ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ, 2023, № 9, с. 25–29

УДК 538.975

МНОГОСЛОЙНОЕ ПОКРЫТИЕ ZrO₂/Cr ДЛЯ ЗАЩИТЫ ЦИРКОНИЕВОГО СПЛАВА Э110 ОТ ВЫСОКОТЕМПЕРАТУРНОГО ОКИСЛЕНИЯ

© 2023 г. Д. В. Сиделев^{а,} *, С. Е. Ручкин^а, М. С. Сыртанов^а, А. В. Пирожков^а, П. Н. Максимов^а

^аНациональный исследовательский Томский политехнический университет, *Томск, 634050 Россия* *e-mail: sidelevdv@tpu.ru Поступила в редакцию 18.12.2022 г. После доработки 12.02.2023 г. Принята к публикации 12.02.2023 г.

Методом магнетронного распыления выполнено осаждение покрытий из хрома с многослойным барьерным слоем из чередующихся ZrO_2 и Cr с толщиной индивидуальных слоев 50 и 250 нм на подложки из циркониевого сплава Э110. Проведено изучение защитных свойств многослойного покрытия ZrO_2/Cr для циркониевого сплава Э110 в условиях высокотемпературного окисления на воздухе при температуре 1100°C в течение 10, 20, 30 и 40 мин. При длительных испытаниях на окисление обнаружена меньшая скорость изменения привеса образцов с ZrO_2/Cr покрытиями по отношению к образцам с Cr покрытием. Методом дифракции синхротронного излучения выполнено *in situ* исследование образцов при их линейном нагреве (50°C/мин) в диапазоне температур 25–1250°C и с последующей изотермической выдержкой в течении 20 мин в вакууме при давлении 10^{-3} Па. Установлено замедление взаимной диффузии Cr–Zr на границе раздела защитного покрытия с многослойным барьерным слоем из чередующихся слоями ZrO_2 и Cr и циркониевого сплава. Это приводит к сохранению большего объемного содержания фазы α -Cr в покрытиях и, как результат, увеличению длительности защитного состояния циркониевого сплава Э110 в условиях атмосферного окисления.

Ключевые слова: высокотемпературное окисление, циркониевые сплавы, магнетронное распыление, многослойные покрытия, рентгенофазовый анализ, *in situ* дифракция, синхротронное излучение. **DOI:** 10.31857/S1028096023090108, **EDN:** ZMECNV

введение

В настоящее время изучают большое количество материалов в качестве защитных покрытий на циркониевых оболочках тепловыделяющих элементов ядерных энергетических реакторов для повышения их стойкости к окислению в нормальных условиях эксплуатации (~360°С, 18.6 МПа) и при проектных авариях (до 1200°С) [1]. Недавно опубликованные данные [2-6] продемонстрировали, что циркониевые сплавы могут быть эффективно защищены от высокотемпературного окисления в течение продолжительного времени при магнетронном нанесении хромового покрытия на их внешнюю поверхность. Однако при окислении, когда температура поверхности оболочки достигает 900°С и выше, значительно возрастает коэффициент диффузии Cr в β-Zr, что приводит к заметному уменьшению толщины хромового покрытия и, соответственно, сокращает длительность защитного поведения циркониевой оболочки. Наиболее важно то, что в этом случае формируется эвтектический слой Zr-Cr с температурой плавления ~1332°С [7-9] и при повышении температуры окисления возможно оплавление поверхности оболочки тепловыделяющего элемента, вызывающее в дальнейшем ускоренное окисление. Для решения описанной выше проблемы необходимо использовать барьерный слой для покрытия из Cr, предотвращающий взаимную диффузию Cr–Zr. Перспективным для этого может быть диоксид циркония (ZrO₂) [10–12], т.к. этот материал имеет схожий коэффициент температурного расширения с Cr и Zr, высокую температуру плавления и достаточную адгезионную прочность к циркониевому сплаву. Однако керамические материалы не стойки к термоудару (высоким скоростям нагрева). Поэтому следует использовать иной подход для формирования барьерного слоя, когда он будет состоять из чередующихся твердых и мягких слоев, например, из

	Слои ZrO ₂ и Cr		Внешний слой Cr	<i>t</i> мин	<i>Q</i> , Вт/см ²	
	Ν	<i>h</i> , нм	$h_{ m Cr}$, мкм	<i>i</i> , <i>ми</i>	Cr	Zr
ZrO ₂ /Cr-50	40	50	1	370	39	25
$ZrO_2/Cr-250$	8	250		ļ		

