sup> [22]. В случае образца ZTO положения пиков уровня Zn2p наблюдаются при большей относительно структуры ZnO энергии связи (1021.7 и 1045 эВ для подуровней Zn2p<sub>3/2</sub> и  $Zn2p_{1/2}$  соответственно). Эти значения энергии связи также соответствуют состоянию Zn<sup>2+</sup>. В оксиде цинка в пик кислорода O1s вносят вклад две составляющие: кислород кристаллической решетки с энергией связи 529.6 эВ и адсорбированный на поверхности кислород с энергией связи 531 эВ [23]. На поверхности образца ZTO также имеют место эти две формы кислорода: кислород кристаллической решетки имеет энергию связи 530.3 эВ, а адсорбированный кислород — 531.9 эВ. Относительно структуры оксида цинка пики кислорода также сдвинусь в сторону больших значений энергии связи. Пики уровня олова Sn3d на поверхности образца ZTO наблюдаются при 486.6 эВ (Sn3d<sub>5/2</sub>) и 494.9 эВ (Sn3d<sub>3/2</sub>). Такое положение пиков указывает на заряженное состояние Sn<sup>4+</sup> [24].

Наблюдаемый в эксперименте положительный сдвиг спектров O1s, Zn2p и Sn3d образца ZTO



Рис. 1. РЭМ-изображение образца ZTO.



**Рис. 2.** Картина дифракции обратно рассеянных электронов в локальной области по линиям Кикучи.



**Рис. 3.** Обзорные рентгеновские фотоэлектронные спектры образцов ZTO (*1*) и ZnO (*2*).



**Рис. 4.** Спектры остовных уровней элементов образцов ZTO и ZnO: a - Ols (для образца ZTO: 1 -экспериментальный спектр, 2 -составляющая  $O_{(a,c)}$ , 3 -составляющая  $O^{2-}$ ; для образца ZnO: 4 -экспериментальный спектр, 5 -составляющая  $O^{2-}$ , 6 -составляющая  $O_{(a,c)}$ ), 6 -Zn2p (1 -для образца ZTO, 2 -для образца ZnO), 8 -Sn3d для образца ZTO.

можно объяснить уменьшением плотности состояний внешних электронов вследствие замещения ионов Zn<sup>2+</sup> в решетке ионами Sn<sup>4+</sup> с большей электроотрицательностью (1.8 для Sn и 1.6 для Zn) [25].

В результате встраивания ионов Sn<sup>4+</sup> в кристаллическую решетку и замещения ими ионов Zn<sup>2+</sup> образуются связи Sn-O-Zn вместо исходных связей Zn–O–Zn. Электроотрицательность ионов Sn<sup>4+</sup> (1.8) в связях Sn–O–Zn больше, чем электроотрицательность ионов Zn<sup>2+</sup> (1.6) в Zn-O-Zn. Это способствует возможности переноса внешних электронов от ионов  $Zn^{2+}$  к ионам  $Sn^{4+}$ и уменьшает внешнюю электронную плотность ионов Zn<sup>2+</sup>. В результате энергия связи электронов на уровне Zn2p увеличилась после замещения ионами Sn<sup>4+</sup> [26]. Также это приводит к увеличению энергии связи O1s и Sn3d. В рассмотренных процессах увеличивается количество адсорбированного кислорода, что может быть связано с появлением дополнительных кислородных вакансий в результате гидротермальной обработки

наностержней оксида цинка и образования соединения  $Zn_2SnO_4$ .

Исследования газочувствительных свойств ZTO были проведены при двух температурах – 156 и 310°С – при воздействии паров изопропилового спирта концентрацией 257 и 1000 млн<sup>-1</sup>. Установлено, что величина сенсорного сигнала при температуре 310°С по отношению к 1000 млн<sup>-1</sup> изопропилового спирта составляет 5.36, а к 257 млн<sup>-1</sup> изопропилового спирта – 1.17. При температуре детектирования 156°С сенсорный сигнал по отношению к 1000 млн<sup>-1</sup> изопропилового спирта составляет 3.79, а к 257 млн<sup>-1</sup> изопропилового спирта - 1.14. В случае образца исходных наностержней оксида цинка величина сенсорного сигнала к 1000 млн<sup>-1</sup> изопропилового спирта при 310°С равна 2.38. Изменение сопротивления при 156°С при попеременном воздействии воздуха и паров изопропилового спирта концентрацией 1000 млн<sup>-1</sup> представлена на рис. 5. Из рисунка видно, что сопротивление восстанавливается до первоначального значения.



**Рис. 5.** Газочувствительная характеристика образца ZTO (156°C, 1000 млн<sup>-1</sup> C<sub>3</sub>H<sub>7</sub>OH). Цветом обозначены периоды подачи газа, без цвета — воздуха.

