Том 56

2020

УДК 621.391.15

© 2020 г. П. Бойваленков¹, К. Делчев², Д.В. Зиновьев³, В.А. Зиновьев³

О q-ИЧНЫХ КОДАХ С ДВУМЯ РАССТОЯНИЯМИ d И d+1

Рассматриваются q-ичные блоковые коды с ровно двумя расстояниями: d и d+1. Приведено несколько конструкций таких кодов. В линейном случае показано, что все такие коды получаются простой модификацией линейных эквидистантных кодов. Получены верхние границы на максимальную мощность таких кодов. Приведены таблицы нижних и верхних границ для малых значений q и n.

Ключевые слова: коды с двумя расстояниями, эквидистантные коды, границы для кодов.

DOI: 10.31857/S0555292320010040

§1. Введение

Положим $Q = \{0, 1, \ldots, q-1\}$. Любое подмножество $C \subseteq Q^n$ называется кодом и обозначается через $(n, N, d)_q$ – код длины n и мощности N = |C| с минимальным расстоянием (Хэмминга) d. Для линейных кодов используется обозначение $[n, k, d]_q$ (т.е. $N = q^k$). Эквидистантным называется $(n, N, d)_q$ -код C, у которого для любых двух различных кодовых слов x и y имеет место равенство d(x, y) = d, где d(x, y) – расстояние (Хэмминга) между x и y. Код C называется равновесным и обозначается через $(n, N, w, d)_q$, если каждое кодовое слово c имеет вес wt(c) = w.

Мы рассматриваем коды, имеющие только два расстояния: d и d + 1. Одна из наших целей – посмотреть, насколько можно увеличить мощность эквидистантных кодов, допуская еще одно значение для ближайшего расстояния между кодовыми словами. Как будет показано, при допущении еще одного расстояния многообразие кодов значительно увеличивается по сравнению с эквидистантными кодами. Такие коды могут представлять интерес как коды с почти постоянной энергией при амплитудно-фазовой модуляции (поскольку они почти эквидистантны). Мы также увидим, что такие коды часто бывают связаны с эквидистантными. В частности, мы покажем, что все линейные коды такого типа можно получить из линейных эквидистантных кодов. В то же время, нам не известны никакие исследования по кодам с двумя последовательными расстояниями.

Через $(n, N, \{d, d+1\})_q$ будем обозначать $(n, N, d)_q$ -код $C \subset Q^n$ со следующим свойством: для любых двух различных кодовых слов x и y из C имеет место соотношение $d(x, y) \in \{d, d+1\}$. Нас будут интересовать конструкции, классификация и

¹ Работа выполнена при частичной финансовой поддержке Национальной научной программы "Информация и технологии связи для единого цифрового рынка в науке, образовании и безопасности" (ICTinSES) Министерства образования и науки Болгарии. Часть исследования была выполнена во время визита первого автора в отделение математических наук Университета Пердью в Форт-Уэйне.

² Работа выполнена при финансовой поддержке Национальной программы "Молодые ученые и постдокторанты" Министерства образования и науки Болгарии.

³ Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (номер проекта 19-01-00364).

границы на максимально возможный размер $(n, N, \{d, d+1\})_q$ -кодов. Мы покажем, что линейные q-ичные коды с двумя расстояниями d и d + 1 полностью известны и могут быть получены простой модификацией линейных эквидистантных кодов. Предварительные результаты этой статьи (а именно, двоичный случай и гипотеза для $q \ge 3$) были приведены в [1]. Одновременно с нами этот же результат для линейных q-ичных кодов мощности $N \ge q^3$ был доказан в [2] другим методом.

§2. Предварительные сведения

Напомним следующую классическую границу Джонсона на размер $N_q(n, d, w)$ *q*-ичного равновесного $(n, N, w, d)_q$ -кода [3]:

$$N_q(n, d, w) \leqslant \frac{(q-1)dn}{qw^2 - (q-1)(2w-d)n},$$
(1)

если $qw^2 > (q-1)(2w-d)n.$

О пределение 1. Уравновешенной неполной блок-схемой $B(v, k, \lambda)$ называется структура инцидентности (X, B), где $X = \{x_1, \ldots, x_v\}$ – множество элементов, а $B = \{B_1, \ldots, B_b\}$ – набор k-элементных множеств B_i (называемых блоками), таких что любые два различных элемента множества X содержатся ровно в $\lambda \ge 0$ блоках из B (здесь $1 \le k \le v - 1$).

Двумя другими параметрами блок-схемы $B(v, k, \lambda)$ являются b = |B| (количество блоков) и r (число блоков, содержащих один фиксированный элемент):

$$r = \lambda \frac{v-1}{k-1}, \quad b = \lambda \frac{v(v-1)}{k(k-1)}, \quad$$
если $\lambda > 0$

 $(\lambda = 0$ соответствует случаю k = 1 и, тем самым, b = rv).

Всякая блок-схема $B(v, k, \lambda)$ полностью описывается своей матрицей инцидентности $A = [a_{i,j}]$, где $a_{i,j} = 1$, если $a_i \in B_j$, и $a_{i,j} = 0$ в противном случае. Таким образом, A – двоичная $(v \times b)$ -матрица со столбцами веса k, такая что любые две различные строки содержат ровно λ общих ненулевых позиций.

Схема $B(v,k,\lambda)$ называется разрешимой (и обозначается через $RB(v,k,\lambda)$), если ее матрица инцидентности A имеет вид

$$A = [A_1 \mid \dots \mid A_r], \tag{2}$$

где для любого $i \in \{1, ..., r\}$ каждая строка матрицы A_i имеет вес 1. Блок-схема $B(v, k, \lambda)$ называется m-квазиразрешимой (схемой $NRB_m(v, k, \lambda)$) [4], если ее матрица инцидентности A представляется в виде

$$A = [A_1 \mid \dots \mid A_n], \quad n = \frac{bk}{v - m},$$
(3)

таком что выполнены следующие свойства:

- (1) Каждая подматрица A_j размера $v \times \frac{v-m}{k}$ состоит из строк веса 1, за исключением m нулевых строк, номера которых принадлежат множеству V_j , $|V_j| = m$, $V_j \subset \{1, 2, ..., v\}$;
- (2) Множества V_1, \ldots, V_n (как набор из *n* блоков размера *m*) индуцируют блок-схему $B(v, m, \xi)$ (называемую *conymcmsyющей*) для некоторого ξ .