Таблица 1. Параметры осаждения покрытий: N – количество слоев; h – толщина слоя ZrO₂ и Cr; t – время напыления; h_{Cr} – толщина внешнего слоя Cr; Q – плотность мощности разряда

слоев ZrO₂ и Cr. Пример использования такой системы для повышения трещиностойкости многослойного покрытия был продемонстрирован ранее в работах [13–15], увеличение стойкости к окислению и образованию трещин в случае использования многослойных барьерных покрытий также показано для системы CrN/Cr [16, 17]. Таким образом, цель настоящей работы – изучение стойкости циркониевого сплава Э110 с защитным многослойным покрытием ZrO₂/Cr к высокотем-пературному окислению на воздухе.

МАТЕРИАЛЫ И МЕТОДЫ

Покрытия были получены в вакуумной ионноплазменной установке, оснащенной мультикатодной магнетронной распылительной системой и ионным источником. Детальное описание установки представлено в нашей предыдущей работе [18]. В качестве подложек использовали пластины из циркониевого сплава Э110 (0.9-1.1 мас. % Nb, 0.06–0.10 мас. % О, Zr – остальное) размерами $15 \times 15 \times 2$ и $10 \times 10 \times 0.5$ мм, также использовали подложки из полированного Si(110). Подложки из сплава Э110 шлифовали и полировали с применением SiC бумаги различной зернистости (P600 \rightarrow P2500), далее промывали в дистиллированной воде и кипятили в спирте, сушка образцов происходила осушенным сжатым воздухом. Перед нанесением покрытий производили травление поверхности подложек пучком ионов Ar⁺ при следующих параметрах: ускоряющее напряжение 2.5 кВ, ток ионов 45 мА, давление Ar 0.15 Па.

Для получения покрытий была использована мультикатодная магнетронная распылительная система с тремя катодами из Cr (чистотой 99.95%, диаметром 90 мм) и двумя катодами из Zr (чистотой 99.95%, диаметром 90 мм). В настоящей работе было получено два типа покрытий: многослойные покрытия с барьерным слоем ZrO_2/Cr с толщиной индивидуальных слоев 50 (далее ZrO_2/Cr -50) и 250 нм (далее ZrO_2/Cr -250), параметры их осаждения представлены в табл. 1. Для сравнения использовано однослойное покрытие из Cr, полученное в работе [18].

Атмосферная печь ATS 3210 (Applied Test Systems Inc.) использована для высокотемператур-

ного окисления. В качестве держателей образцов применяли трубки из оксида алюминия. Начальная температура испытаний составляла 500° С, далее образцы нагревали до температуры 1100° С со скоростью $\sim 20-25^{\circ}$ С/мин, затем изотермически выдерживали в течение 10, 20, 30 и 40 мин. После этого камеру печи открывали и образцы охлаждали естественным образом до комнатной температуры ($\sim 20-25^{\circ}$ С/мин). Температурные профили испытаний показаны в работе [18]. Привес образцов определяли с помощью аналитических весов Sartorius CP124S с точностью не менее 10^{-4} г.

Толщина и морфология полученных покрытий на подложках из Si(110) определена с помощью растровой электронной микроскопии (РЭМ) на приборе Tescan Vega 3. Распределение элементов в образцах по глубине исследовали методом оптической эмиссионной спектроскопии тлеющего разряда (GDOES) с использованием HORIBA Scientific GD-Profiler 2. Фазовый состав образцов до и после окисления изучали методом рентгеновской дифракции с помощью Shimadzu XRD-7000S в конфигурации Брэгга–Брентано с использованием излучения Cu $K_{\alpha 1}$ при 40 кВ и 30 мА. Интерпретацию проводили с использованием ICDD PDF-4+ (версия базы 2022 г.).

Для изучения диффузионного поведения материалов циркониевого сплава Э110 с защитными покрытиями были проведены дифракционные измерения *in situ* при линейном нагреве (50°С/мин) в диапазоне температур 25–1250°С и с последующей изотермической выдержкой в течении 20 мин в вакууме при давлении 10^{-3} Па. Регистрацию дифракционных спектров проводили каждые 50°С. *In situ* дифракционные измерения были проведены с использованием синхротронного излучения на станции "Прецизионная дифрактометрия II" Сибирского центра синхротронного излучения (ИЯФ СО РАН, Новосибирск).

