Том 56 2020 Вып. 2

УДК 621.391.1:519.2

© 2020 г. **М.В. Бурнашев**

НОВЫЕ ГРАНИЦЫ В ЗАДАЧЕ ПРОВЕРКИ ГИПОТЕЗ С ИНФОРМАПИОННЫМИ ОГРАНИЧЕНИЯМИ¹

Рассматривается задача проверки гипотез, в которой мы не можем наблюдать часть данных. Наш помощник наблюдает пропущенные данные и может передать нам некоторую ограниченную информацию о них. Какая ограниченная информация позволит нам сделать наилучшие статистические выводы? В частности, какая минимальная информация достаточна для получения тех же результатов, как если бы мы непосредственно наблюдали все данные? Получены оценки для величины этой минимальной информации и некоторые подобные результаты.

Ключевые слова: проверка гипотез, информационные ограничения, вероятности оппибки.

DOI: 10.31857/S0555292320020023

§ 1. Введение и основные результаты

1. Постановка задачи. Как и в [1,2], на длине n рассматривается двоичный симметричный канал ДСК(p) с входным и выходным алфавитами $E=\{0,1\}$ и неизвестной переходной вероятностью p. Для различения входного и выходного множеств блоков $E^n=\{0,1\}^n$ канала будем обозначать их через $E^n_{\rm in}$ и $E^n_{\rm out}$ соответственно. Относительно величины p имеются две гипотезы (одна из которых верна): H_0 : $p=p_0$ и H_1 : $p=p_1$, где $0< p_0, p_1\leqslant 1/2$.

Обозначим через $\mathbf{P}(y\,|\,x)$ и $\mathbf{Q}(y\,|\,x)$ вероятности получить на выходе канала блок $y=(y_1,\ldots,y_n)$ при условии, что входным был блок $x=(x_1,\ldots,x_n)$ для гипотез H_0 и H_1 соответственно. Тогда

$$\mathbf{P}(y | x) = (1 - p_0)^{n - d(x, y)} p_0^{d(x, y)}, \quad \mathbf{Q}(y | x) = (1 - p_1)^{n - d(x, y)} p_1^{d(x, y)},$$

где d(x, y) – расстояние Хэмминга между блоками x и y (т.е. число несовпадающих компонент этих векторов на всей длине n).

Рассматривается следующая задача минимаксного различения гипотез H_0 и H_1 . Мы (т.е. "статистик") наблюдаем только блок $\boldsymbol{y} \in E^n_{\mathrm{out}}$ на выходе канала, а наш помощник ("helper") наблюдает только блок $\boldsymbol{x} \in E^n_{\mathrm{in}}$ на входе канала. Предполагается, что \boldsymbol{y} нас нет никакой априорной информации о входном блоке \boldsymbol{x} . Ясно, что основываясь только на выходном блоке \boldsymbol{y} , мы не можем сделать никаких содержательных заключений относительно неизвестной величины \boldsymbol{p} .

Предположим далее, что для заданной величины R>0 нашему помощнику разрешается заранее разбить все входное пространство $E_{\rm in}^n=\{0,1\}^n$ на $N\leqslant 2^{Rn}$ произвольных частей $\{X_1,\ldots,X_N\}$ и сообщить нам (каким-то дополнительным образом)

¹ Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (номер проекта 19-01-00364).

только то, какой части X_i принадлежит входной блок x. Ясно, что только случай $N < 2^n$, т.е. R < 1, является интересным (иначе помощник может просто сообщить нам блок x).

Например, помощник может сообщить статистику точные значения первых Rn величин x_1, \ldots, x_{Rn} (но тогда ничего не сообщить о последующих величинах x_i). Однако такой простой способ разбиения входного пространства $E_{\rm in}^n$ (на цилиндрические множества $\{X_i\}$) не является, вообще говоря, оптимальным. С точки зрения статистика входные данные (x_1, \ldots, x_n) представляют собой очень сильный мешающий вектор.

Есть много практических ситуаций, где встречается подобная задача. Например, в некоторых приложениях входной блок $\boldsymbol{x} \in E_{\mathrm{in}}^n$ представляет собой "мешающий шум", который "загрязнил" выходной блок $\boldsymbol{y} \in E_{\mathrm{out}}^n$, и поэтому нам хотелось бы "уменьшить" (по возможности) это "загрязнение", для того чтобы улучшить статистические выводы. Конечно, при этом очень важно качество канала связи от помощника к статистику. Для упрощения задачи мы рассматриваем здесь только идеализированный случай бесшумного канала с ограниченной пропускной способностью.

Можно также сказать, что оптимальная ограниченная информация о блоке $x \in E_{\rm in}^n$ означает оптимальное "сжатие" полной информации о блоке x. Конечно, это оптимальное "сжатие" зависит от имеющейся априорной информации о переходной вероятности p и используемого критерия качества.

Замечание 1. Ясно, что задача не изменится, если, наоборот, статистик наблюдает вход, а помощник – выход канала.

Основываясь на наблюдении $\boldsymbol{y} \in E_{\mathrm{out}}^n$ и номере (индексе) i части X_i , статистик принимает решение в пользу одной из гипотез H_0 или H_1 . Для того чтобы избежать излишних усложнений, рассмотрим только нерандомизованные методы принятия решения (при этом существо задачи и результаты сохраняются).

Нас интересуют разбиения $\{X_1,\ldots,X_N\}$ и методы принятия решения, которые являются асимптотически (при $n\to\infty$) оптимальными. Аналогичные, но значительно более общие постановки такой задачи рассматривались, например, в [3–8].