Нам потребуются следующие результаты работ [4,5].

Теорема 1. Всякая т-квазиразрешимая блок-схема $NRB_m(v,k,\lambda)$ индуциру-ет q-ичный эквидистантный равновесный $(n,N,w,d)_q$ -код C с параметрами q =

$$= (v - m + k)/k, N = v,$$

$$n = \frac{\lambda v(v - 1)}{(k - 1)(v - m)}, \quad w = \frac{\lambda (v - 1)}{k - 1}, \quad d = \frac{\lambda (v + m - k)}{k - 1},$$

лежащий на границе Джонсона (1), с дополнительным свойством, что п его блоков размера m = (n - w)N/n, образованных номерами нулевых позиций, задают блок-схему $B(v, m, \xi)$.

Напомним следующий широкий класс q-ичных эквидистантных кодов, построенных в [6].

Теорема 2. Пусть p – простое, $a \ s, \ \ell \ u \ h$ – положительные целые числа. Тогда существует эквидистантный $(n, N, d)_q$ -код с параметрами

$$q = p^{sh}, \quad n = \frac{p^{s(h+\ell)} - 1}{p^s - 1}, \quad N = p^{s(h+\ell)}, \quad d = p^{s\ell} \frac{p^{sh} - 1}{p^s - 1}.$$

Определение 2 [7]. Пусть G – абелева группа порядка q в аддитивной записи. Квадратная матрица D с элементами из G порядка $q\mu$ называется разностной матрицей и обозначается через $D(q, \mu)$, если покомпонентные разности любых двух различных строк матрицы D содержат любой элемент группы G ровно μ раз.

Очевидно, матрица $D(q,\mu)$ индуцирует эквидистантный $(q\mu - 1, q\mu, \mu(q-1))_q$ -код [6].

§3. Конструкции

3.1. Комбинаторные конструкции. Обозначим через $W_q(n)$ шар радиуса 1 с центром в нулевом векторе, т.е. $W_q(n) = \{x \in Q^n : \operatorname{wt}(x) \leq 1\}.$

Конструкция 1a. Шар $W_q(n)$ является $(n, (q-1)n+1, \{1, 2\})_q$ -кодом.

Конструкция 1b. Добавляя к конструкции 1а проверку на четность (по модулю 2), получаем $(n + 1, (q - 1)n + 1, \{2, 3\})_q$ -код, который будем обозначать через $W_q^*(n + 1)$. Для любого кодового слова $(0 \dots 0 a 0 \dots 0)$ из $W_q(n)$ мы образуем кодовое слово $(0 \dots 0 a 0 \dots 0 | a)$ из $W_q^*(n + 1)$.

<u>Конструкция 2</u>. Эквидистантный $(n, N, d)_q$ -код C дает два $(n', N, \{d', d'+1\})_q$ -кода, а именно $(n-1, N, \{d-1, d\})_q$ -код C_1 , получаемый удалением (любой) позиции из C, и $(n+1, N, \{d, d+1\})_q$ -код C_2 , получаемый добавлением одной позиции к C.

Объединяя конструкции 1a, 1b с конструкцией 2, получаем следующие две конструкции.

Конструкция За. Эквидистантный $(n_1,N_1,d)_{q_1}$ -код
и $W_{q_2}(n_2)=(n_2,N_2,\{1,2\})$ дают $(n,N,\{d+1,d+2\})_q$ -код с параметрами

 $q = \max\{q_1, q_2\}, \quad n = n_1 + n_2, \quad N = \min\{N_1, N_2\}.$

<u>Конструкция 3b.</u> Эквидистантный $(n_1, N_1, d)_{q_1}$ -код и $W^*_{q_2}(n_2) = (n_2, N_2, \{2, 3\})$ дают $(n, N, \{d+2, d+3\})_q$ -код с параметрами

$$q = \max\{q_1, q_2\}, \quad n = n_1 + n_2, \quad N = \min\{N_1, N_2\}$$

<u>Конструкция 4</u>. Если существует r взаимно ортогональных латинских квадратов порядка q, то существует семейство $(s + 2, q^2, \{s + 1, s + 2\})_q$ -кодов C_s , где $s = 0, 1, \ldots, r$. Для степени простого q код C_s линеен.

Объединяя конструкции 2 и 4, получаем следующее:

<u>Конструкция 5.</u> Для любой степени простого числа q существует семейство (линейных) $[n, 2, \{d, d+1\}]_q$ -кодов с параметрами

$$n = s(q+1) + r, \quad d = sq + r - 1, \quad s \ge 1, \quad r = 1, \dots, q+1.$$

Конструкция 6. Если существует разностная матрица $D(q, \mu)$, то существуют $(n, \overline{N}, \{d, d+1\})_q$ -коды с параметрами

$$egin{array}{ll} n = q \mu - 2, & N = q \mu, & d = (q-1) \mu - 1, \ n = q \mu, & N = q \mu, & d = (q-1) \mu. \end{array}$$

Хорошо известный эквидистантный $[4, 2, 3]_3$ -код C_1 и $[2, 2, \{1, 2\}]_3$ -код C_2 (конструкция 4) по конструкции 3 дают $[6, 2, \{4, 5\}]_3$ -код C, этот код не очень хорош, но линеен. Используя $[3, 2, \{2, 3\}]_3$ -код C_3 (конструкция 4) и применяя конструкцию 3, получаем $[7, 2, \{5, 6\}]_3$ -код, хуже оптимального по мощности на 1.

Из эквидистантного (13, 27, 9)₃-кода (теорема 2) с помощью конструкции 2 получаем (14, 27, {9, 10})₃-код, что лучше, чем случайный (14, 18, {9, 10})₃-код, а также (12, 27, {8, 9})₃-код, лежащий на верхней границе (наилучший найденный случайный код имеет мощность 18).

Разностная матрица D(4,3) (см. [8]) без тривиального столбца является оптимальным эквидистантным (11, 12, 8)₃-кодом. Разностная матрица D(3,4) (см. [8]) без тривиального столбца является оптимальным эквидистантным (11, 12, 9)₄-кодом.