#### ЗАКЛЮЧЕНИЕ

Таким образом, гидротермальная обработка наностержней оксида цинка и образование структуры  $Zn_2SnO_4$  приводит к улучшению их сенсорных свойств. В результате исследований методом рентгеновской фотоэлектронной спектроскопии показано, что при выбранных условиях синтеза происходит изменение структуры поверхностных слоев наностержней ZnO с образованием  $Zn_2SnO_4$ . Разработанная методика синтеза может быть использована для получения газочувствительных слоев  $Zn_2SnO_4$ , позволяющих эффективно детектировать органические соединения в воздухе.

#### БЛАГОДАРНОСТИ

В.М. Кондратьев выражает благодарность Министерству науки и высшего образования Российской Федерации за финансовую поддержку работы (Соглашение 075-03-2023-106 от 13.01.2023, проект FSMG-2021-0005).

Конфликт интересов: Авторы заявляют, что у них нет конфликта интересов.

### СПИСОК ЛИТЕРАТУРЫ

- Ормонт Б.Ф. Введение в физическую химию и кристаллохимию полупроводников. М.: Высшая школа, 1982. 528 с.
- Сычев М.М., Минакова Т.С., Слижов Ю.Г., Шилова О.А. Кислотно-основные характеристики поверхности твердых тел и управление свойствами материалов и композитов. Санкт-Петербург: Химиздат, 2016. 276 с.
- 3. *Нечипоренко А.П.* Донорно-акцепторные свойства поверхности твердофазных систем. Индикаторный метод. Санкт-Петербург: Лань, 2017. 284 с.

4. *Arora I., Kumar P.* // J. Alloys Compd. 2020. V. 845. P. 156316.

https://doi.org/10.1016/j.jallcom.2020.156316

- Deevi K., Reddy V.K., Reddy I. // Mater. Lett. 2021. V. 283. P. 128848. https://doi.org/10.1016/j.matlet.2020.128848
- https://doi.org/10.1010/j.matiet.2020.128848
- 6. Santhoshkumar P., Prasanna K., Jo Y.N., Kang S.H., Joe Y.C., Lee C.W. // Appl. Surf Sci. 2018. V. 449. P. 514.
  - https://doi.org/10.1016/j.apsusc.2018.01.120
- Levkevich E.A., Maksimov A.I., Kirillova S.A., Nalimova S.S., Kondrat'ev V.M., Semenova A.A. // Proc. 2020 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering, EIConRus 2020. St. Petersburg and Moscow, 27–30 January, 2020. P. 984.

https://doi.org/10.1109/EIConRus49466.2020.9039451

- Jain S., Shah A.P., Shimpi N.G. // Nano-Struct. Nano-Objects. 2020. V. 21. P. 100410. https://doi.org/10.1016/j.nanoso.2019.100410
- Налимова С.С., Максимов А.И., Матюшкин Л.Б., Мошников В.А. // Физика и химия стекла. 2019. Т. 45. № 4. С. 311. https://doi.org/10.1134/S0132665119040097
- Das P.P., Roy A., Devi P.S. // Trans. Indian Ceram. Soc. 2016. V. 75. P. 147. https://doi.org/10.1080/0371750X.2016.1228482
- Hanh N.H., Van Duy L., Hung C.M., Duy N.V., Heo Y.-W., Hieu N.V., Hoa N.D. // Sensors Actuators. A. 2020. V. 302. P. 111834. https://doi.org/10.1016/j.sna.2020.111834
- Chen C., Li G., Li J., Liu Y. // Ceram. Int. 2015. V. 41. P. 1857. https://doi.org/10.1016/J.CERAMINT.2014.09.136
- Wang D., Pu X., Yu X., Bao L., Cheng Y., Xu J., Han S., Ma Q., Wang X. // J. Colloid Interface Sci. 2022. V. 608. P. 1074. https://doi.org/10.1016/j.jcis.2021.09.167
- 14. Anikina M.A., Ryabko A.A., Nalimova S.S., Maximov A.I. // J. Phys.: Conf. Ser. 2021. V. 1851. P. 012010. https://doi.org/10.1088/1742-6596/1851/1/012010
- Kondratev V.M., Bolshakov A.D., Nalimova S.S. // Proc. 2021 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021. St. Petersburg, 26–29 January 2021. P. 1163. https://doi.org/10.1109/ElConRus51938.2021.9396573
- Рябко А.А., Максимов А.И., Вербицкий В.Н., Левицкий В.С., Мошников В.А., Теруков Е.И. // Физика и техника полупроводников. 2020. Т. 54. Вып. 11. С. 1251.
  - https://doi.org/10.21883/FTP.2020.11.50098.9480
- Bobkov A., Varezhnikov A., Plugin I., Fedorov F.S., Goffman V., Sysoev V., Moshnikov V., Trouillet V., Geckle U., Sommer M. // Sensors. 2019. V. 19. № 19. P. 4265. https://doi.org/10.3390/s19194265
- Налимова С.С., Шомахов З.В., Пунегова К.Н., Рябко А.А., Максимов А.И. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2021. № 13. С. 910. https://doi.org/10.26456/pcascnn/2021.13.910
- 19. Налимова С.С., Шомахов З.В., Мошников В.А., Бобков А.А., Рябко А.А., Калажоков З.Х. // Журн. тех-