РЕЗУЛЬТАТЫ

На рис. 1 представлены РЭМ-изображения поперечного сечения покрытий на подложке из Si(110) и профили распределения Cr, Zr и O по глубине распыления в покрытиях, полученных на циркониевом сплаве Э110. Покрытия имеют плотную и столбчатую морфологию. Толщина

Рис. 1. РЭМ-изображения поперечного сечения покрытий на подложках из Si(110) и профили распределения Cr (1), Zr (2) и O (3) по глубине распыления покрытий ZrO₂/Cr-50 (а, в) и ZrO₂/Cr-250 (б, г) на подложке из сплава Э110.

обоих покрытий однородна по сечению и составляет 2.9 ± 0.1 мкм. По полученным спектрам наглядно видна структура покрытий, представляющая собой внешний слой Cr толщиной не менее 1 мкм и многослойный барьер из чередующихся слоев ZrO₂ и Cr. Для покрытия ZrO₂/Cr-250 зафиксировано 8 слоев ZrO₂ и Cr, для ZrO₂/Cr-50 слои ZrO_2 и Cr с толщиной ~50 нм.

Для первоначальной оценки защитных свойств осаждаемых покрытий выполнен расчет привеса образцов после их окисления (рис. 2). Для расчетов использована методика, представленная ранее в работе [18]. Согласно рис. 2, любое из покрытий значительно повышает стойкость сплава Э110 к окислению. Разница в привесе образцов без покрытий и с покрытиями значительна. Важно отметить, что в начале испытаний привес образцов с покрытиями из Cr и из ZrO₂/Cr увеличивается идентично, а после окисления в течение 25 мин образец с Cr покрытием демонстрирует более высокую скорость изменения привеса по отношению к образцам с ZrO_2/Cr покрытиями.

Для анализа различного поведения образцов с Cr и ZrO₂/Cr покрытиями были рассчитаны данные фазового состава образца с покрытием ZrO₂/Cr-250 в зависимости от времени изотермической выдержки на воздухе (рис. 3). Установлено, что содержание фазы α-Сг значительно уменьшается с 37 до 3 мас. % для образца с покрытием ZrO₂/Cr-250 при испытаниях на окисление с изо-

Рис. 2. Привес образцов из сплава Э110 без покрытия (1) [18], с однослойным Cr (2) [18] и многослойными покрытиями ZrO₂/Cr-50 (3) и ZrO₂/Cr-250 (4) после окисления на воздухе.

Рис. 3. Фазовый состав образца с покрытием ZrO₂/Cr-250 в зависимости от времени окисления: $1 - \text{Cr}; 2 - \text{Cr}_2\text{O}_3; 3 -$ моноклинная фаза $\text{ZrO}_2; 4 - \text{Cr}_2$ тетрагональная фаза ZrO_2 ; 5 – ZrN; 6 – Zr; 7 – Cr_2N .

термической выдержкой 30 и 40 мин. Для образца из сплава с Cr покрытием уменьшение объемного содержания фазы α-Cr с 72 до 30 мас. % было обнаружено в промежуток времени испытания от 20 до 30 мин [18].

На рис. 4 представлены данные in situ дифракции образцов с покрытиями ZrO₂/Cr-50 и ZrO₂/ Cr-250 при выдержке в течение 20 мин при температуре 1250°С. Оба образца циркониевого сплава содержат фазы: α-Zr(O), стабилизированную кислородом; β -Zr и оксида хрома Cr₂O₃. Известно [19], что кислород является стабилизатором α-фазы циркония, предел растворимости которого составляет до ~30 ат. %. Образование фазы α -Zr(O) обусловлено диффузией кислорода из покрытий

Рис. 4. *In situ* дифракционные спектры образцов с многослойными покрытиями $ZrO_2/Cr-50$ (а) и $ZrO_2/Cr-250$ (б) в процессе изотермической выдержки при 1250°С в течение 20 мин.