Хорошо известный эквидистантный $(5, 16, 4)_4$ -код C_1 и $(5, 16, \{1, 2\})_4$ -код C_2 (конструкция 1) по конструкции 3 дают $(10, 16, \{5, 6\})_4$ -код (не являющийся хорошим – имеется случайный $(10, 20, \{5, 6\})_4$ -код). Двукратное повторение $(5, 16, 4)_4$ -кода C_1 дает оптимальный $(10, 16, 8)_4$ -код.

Из эквидистантного $(6,9,5)_4$ -кода [4] с помощью двукратного повторения получаем $(12,9,\{10,11\})_4$ -код (лучше, чем случайный). Из эквидистантного $(21,64,16)_4$ -кода [6] получаем $(22,64,\{16,17\})_4$ - и $(20,64,\{15,16\})_4$ -коды с помощью конструкции 2. Из эквидистантного $(9,10,8)_5$ -кода [5] с помощью конструкции 2 получаем $(8,10,\{7,8\})_5$ - и $(10,10,\{8,9\})_5$ -коды. С помощью конструкции 5 получаем следующее семейство $(n, N, \{d, d+1\})_5$ -кодов:

n = 9 + s, N = 10, d = 8 + s - 1, $s = 0, 1, \dots, 6$.

В частности, при s = 0 получаем оптимальный $(9, 10, 8)_5$ -код, а при $s \ge 2$ все получающиеся коды являются новыми. С помощью конструкции 1 из этого эквидистантного $(9, 10, 8)_5$ -кода получаем $(11, 9, \{9, 10\})_5$ -код.

Из эквидистантного $(6, 25, 5)_5$ -кода получаем семейство $(6+s, 25, \{5+s-1, 5+s\})_5$ -кодов, где $s = 0, 1, \ldots, 6$, что для $s \ge 1$ дает лучшие (или новые) коды.

Хорошо известная разрешимая блок-схема (15, 35, 7, 3, 1) эквивалентна оптимальному эквидистантному $(7, 15, 6)_5$ -коду [6]. Теперь, применяя конструкцию 5, получаем из него коды со следующими параметрами: n = 7 + s, N = 15, d = 6 + s - 1, $s = 1, \ldots, 6$.

Из аффинной блок-схемы (16, 4, 1) (см. [5]) получаем эквидистантный равновесный (16, 16, 15, 14)₆-код, из которого в свою очередь получаем (16, 17, {14, 15})₆-код (добавлением нулевого кодового слова).

3.2. Случайные коды. Мы использовали компьютерную программу для генерации случайных кодов по простому эвристическому алгоритму. В качестве начального множества выбирается один нулевой вектор в простейшей версии или наилучшей из найденных кодов на единицу меньшей длины в более сложной. Далее пространство поиска состоит из векторов веса d и d + 1. Оно выделяется из начальной базы данных всех q^n векторов длины n, генерируемой (один раз) стандартным лексикографическим образом. Программа добавляет случайно выбираемые подходящие векторы до тех пор, пока получаемый код является хорошим (т.е. пока в нем есть только расстояния d и d+1). Можно совершать много итераций, однако обычно наилучшие коды (получаемые таким образом) находятся довольно быстро. Мощности таких случайных кодов приведены в §6 вместе с мощностями кодов, полученных из конструкций текущего параграфа.

Результаты показывают, что такой подход хорош, когда d = 1, 2 и когда d близко к n - 1, но не позволяет находить хорошие коды с богатой структурой. Вероятно, он также не хорош для средних значений d.

$\S4.$ Линейные $(n, N, \{d, d+1\})_q$ -коды

Здесь мы опишем результаты о классификации для случая линейных кодов с расстояниями d и d+1. В частности, мы покажем, что линейные коды с двумя расстояниями d и d+1 полностью известны. Нижеследующая теорема была доказана в двоичном случае в [1], где также была выдвинута гипотеза для q-ичного случая. Мы дадим здесь простое доказательство этой гипотезы для случая $q \ge 2$ и $k \ge 2$, опирающееся только на соображения из теории кодирования. Соответствующий результат для $k \ge 3$ был одновременно доказан в [2] на основе геометрических рассуждений.

Пусть C - q-ичный (линейный) эквидистантный $[n, 3, q^2]_q$ -код длины $n = q^2 + q + 1$ с расстоянием q^2 и мощностью q^3 .

Лемма. Пусть С – вышеуказанный код, представленный в виде $(n \times q^3)$ -матрицы над \mathbb{F}_q (обозначим ее через [C]). Тогда [C] нельзя представить в виде конкатенации двух матриц, т.е. [C] = [C₁ | C₂], где [C₁] – матрица размера $(x \times q^3)$ (здесь x < (n-1)/2), задающая линейный $[x, q^3, \{d, d+1\}]_q$ -код C_1 .

Доказательство. Если $x \in C$, то, очевидно, $\alpha x \in C$ для всех $\alpha \in \mathbb{F}_q^*$. Тем самым, $q^3 - 1$ ненулевых кодовых слов кода C разбиваются на $q^2 + q + 1$ классов. Таким образом, мы получили код на классах таких элементов. Он задается $(n \times n)$ -матрицей P.

Предположим, что матрица P является конкатенацией двух матриц P_1 и P_2 , т.е. $P=[P_1 \mid P_2],$ где P_1 – матрица размера $x\times(q^2+q+1),$ соответствующая классам эквивалентности линейного $[x,q^3,\{d,d+1\}]$ -кода C_1 . Тогда каждое слово кода C_1 имеет x-dили x-d-1позиций, содержащих нули. Для упрощения дальнейших вычислений положим $\ell=x-(d+1)$ (поскольку вместо веса слова мы будем рассматривать число его нулевых позиций).

Так как P соответствует эквидистантному коду с кодовым расстоянием q^2 , то, очевидно, P_2 соответствует (линейному) $[n - x, 3, q^2 - d - 1]_q$ -коду C_2 с двумя расстояниями $q^2 - d - 1$ и $q^2 - d$. Поэтому без ограничения общности можно считать, что $x \leq n/2$. Поскольку $n = q^2 + q + 1$, будем предполагать, что $x \leq q(q + 1)/2$ и $\ell \leq (q + 1)/2$ (действительно, каждая ненулевая строка (так же как и каждый столбец) матрицы P содержит q + 1 нулей).