нической физики. 2020. Т. 90. С. 1132. http://doi.org/10.21883/JTF.2020.07.49447.276-19

 Рябко А.А., Бобков А.А., Налимова С.С., Максимов А.И., Левицкий В.С., Мошников В.А., Теруков Е.И. // Журн. технической физики. 2022. Т. 92. Вып. 5. С. 758.

https://doi.org/10.21883/JTF.2022.05.52382.314-21

- Nalimova S.S., Ryabko A.A., Maximov A.I., Moshnikov V.A. // J. Phys.: Conf. Ser. 2020. V. 1697. P. 012128. https://doi.org/10.1088/1742-6596/1697/1/012128
- Налимова С.С., Мошников В.А., Максимов А.И., Мякин С.В., Казанцева Н.Е. // Физика и техника полупроводников. 2013. Т. 47. Вып. 8. С. 1022. https://doi.org/10.1134/S1063782613080095
- Nalimova S.S., Bobkov A.A., Ryabko A.A., Maximov A.I., Moshnikov V.A., Shomakhov Z.V., Kalazhokov Z.K. // J. Phys.: Conf. Ser. 2020. V. 1658. P. 012034. http://doi.org/10.1088/1742-6596/1658/1/012034
- 24. Yan S., Yu Y., Zheng W., Cao Y. // Physica E. 2019. V. 106. P. 57. https://doi.org/10.1016/j.physe.2018.10.011
- 25. Yan S., He Z., Zhou G., Yu Y., Cao T. // Mater. Sci. Semicond. Process. 2021. V. 130. P. 105818. https://doi.org/10.1016/j.mssp.2021.105818
- 26. Wang E., Yang W., Cao Y. // J. Phys. Chem. C. 2009. V. 113. P. 20912. https://doi.org/10.1021/jp9041793

## Changes in the Energy of Surface Adsorption Sites of ZnO Doped with Sn

Z. V. Shomakhov<sup>1, \*</sup>, S. S. Nalimova<sup>2, \*\*</sup>, V. M. Kondratev<sup>2, 4</sup>, A. I. Maksimov<sup>2</sup>, A. A. Ryabko<sup>5</sup>, V. A. Moshnikov<sup>2</sup>, O. A. Molokanov<sup>1</sup>

<sup>1</sup>Kabardino-Balkarian State University, Nalchik, 360004 Russia <sup>2</sup>Saint-Petersburg Electrotechnical University "LETI", Saint-Petersburg, 197022 Russia <sup>3</sup>Alferov University, Saint-Petersburg, 194021 Russia <sup>4</sup>Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia <sup>5</sup>Ioffe Institute, Saint-Petersburg, 194021 Russia <sup>\*</sup>e-mail: shozamir@yandex.ru \*\*e-mail: sskarpoya@list.ru

Nowadays an important task is the development of nanostructures of Zn–Sn–O ternary oxide system, which are of practical interest for various fields, including gas sensors and photocatalysts, lithium-ion batteries, and solar cells. Zinc stannate nanowires were formed by hydrothermal treatment of preliminary synthesized zinc oxide nanowires in a solution of potassium stannate and carbamide. Using scanning electron microscopy and backscattered electron diffraction, the samples were found to have a  $Zn_2SnO_4$  structure, and their geometric dimensions did not change compared to the initial zinc oxide nanowires. The diameter of the obtained structures is about 300 nm, and the length is about 2  $\mu$ m. According to X-ray photoelectron spectroscopy data, as a result of hydrothermal treatment, the surface structure changes, tin atoms are incorporated into the crystal structure of zinc oxide. A study of the gas-sensitive properties of the  $Zn_2SnO_4$  layers have shown that they are more efficient in detecting isopropyl alcohol vapors at temperatures of about 150°C. The sensor signal with respect to 1000 ppm  $C_3H_7OH$  is 3.79.

**Keywords:** zinc stannate,  $Zn_2SnO_4$ , hydrothermal synthesis, nanowires, nanostructures, gas sensors, X-ray photoelectron spectroscopy, chemical shift, zinc oxide, isopropyl alcohol vapor.