ZrO₂ внутрь циркониевого сплава. Присутствие фазы β -Zr в образцах объясняется $\alpha \rightarrow \beta$ фазовым переходом, типичным для циркония и его сплавов в области температуры 862°С. Формирование фазы Cr₂O₃ вызвано окислением поверхности образцов в экспериментальной камере ввиду присутствия остаточного кислорода. Для образца с многослойным покрытием ZrO₂/Cr-50 при выдержке в течение первых минут изотермической стадии при 1250°С зарегистрировано образование интерметаллической фазы Cr₂Zr (рис. 4а). Формирование данной интерметаллической фазы связано с процессом взаимной диффузии хрома и циркония при высокой температуре. Аналогичный результат был ранее описан в работах [3, 8, 20] для образца циркониевого сплава с однослойным Cr покрытием. Таким образом, уменьшение толщины остаточного слоя хрома на поверхности циркониевого сплава при испытаниях на окисление ввиду взаимной диффузии Cr и Zr приводит к снижению длительности защитного поведения образцов с одиночным хромовым и многослойным ZrO₂/Cr-50 покрытиями в условиях высокотемпературного окисления.

В случае испытания образца с многослойным покрытием $ZrO_2/Cr-250$ образование фазы Cr_2Zr не наблюдали на всем временном промежутке при линейном нагреве до $1250^{\circ}C$ и при последующей изотермической выдержке в течение 20 мин (рис. 4б). Это указывает на то, что толщина ZrO_2 слоя (250 нм) достаточна для замедления взаимной диффузии хрома и циркония при данных условиях испытаний. В свою очередь, замедление

Cr–Zr диффузии приводит к сохранению большей толщины остаточного слоя Cr в процессе окисления образцов с ZrO₂/Cr-250 покрытием и, таким образом, обеспечивает большую длительность защитного поведения циркониевого сплава с таким покрытием при рассмотренных в работе условиях.

ЗАКЛЮЧЕНИЕ

В настоящей работе показана возможность применения многослойного барьера из чередующихся слоев ZrO₂ и Cr для подавления взаимной лиффузии Cr и Zr применительно к зашите циркониевого сплава Э110 от высокотемпературного окисления. Методом in situ дифракции установлено замедление диффузии Cr и Zr при линейном нагреве до 1250°С и с последующей изотермической выдержкой в течение 20 мин для образца из циркониевого сплава Э110 с многослойным покрытием ZrO₂/Cr-250. Замедление Cr–Zr диффузии приводит к сохранению большей толщины защитного слоя Cr на поверхности образца, что подтверждено расчетами содержания фазы α-Сг методом рентгеновской дифракции образцов после их атмосферного окисления в течение 10, 20, 30 и 40 мин при температуре 1100°С. За счет этого применение многослойного барьера ZrO₂/Cr позволяет увеличить длительность зашитного поведения циркониевого сплава Э110 в условиях высокотемпературного окисления.

БЛАГОДАРНОСТИ

Исследование выполнено при финансовой поддержке РФФИ и Госкорпорации "Росатом" в рамках научного проекта 20-21-00037. В работе использовалось оборудование ЦКП "СЦСТИ" на базе "Комплекс ВЭПП-3" в ИЯФ СО РАН.

Конфликт интересов: Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Brachet J.C., Rouesne E., Guilbert T. et al. // Corrosion Sci. 2020. V. 167. P. 108537. https://www.doi.org/10.1016/j.corsci.2020.108537
- Krejcí J., Kabatova J., Manoch F. et al. // Nucl. Engineer. Technol. 2020. V. 52. Iss. 3. P. 597. https://www.doi.org/10.1016/j.net.2019.08.015
- Park J.H., Kim H.-G., Park J. et al. // Surf. Coat. Technol. 2015. V. 280. P. 256. https://www.doi.org/10.1016/j.surfcoat.2015.09.022
- 4. *Chen H., Wang X., Zhang R.* // Coatings. 2020. V. 10. № 9. P. 808. https://www.doi.org/10.3390/coatings100908085
- 5. Tang C., Stueber M., Seifert H.J., Steinbrueck M. // Corrosion Rev. 2017. V. 35. P. 141. https://www.doi.org/10.1515/corrrev-2017-0010
- Isaev R.Sh., Safonov D.A., Dzhumaev P.S., Korenevskiy E.L. // Tsvetnye Metally. 2022. V. 10. P. 27. https://www.doi.org/10.17580/tsm.2022.10.04
- Yang J., Stegmaier U., Tang C. et al. // J. Nucl. Mater. 2021. V. 547. P. 152806. https://www.doi.org/10.1016/j.jnucmat.2021.152806
- Wang Y., Zhou W., Wen Q. et al. // Surf. Coat. Technol. 2018. V. 344. P. 141. https://www.doi.org/10.1016/j.surfcoat.2018.03.016