Так как любой столбец P содержит q + 1 нулей, в матрице P имеется n(q + 1) нулевых элементов. Пусть матрица P_1 содержит ровно η слов веса d + 1 (т.е. с ℓ нулями) и остальные $n - \eta$ слов веса d (т.е. с $\ell + 1$ нулями). Таким образом, имеем

$$\ell \eta + (\ell + 1)(n - \eta) = (q + 1)x.$$

Выражая отсюда η , получаем

$$\eta = (\ell + 1)n - (q + 1)x. \tag{4}$$

Поскольку C_1 – линейный код размерности 3, для любой пары координатных позиций существует ровно одна строка матрицы P_1 с нулями в этих позициях. Всего

имеется x координатных позиций и x(x-1)/2 пар позиций. С другой стороны, имеется η строк с ℓ нулями (каждая строка дает $\ell(\ell-1)/2$ пар координат) и $n-\eta$ строк с $\ell+1$ нулями (каждая строка дает $\ell(\ell+1)/2$ пар координат). Итак, получаем равенство

$$\frac{x(x-1)}{2} = \frac{\ell(\ell-1)}{2}\eta + \frac{\ell(\ell+1)}{2}(n-\eta).$$
(5)

Наша цель – показать, что равенство (5) не может выполняться при любом x из интервала [2, q(q+1)/2]. С учетом (4) выражение (5) принимает вид

$$\begin{aligned} x(x-1) &= \ell(\ell-1)\eta + \ell(\ell+1)n - \ell(\ell+1)\eta = \ell(\ell+1)n - 2\ell\eta = \\ &= \ell(\ell+1)n - 2\ell[(\ell+1)n - (q+1)x] = 2\ell(q+1)x - \ell(\ell+1)n. \end{aligned}$$

Таким образом, приходим к следующему квадратному уравнению на x:

$$x^{2} - (2\ell(q+1)+1)x + \ell(\ell+1)n = 0.$$
(6)

Покажем, что его дискриминант отрицателен. Итак, следует проверить, что

$$(2\ell(q+1)+1)^2 < 4\ell(\ell+1)n.$$

С учетом того, что $n = q^2 + q + 1$, это равносильно

$$\begin{split} & 4\ell^2(q^2+2q+1)+4\ell(q+1)+1<4\ell(\ell+1)(q^2+q+1)=\\ & = 4\ell^2(q^2+q+1)+4\ell(q^2+q+1). \end{split}$$

После упрощения получаем

$$4\ell^2 q + 1 < 4\ell q^2$$

Так как $\ell \leq (q+1)/2$, последнее неравенство очевидно выполнено при $\ell \geq 1$. Таким образом, мы получили, что подматрицы P_1 не существует, и следовательно, линейный $[q^2 + q + 1, 3, q^2]_q$ -код C не может быть представлен в виде конкатенации двух линейных кодов C_1 и C_2 типа $(n, N, \{d, d+1\})_q$.

Теорема 3. Пусть С – q-ичный линейный $[n, k, d]_q$ -код с двумя расстояниями d u d + 1, где $k \ge 2$. Тогда С может быть получен конструкцией 2 предыдущего параграфа, т.е. удалением или добавлением произвольного столбца в проверочной матрице линейного q-ичного эквидистантного кода, за исключением случая k = 2и $q \ge 3$, когда С может быть получен конструкцией 2 или конструкцией 5.

Доказательство. Вначале рассмотрим случай k = 2. В этом случае может иметься $[n, 2, d]_q$ -код C с двумя расстояниями d и d + 1, получаемый также конструкцией 5. Пусть C_1 – эквидистантный $[n_1, 2, d_1]_q$ -код с параметрами $n_1 = s(q+1)$, $d_1 = sq$, а $C_2 - [n_2, 2, d_2]_q$ -код с параметрами $n_2 = r$, $d_2 = r - 1$. Порождающая матрица G кода C имеет вид $G = [G_1 | G_2]$, где G_1 и G_2 – порождающие матрицы кодов C_1 и C_2 , имеющие (с точностью до эквивалентности) следующий вид: $G_1 = [G_0 | \dots | G_0]$ является *s*-кратным повторением матрицы

$$G_0 = \begin{bmatrix} a_0 & a_1 & a_1 & a_1 & \dots & a_1 \\ a_1 & a_0 & a_1 & a_2 & \dots & a_{q-1} \end{bmatrix},$$

где используются обозначения $\mathbb{F}_q=\{a_0=0,a_1=1,a_2,\ldots,a_{q-1}\},$ а матрица G_2 имеет вид

$$G_2 = \begin{bmatrix} a_0 & a_1 & a_1 & a_1 & \dots & a_1 \\ a_1 & a_0 & a_1 & a_2 & \dots & a_{r-2} \end{bmatrix}.$$

Все эти факты широко известны и не нуждаются в доказательствах. Единственное, что требуется отметить, это тот факт, что все элементы второй строки матрицы G_2 , начиная со второй позиции, должны быть различными, и это условие необходимо и достаточно для того, чтобы G_2 была порождающей матрицей кода C_2 .

Теперь мы утверждаем, что любой $[n, 2, d]_q$ -код с двумя расстояниями должен иметь такой вид. Это очевидно для случая $n \leq q$. Для бо́лыших n предположим, что код C_1 длины q + 1 не является эквидистантным $[q + 1, 2, q]_q$ -кодом, т.е. имеет минимальное расстояние d = q - 1. Поскольку его среднее расстояние известно (и равно q), отсюда заключаем, что этот код имеет три расстояния, а именно q - 1, qи q + 1. Обозначая через α_w число кодовых слов веса w и учитывая, что $\alpha_{q-1} = \alpha_{q+1}$, получаем

$$\alpha_{q-1} = \alpha_{q+1} = q - 1, \quad \alpha_q = (q - 1)^2.$$
(7)

Как мы знаем, $[r,2,r-1]_q$ -код C_2 имеет вес
аr-1и r.Обозначая через β_w число кодовых слов вес
аw,получаем, что

$$\beta_{r-1} = (q-1)r, \quad \beta_r = (q-1)(q+1-r).$$
(8)

Таким образом, конкатенация этих двух кодов C_1 и C_2 должна была бы быть кодом C с по крайней мере тремя расстояниями d, d+1 и d+2, где $d \leq q+r-1$, т.е. получаем противоречие. Значит, код C_1 длины (q+1)s должен быть эквидистантным. Следовательно, любой $[n, 2, d]_q$ -код C с двумя расстояниями d и d+1может быть получен одной из двух конструкций, а именно конструкцией 2 или 5.

Теперь для завершения доказательства нам остается лишь показать, что всякий $[n,3,d]_q$ -код с двумя расстояниями d и d+1 может быть получен только конструкцией 2. Предположим противное – пусть C_1 является $[n_1,3,d_1]_q$ -кодом с двумя расстояниями d_1 и $d_1 + 1$ длины n_1 в интервале $2 \leq n_1 \leq q^2 + q - 1$. Это означает, что существует $[n_2,3,d_2]_q$ -код C_2 (дополнительный к C_1) с двумя расстояниями d_2 и $d_2 + 1$ длины $n_2 = q^2 + q + 1 - n_1$. Следовательно, существует q-ичный эквидистантный $[n,3,q^2]_q$ -код C длины $n = q^2 + q + 1$, который можно представить в виде конкатенации кодов C_1 и C_2 . Но согласно лемме это невозможно. Так как любой $[n,k \geq 4,d]_q$ -код с двумя расстояниями d и d+1 укорочением сводится к $[n',3,d]_q$ -код с двумя расстояниями d и d+1, то это и завершает доказательство.

Замечание 1. Рассматриваемые коды с весами d и d+1 являются подклассом более широкого класса кодов с двумя весами – классического объекта алгебраической теории кодирования. Однако такие коды с весами d и d+1 ранее не рассматривались в литературе (см., например, дающий исчерпывающую информацию обзор [9]). Таким образом, теорема 3 является результатом о классификации для линейных кодов с весами d и d+1. Как хорошо известно [9,10], двойственный код любого линейного проективного кода с двумя весами равномерно упакован (и следовательно, полностью регулярен – см. [11,12]). Коды с двумя весами, получаемые удалением одной позиции из линейных эквидистантных кодов, также индуцируют полностью регулярные коды и хорошо известны [11,12].

Замечание 2. Доказательство леммы, приведенное выше, можно обобщить на любой эквидистантный код C, обладающий следующим свойством: для любых двух координатных позиций, скажем, i и j, $1 \leq i, j \leq n$, существуют λ кодовых слов $\mathbf{c} = (c_1, \ldots c_n)$ кода C с двумя нулями в этих двух позициях, т.е. $c_i = c_j = 0$, где λ одинаково для всех i и j. Это означает, например, что никакой двоичный нелинейный (n, N, d) = (4m - 1, 4m, 2m)-код Адамара нельзя представить в виде конкатенации двух кодов C_1 и C_2 (длин $n_i \geq 2$) с двумя последовательными расстояниями d_1, d_1+1 и $d_2, d_2 + 1$ соответственно. Но эту лемму нельзя использовать для доказательства соответствующей теоремы, где линейность весьма существенна. Заметим также, что это сведение к квадратному уравнению не дает никакого результата для кодов с расстояниями d и $d+\delta$, где $\delta \ge 2$. Даже для следующего случая $\delta = 2$ соответствующие коды существуют (в случае $q = 2^m$ [9]), а решение квадратного уравнения сводится к решению диофантова уравнения, что выходит за рамки настоящей статьи.

§5. Верхние границы

Нас интересуют верхние границы на величину

 $A_q(n; \{d, d+1\}) = \max\{|C|: C$ является $(n, |C|, \{d, d+1\})$ -кодом},

максимальную возможную мощность кода в Q^n с двумя расстояниями d и d+1.

Общая граница гармонического анализа Дельсарта [10]

$$A_q(n; \{d, d+1\}) \leq 1 + (q-1)n + (q-1)^2 \binom{n}{2}$$

и ее улучшение Барга-Мусина [13]

$$A_q(n; \{d, d+1\}) \leq 1 + (q-1)^2 \binom{n}{2}$$

(при (2d+1)q < 2n(q-1)+2-q) кажутся слишком общими, в то время как наша ситуация довольно специфическая.

5.1. Границы линейного программирования. Для фиксированных *n* и *q* (нормированные) многочлены Кравчука определяются как

$$Q_i^{(n,q)}(t) = \frac{1}{r_i} K_i^{(n,q)}(d), \quad d = \frac{n(1-t)}{2}, \quad r_i = (q-1)^i \binom{n}{i}.$$

где

$$K_i^{(n,q)}(d) = \sum_{j=0}^i (-1)^j (q-1)^{i-j} \binom{d}{j} \binom{n-d}{i-j}$$

– (обычные) многочлены Кравчука. Если многочлен $f(t) \in \mathbb{R}[t]$ имеет степень $m \ge 0$, то он имеет единственное разложение вида

$$f(t) = \sum_{i=0}^{m} f_i Q_i^{(n,q)}(t).$$

Следующая теорема является адаптацией для оценки $A_q(n; \{d, d+1\})$ общей границы линейного программирования Дельсарта. Доказательства таких границ обычно считаются фольклорными (см., например, [10, 14]).

Теорема 4. Пусть
 $n \geqslant q \geqslant 2,$ и пусть f(t) — вещественный многочлен стелен
и $m \leqslant n,$ такой что

- (A1) $f(t) \leq 0$ dist $t \in \{1 2d/n, 1 2(d+1)/n\};$
- (A2) Коэффициенты в разложении по многочленам Кравчука $f(t) = \sum_{i=0}^{m} f_i Q_i^{(n,q)}(t)$ удовлетворяют условию $f_i \ge 0$ для всех *i*.

Тогда $A_q(n; \{d, d+1\}) \leq f(1)/f_0$. Если эта граница достигается для некоторого $(n, N, \{d, d+1\})_q$ -кода C и многочлена f(t), то f(1-2(d+i)/n) = 0, i = 0, 1, когда существуют точки кода C на расстоянии d+i, i = 0, 1, и при этом $f_iM_i(C) = 0$, где

$$M_i(C) = \sum_{x,y \in C} Q_i^{(n,q)} (1 - 2d(x,y)/n) = 0$$

- і-й момент кода С.