- Brachet J.C., Idarraga-Trujillo I., Le Flem M. et al. // J. Nucl. Mater. 2019. V. 517. P. 268. https://www.doi.org/10.1016/j.jnucmat.2019.02.018
- 10. Xu C., Wang X., Zhouet Q. et al. // Mater. Character. 2023. V. 197. № 112701, https://doi.org/10.1016/i.matchar.2023.112701
- Wang X., Liao Y., Xu Ch. et al. // J. Al. Comp. 2021. V. 883. P. 160798. https://doi.org/10.1016/j.jallcom.2021.160798
- Wang X., Guan H., Liaoet Y. et al. // Corros. Sci. 2021. V. 187. P. 109494. https://doi.org/10.1016/j.corsci.2021.109494
- 13. *Musil J.* // RSC Advances. 2015. Iss. 74. P. 60482. https://www.doi.org/10.1039/C5RA09586G
- Kuprin A.S., Belous V.A., Voyevodin V.N. et al. // J. Nucl. Mater. 2015. V. 465. P. 400. https://www.doi.org/10.1016/j.jnucmat.2015.06.016
- Meng C., Yang L., Wu Y. et al. // J. Nucl. Mater. 2019. V. 515. P. 354. https://www.doi.org/10.1016/j.jnucmat.2019.01.006
- Sidelev D.V., Ruchkin S.E., Syrtanov M.S. et al. // Surf. Coat. Technol. 2022. V. 433. P. 128131. https://www.doi.org/10.1016/j.surfcoat.2022.128131
- Xiang Y., Liu Ch., Li Zh. et al. // Surf. Coat. Technol. 2022. V. 429. P. 127947. https://doi.org/10.1016/j.surfcoat.2021.127947
- Sidelev D.V., Syrtanov M.S., Ruchkin S.E. et al. // Coatings. 2021. V. 11. № 2. P. 227. https://www.doi.org/10.3390/coatings11020227
- 19. Pechin W.H., Williams D.E., Larsen W.L. // ASM Trans. 1964. V. 57. P. 464.
- 20. Kashkarov E.B., Sidelev D.V., Pushilina N.S. et al. // Corrosion Sci. 2022. V. 203. P. 110359. https://www.doi.org/10.1016/j.corsci.2022.110359

Multilayer ZrO₂/Cr Coating for Protection of E110 Zirconium Alloy from High-Temperature Oxidation

D. V. Sidelev^{1, *}, S. E. Ruchkin¹, M. S. Syrtanov¹, A. V. Pirozhkov¹, P. N. Maximov¹

¹National Research Tomsk Polytechnic University, Tomsk, 634050 Russia *e-mail: sidelevdv@tpu.ru

Cr coatings with multilayer barrier composed of alternating ZrO_2 and Cr layers with an individual thickness of each layer of 50 and 250 nm were prepared onto substrates made from zirconium E110 alloy using magnetron sputtering. The protective multilayer ZrO_2/Cr coating on zirconium E110 alloy were studied under hightemperature oxidation in air at a temperature of $1100^{\circ}C$ for 10, 20, 30 and 40 min. The lower rate of change in weight gain of samples having ZrO_2/Cr barriers was found in comparison with samples coated by chromium during long-term oxidation tests. Diffraction measurements of samples were done under linear heating $(50^{\circ}C/min)$ in a range of temperature of $25-1250^{\circ}C$ and next isothermal treatment for 20 min under high vacuum $(10^{-3} Pa)$ using the *in situ* diffraction. It was found that the mutual diffusion of Cr-Zr at the interface between the protective coating having the multilayer barrier composed of alternating ZrO_2 and Cr layers and zirconium alloy can be slowed down. This results in the retention of high content of α -Cr phase in the coating and, as a result, in the increase of the duration of the protective state of E110 alloy under the high-temperature oxidation in air.

Keywords: high-temperature oxidation, zirconium alloys, magnetron sputtering, multilayer coatings, ZrO₂ and Cr coatings, X-ray diffraction, in situ diffraction, synchrotron radiation.