Большинство верхних границ, приведенных в таблицах ниже, получены согласно теореме 4 симплексным методом (т.е. получены наилучшие возможные границы из теоремы 4). Теперь опишем некоторые случаи, когда возможен аналитический вид хороших границ.

Многочлен первой степени f(t) = t - 1 + 2d/n дает границу Плоткина, достигающуюся для многих больших значений d. Оптимизация по многочленам второй степени дает следующий результат.

Теорема 5. Если $d \ge (n-1)(q-1)/q$, то

$$A_q(n; \{d, d+1\}) \leqslant \frac{q^2 d(d+1)}{n^2 (q-1)^2 - n(q-1)(2dq+q-1) + dq^2(d+1)}.$$
(9)

Если некоторый $(n, N, \{d, d+1\})_q$ -код C достигает этой границы, то $M_2(C) = 0$, и кроме того, $M_1(C) = 0$ при d > (n-1)(q-1)/q.

Доказательство. Рассмотрим многочлен второй степени

$$f(t) = \left(t - 1 + \frac{2d}{n}\right)\left(t - 1 + \frac{2d + 2}{n}\right) = f_0 + f_1 Q_1^{(n,q)}(t) + f_2 Q_2^{(n,q)}(t),$$

где

$$f_{0} = \frac{4(n^{2}(q-1)^{2} - n(q-1)(2dq + q - 1) + dq^{2}(d+1))}{n^{2}q^{2}},$$

$$f_{1} = \frac{8(q-1)(dq - (q-1)(n-1))}{nq^{2}},$$

$$f_{2} = \frac{4(q-1)^{2}(n-1)}{nq^{2}}.$$

Условие (А1), очевидно, выполнено.

Условие $f_0 > 0$ равносильно квадратичному по dq неравенству, которое выполнено при $n \ge q$. Условие $f_1 \ge 0$ равносильно $dq \ge (n-1)(q-1)$, а $f_2 > 0$ очевидно. Таким образом, f(t) удовлетворяет (A1) и (A2) при условии, что $d \ge (n-1)(q-1)/q$. Вычисляя теперь $f(1)/f_0$, получаем границу (9).

Условия достижимости границы (9) вытекают из общих условий теоремы 4.

В некоторых случаях граница (9) достигается. В частности, $A_q(n; \{d, d+1\}) \leq q^2$ для d = n - 1, что достигается при (q, n) = (3, 3), (3, 4), (4, 5) и (5, 6). Далее, в силу (9) имеем $A_2(7; \{4, 5\}) = A_2(7; \{3, 4\}) = 8$, $A_2(10; \{5, 6\}) = 12$, $A_3(12, \{8, 9\}) =$ $= A_3(13, \{9, 10\}) = 27$. Случаи, когда граница (9) достигается, в приведенных ниже таблицах отмечены знаком d2.

Кроме того, если граница (9) достигается для некоторого кода C и при этом d > (n-1)(q-1)/q (т.е. $f_1 > 0$), то $M_1(C) = M_2(C) = 0$. Таким образом, C является ортогональной таблицей силы 2. В частности, мощность C кратна q^2 . Это соображение позволяет улучшить границу (9) на единицу, приводя к точным значениям $A_2(12, \{5, 6\}) = A_2(12, \{6, 7\}) = A_2(13, \{6, 7\}) = 13$ и границе $13 \le A_3(6, \{4, 5\}) \le 14$. Эти случаи отмечены в таблицах знаком n. Еще один интересный случай – это $A_3(7, \{4, 5\}) = 15$, где граница (9) достигается при d = (n-1)(q-1)/q.

Дальнейшие границы можно получить с помощью специально подобранных многочленов. Например, многочлен

$$f(t) = 1 + (q-1)nQ_{(n(q-1)+1)/q}^{(n,q)}(t)$$

дает $A_q(n,\{1,2\})=(q-1)n+1$ (см. конструкцию 1
а), когда qкратноn-1.В частности, получае
м $A_2(n,\{1,2\})=n+1$ при нечетном n.Аналогично, многочлен

$$f(t) = 1 + \frac{n+2}{2}Q_{n/2}^{(n,2)}(t) + \frac{n}{2}Q_{1+n/2}^{(n,2)}(t),$$

где n четно, дает $A_2(n, \{1, 2\}) \leq f(1)/f_0 = n + 2$. Если эта граница достигается, то условия дополняющей нежесткости линейного программирования теоремы 4 дают уравнения $M_{n/2} = M_{1+n/2} = 0$, которые вместе с тривиальным уравнением $A_d(x) + A_{d+1}(x) = |C| - 1$ позволяют вычислить (используя MAPLE) распределения расстояний кодов (с двумя расстояниями), достигающих этой границы. Здесь $A_{d+i}(x) = |\{y \in C : d(x, y) = d + i\}|, i = 0, 1, x \in C$. Поскольку это распределение расстояний оказывается не целочисленным, получаем противоречие. Таким образом, оба многочлена доказывают, что $A_2(n, \{1, 2\}) = n + 1$ (что достигается конструкцией 1а). Такие случаи отмечены в таблицах знаком a.

Дальнейшее тщательное изучение условий достижения границ линейного программирования могут, возможно, привести к другим улучшениям в таблицах.

5.2. Границы через сферические коды. Коды в Q^n можно естественным образом отобразить на сферу $\mathbb{S}^{(q-1)n-1}$. Вначале биективно отобразим символы алфавита $0, 1, \ldots, q-1$ в вершины правильного симплекса размерности q-1, а затем покоординатно отобразим кодовые слова q-ичного кода $C \subset Q^n$ в $\mathbb{R}^{(q-1)n}$. Нетрудно видеть, что все векторы имеют одинаковую норму, и после нормировки получаем сферический код на сфере $\mathbb{S}^{(q-1)n-1}$. Этот сферический код имеет мощность |C| и максимальное скалярное произведение 1 - 2dq/(q-1)n (т.е. минимальный квадрат расстояния 2dq/(q-1)n). Очевидно, q-ичные коды с расстояниями d и d+1 отображаются в сферические коды с двумя расстояниями с квадратами расстояний 2dq/(q-1)n и 2(d+1)q/(q-1)n. Из этого вытекает следующая верхняя граница на $A_q(n, \{d, d+1\})$.

Теорема 6. Если
$$d > (\sqrt{2(q-1)n}-1)/2$$
, то
 $A_q(n, \{d, d+1\}) \leq 2(q-1)n+1.$

Доказательство. В [15] было доказано, что если мощность множества в \mathbb{R}^n с двумя расстояниями a и b, a < b, больше чем 2n + 3, то отношение a^2/b^2 равно (k-1)/k, где k – положительное целое число, такое что $2 \leq k \leq (\sqrt{2n} + 1)/2$. В работе [16] ограничение 2n + 3 было улучшено до 2n + 1.

В нашей ситуации $a^2/b^2 = d/(d+1) = (k-1)/k$, откуда следует, что d = k-1 должно принадлежать интервалу $[1, (\sqrt{2(q-1)n} - 1)/2]$. Иными словами, не существует q-ичных кодов с расстояниями d и d+1 и мощностью, большей 2(q-1)n+1, если $d > (\sqrt{2(q-1)n} - 1)/2$, и таким образом, $A_q(n, \{d, d+1\}) \leq 2(q-1)n+1$.

Граница теоремы 6, как правило, лучше, чем симплексный метод, для достаточно больших n и средних значений d. В первый раз это происходит при (n, d) = (13, 4) для q = 2, (9, 3) для q = 3, (8, 3) для q = 4 и (7, 4) для q = 5.

Мы не нашли границ линейного или полуопределенного программирования для сферических кодов, которые давали бы хорошие границы для наших кодов.

§6. Таблицы

Мы приводим таблицы для q = 2, 3, 4, 5. По горизонтали даются значения d, по вертикали – значения n. Нижние границы показывают наилучший из найденных на компьютере случайных кодов и кодов по конструкциям из §3. Все найденные случайные коды предоставляются авторами по запросу.

Таблица 1

 Γ раницы для q = 2

n																	
10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$\overline{7}$	8	7 - 10	8^{d2}	8^{d2}	2*	2*											
8	9^a	8 - 12	8 - 10	8-10	4*	2*	2*										
9	10	9-14	8 - 16	8 - 10	6*	4*	2*	2*									
10	11^a	10 - 16	8 - 16	10 - 16	12^{d2}	6^{d2}	2 - 3	2*	2^{*}								
11	12	11 - 18	8 - 19	10 - 20	12^{d2}	12^{d2}	4*	2*	2^{*}	2^{*}							
12	13^a	12 - 20	8 - 25	10 - 21	13^n	13^n	4*	4*	2^{*}	2^{*}	2^{*}						
13	14	13 - 22	8-26	10 - 27	13 - 19	13^n	8^{d2}	4*	2^{*}	2^{*}	2^{*}	2^{*}					
14	15^a	14 - 24	$8 - 29^{t6}$	$10 - 29^{t6}$	14 - 27	14 - 19	16^{d2}	8*	4^{*}	2 - 3	2^{*}	2^{*}	2^{*}				
15	16	15 - 26	$8 - 31^{t6}$	$11 - 31^{t6}$	14 - 29	14 - 30	16	16^{*}	4*	4*	2^{*}	2^{*}	2^{*}	2^{*}			
16	17^a	16 - 28	$8 - 33^{t6}$	$11 - 33^{t6}$	$14 - 33^{t6}$	$15 - 33^{t6}$	16 - 18	16 - 18	6*	4^{*}	2^{*}	2^{*}	2^{*}	2^{*}	2^{*}		
17	18	17 - 30	$9 - 35^{t6}$	$12 - 35^{t6}$	$14 - 35^{t6}$	$15 - 35^{t6}$	17 - 22	16 - 18	10^*	6^{*}	4^{*}	2^{*}	2^{*}	2^{*}	2^{*}	2^{*}	
18	19^a	18 - 32	$9 - 37^{t6}$	$12 - 37^{t6}$	$14 - 37^{t6}$	$15 - 37^{t6}$	17 - 35	18 - 22	20*	10	4^{*}	2 - 4	2^{*}	2^{*}	2^{*}	2^{*}	2^{*}

Таблица 2

1 panning f din g = 0

10	1	2	3	4	5	6	7	8	9	10	11	12	13
3	9	9											
4	9^a	9	9										
5	11 - 13	9 - 17	11 - 13	6									
6	13 - 15	11 - 18	11 - 16	$13 - 14^n$	4								
7	15^a	13 - 27	11 - 27	15^{d2}	10	3							
8	17 - 19	15 - 31	11 - 30	15 - 31	18 - 19	9	3						
9	19 - 21	17 - 33	$11 - 37^{t6}$	15 - 36	18 - 25	18 - 21	6	3					
10	21^a	19 - 45	$11 - 41^{t6}$	$15 - 41^{t6}$	$18 - 41^{t6}$	18 - 21	13 - 14	3					
11	23 - 25	21 - 45	$11 - 45^{t6}$	$15 - 45^{t6}$	18 - 45	18 - 45	18 - 25	12^{*}	4^{*}	3^*			
12	25 - 27	23 - 51	$12 - 49^{t6}$	$15 - 49^{t6}$	$18 - 49^{t6}$	$18 - 49^{t6}$	18 - 30	27^{d2}	9^{*}	4^{*}	3^*		
13	27^a	25 - 63	$13 - 53^{t6}$	$15 - 53^{t6}$	$18 - 53^{t6}$	$18 - 53^{t6}$	$18 - 53^{t6}$	18 - 27	27^{d2}	6^{*}	3^*	3^*	
14	29 - 31	27 - 63	$14 - 57^{t6}$	$15 - 57^{t6}$	$18 - 57^{t6}$	$18 - 57^{t6}$	$18 - 57^{t6}$	18 - 45	27 - 31	12 - 13	6^*	3^*	3^*

Таблица 3

Γ раницы для $q = 4$											
d											
3	4	5	6	7							

	n					6						
	10	1	2	3	4	5	6	7	8	9	10	11
	5	16^a	16 - 25	16	16^{*}							
	6	19 - 22	16 - 37	16 - 37	18 - 22	9^{*}						
	7	22 - 26	19 - 41	16 - 43	18-41	21 - 26	8^{*}					
	8	25 - 28	22 - 50	$16 - 49^{t6}$	$18 - 49^{t6}$	21 - 32	19 - 28	5^{*}				
	9	28^a	25 - 67	16 - 86	$18 - 55^{t6}$	$21 - 55^{t6}$	19 - 28	$15 - 20^*$	5^*			
]	10	31 - 34	28 - 72	16 - 90	$18-61^{t6}$	$20-61^{t6}$	$19-61^{t6}$	21 - 34	16^{*}	5^*		
1	11	34 - 38	31 - 78	16 - 134	$18-67^{t6}$	$21 - 67^{t6}$	$19-67^{t6}$	20 - 56	22 - 38	12^{*}	4*	
1	12	37 - 40	34 - 97	18 - 152	$18 - 73^{t6}$	$21 - 73^{t6}$	$19-73^{t6}$	$20 - 73^{t6}$	22 - 43	21 - 40	9^*	4^{*}
-				-				-				

Верхние границы берутся из наилучших границ линейного программирования, получаемых симплексным методом (без пометок в таблицах), с помощью специальных многочленов из п. 5.1 (помечены знаками d2, n и a соответственно), соответствующих наилучших известных границ на $A_q(n,d)$ [17] (помечены знаком *) и границ теоремы 6 (помечены знаком t6).

Таблица 4

	\mathbf{r}													
n														
11	1	2	3	4	5	6	7	8	9					
5	25	25 - 30	25 - 30	$19 - 25^*$										
6	25^a	25 - 51	25 - 51	19 - 25	$15 - 25^*$									
7	29 - 34	25 - 66	25 - 81	$19 - 57^{t6}$	25 - 34	$12 - 15^*$								
8	33 - 40	29 - 75	25 - 88	$19 - 65^{t6}$	$22 - 65^{t6}$	26 - 40	10^{*}							
9	37 - 43	33-83	25 - 130	$21 - 73^{t6}$	$22 - 73^{t6}$	26 - 65	25 - 43	$8 - 10^{*}$						
10	41 - 45	37 - 114	25 - 177	$21 - 81^{t6}$	$22 - 81^{t6}$	$26 - 81^{t6}$	25 - 49	25 - 45	7^*					

Границы лля a = 5

Авторы благодарят рецензента за подробные и вдумчивые замечания относительно первоначальной версии настоящей статьи, а также Г. Кабатянского за полезные обсуждения, касающиеся рассматриваемых кодов.

СПИСОК ЛИТЕРАТУРЫ

- Boyvalenkov P., Delchev K., Zinoviev D.V., Zinoviev V.A. Codes with Two Distances: d and d + 1 // Proc. 16th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT-XVI). Svetlogorsk, Russia. Sept. 2-8, 2018. P. 40-45. Available at https://www. dropbox.com/s/h7u89lh8vyirww9/Proceedings\%20final.pdf?dl=0.
- Landjev I., Rousseva A., Storme L. On Linear Codes of Almost Constant Weight and the Related Arcs // C. R. Acad. Bulgare Sci. 2019. V. 72. № 12. P. 1626–1633.
- 3. Бассалыго Л.А. Новые верхние границы для кодов, исправляющих ошибки // Пробл. передачи информ. 1965. Т. 1. № 4. С. 41–44.
- 4. Бассалыго Л.А., Зиновьев В.А., Лебедев В.С. Об *m*-квазиразрешимых блок-схемах и *q*-ичных равновесных кодах // Пробл. передачи информ. 2018. Т. 54. № 3. С. 54–61.
- 5. Бассалыго Л.А., Зиновьев В.А. Замечание об уравновешенных неполных блок-схемах, почти разрешимых блок-схемах и *q*-ичных равновесных кодах // Пробл. передачи информ. 2017. Т. 53. № 1. С. 55–59.
- Семаков Н.В., Зиновьев В.А., Зайцев Г.В. Класс максимальных эквидистантных кодов // Пробл. передачи информ. 1969. Т. 5. № 2. С. 84–87.
- 7. Beth T., Jungnickel D., Lenz H., Design Theory. Cambridge: Cambridge Univ. Press, 1986.
- 8. Богданова Г.Т., Зиновъев В.А., Тодоров Т.Й. О построении q-ичных эквидистантных кодов // Пробл. передачи информ. 2007. Т. 43. № 4. С. 13–36.
- 9. Calderbank R., Kantor W.M. The Geometry of Two-Weight Codes // Bull. London Math. Soc. 1986. V. 18. № 2. P. 97–122.
- 10. Delsarte P. An Algebraic Approach to the Association Schemes of Coding Theory // Philips Res. Rep. Suppl. 1973. N° 10.
- 11. Семаков Н.В., Зиновьев В.А., Зайцев Г.В. Равномерно упакованные коды // Пробл. передачи информ. 1971. Т. 7. № 1. С. 38–50.
- 12. Боржес Ж., Рифа Ж., Зиновьев В.А. О полностью регулярных кодах // Пробл. передачи информ. 2019. Т. 55. № 1. С. 3–50.
- Barg A., Musin O. Bounds on Sets with Few Distances // J. Combin. Theory Ser. A. 2011. V. 118. № 4. P. 1465–1474.
- 14. Levenshtein V.I. Krawtchouk Polynomials and Universal Bounds for Codes and Designs in Hamming Spaces // IEEE Trans. Inform. Theory. 1995. V. 41. № 5. P. 1303–1321.
- 15. Larman D.G., Rogers C.A., Seidel J.J. On Two-Distance Sets in Euclidean Space // Bull. London Math. Soc. 1977. V. 9. № 3. P. 261–267.
- Neumaier A. Distance Matrices, Dimension, and Conference Graphs // Nederl. Akad. Wetensch. Indag. Math. 1981. V. 43. № 4. P. 385–391.
- Brouwer A.E. Tables of Bounds for q-ary Codes. Published electronically at www.win.tue. nl/~aeb/.

Бойваленков Петър Институт математики и информатики Болгарской академии наук, София, Болгария Юго-западный университет, Благоевград, Болгария, технический факультет peter@math.bas.bg Делчев Константин Институт математики и информатики Болгарской академии наук, София, Болгария math_k_delchev@yahoo.com Зиновьев Виктор Александрович Зиновьев Дмитрий Викторович Институт проблем передачи информации им. А.А. Харкевича РАН, Москва zinov@iitp.ru dzinov@iitp.ru

Поступила в редакцию 29.05.2019 После доработки 27.10.2019 Принята к публикации 29.11.2019