Замечание 2. Забегая вперед, отметим, что насколько нам известно, все результаты в этой области (см., например, [1-8]) имеют вид "можно получить следующие характеристики проверки гипотез: . . .". Нашей целью являются противоположные результаты, т.е. показать, что "нельзя получить характеристики лучше, чем . . .".

Всюду далее $\log x = \log_2 x$. Введем шары и сферы в E^n :

$$\mathbf{B}_{x}(p) = \{ \boldsymbol{u} : d(\boldsymbol{x}, \boldsymbol{u}) \leqslant pn \}, \mathbf{S}_{x}(p) = \{ \boldsymbol{u} : d(\boldsymbol{x}, \boldsymbol{u}) = pn \},$$
 $\boldsymbol{x}, \boldsymbol{u} \in E^{n}.$ (1)

2. Экспоненты вероятностей ошибки и дуальная задача. Пусть выбрано разбиение $\{X_1,\ldots,X_N\}$ входного пространства $E_{\mathrm{in}}^n=\{0,1\}^n$. Тогда общее правило принятия решения можно описать следующим образом. Для каждого элемента разбиения X_i выбирается некоторое множество $\mathcal{A}(X_i)\subset E_{\mathrm{out}}^n$, и далее, основываясь на наблюдении \boldsymbol{y} и известном X_i , принимается решение $(\mathcal{A}^c=E_{\mathrm{out}}^n\setminus\mathcal{A})$:

$$y \in \mathcal{A}(X_i) \implies H_0, \quad y \in \mathcal{A}^c(X_i) \implies H_1.$$

Определим вероятности ошибки 1-го рода α_n и 2-го рода β_n :

$$\alpha_n = \Pr(H_1 \mid H_0) = \max_{i=1,\dots,N} \max_{\boldsymbol{x} \in X_i} \mathbf{P} \left(\mathcal{A}^c(X_i) \mid \boldsymbol{x} \right),$$
$$\beta_n = \Pr(H_0 \mid H_1) = \max_{i=1,\dots,N} \max_{\boldsymbol{x} \in X_i} \mathbf{Q} \left(\mathcal{A}(X_i) \mid \boldsymbol{x} \right).$$

Пусть далее $\gamma\geqslant 0$ – заданная величина. Будем требовать, чтобы для вероятности ошибки 1-го рода α_n выполнялось условие

$$\alpha_n = \Pr(H_1 \mid H_0) \leqslant 2^{-\gamma n}. \tag{2}$$

Нас интересует минимально возможная (по всем разбиениям $\{X_i\}$ входного пространства $E_{\rm in}^n$ и всем решениям) вероятность ошибки 2-го рода $\min \beta_n$. Мы исследуем асимптотический случай, когда $n \to \infty$ и $N = 2^{Rn}$, где 0 < R < 1 – заданная постоянная². Тогда для наилучших разбиения $\{X_i\}$ и решения обозначим

$$e(\gamma, R) = \lim_{n \to \infty} \frac{1}{n} \log_2 \frac{1}{\min \beta_n} > 0, \tag{3}$$

где минимум берется по всем разбиениям $\{X_i\}$ и решениям, удовлетворяющим условию (2).

Основной нашей целью являются оценки сверху для функции $e(\gamma,R)$ (оценки снизу см. в [1]). В данной статье мы ограничиваемся случаем $\gamma \to 0$, исследуя функцию e(0,R)=e(R) и связанную с ней функцию $r_{\rm crit}(p_0,p_1)$ (иногда этот случай называют задачей Неймана – Пирсона). В отдельной работе мы рассмотрим случай $\gamma>0$.

Для нас будет удобно рассмотреть также эквивалентную дуальную задачу (без помощника). Пусть задана величина $r,\ 0 < r < 1$, и нам разрешается заранее выбрать любое множество $\mathcal{X} \subset E_{\mathrm{in}}^n$, состоящее из $X = 2^{rn}$ входных блоков. Известно также, что входной блок \boldsymbol{x} принадлежит выбранному множеству \mathcal{X} . Мы наблюдаем выход канала \boldsymbol{y} и, зная множество \mathcal{X} , рассматриваем задачу проверки гипотез H_0 и H_1 . Далее мы выбираем множество \mathcal{A} и в зависимости от наблюдения \boldsymbol{y} принимаем решение:

$$y \in \mathcal{A} \implies H_0, \quad y \in \mathcal{A}^c \implies H_1.$$

Вероятности ошибок 1-го рода α_n и 2-го рода β_n определяются как

$$\alpha_n = \max_{\boldsymbol{x} \in \mathcal{X}} \mathbf{P} \left(\mathcal{A}^c \,|\, \boldsymbol{x} \right), \quad \beta_n = \max_{\boldsymbol{x} \in \mathcal{X}} \mathbf{Q} \left(\mathcal{A} \,|\, \boldsymbol{x} \right).$$

Пусть для вероятности ошибки 1-го рода α_n выполняется условие (2), и мы хотим выбрать множество $\mathcal{X} \subset E_{\mathrm{in}}^n$ мощности $X=2^{rn}$ и правило принятия решения таким образом, чтобы достичь минимально возможной вероятности ошибки 2-го рода $\min \beta_n$. Для этой дуальной задачи аналогично (3) определим функцию

$$e_{\mathbf{d}}(\gamma, r) = \lim_{n \to \infty} \frac{1}{n} \log_2 \frac{1}{\min \beta_n} > 0, \tag{4}$$

где минимум берется по всем множествам $\mathcal{X} \subset E_{\mathrm{in}}^n$ мощности $X=2^{rn}$ и всем решениям

Следующий результат устанавливает простую связь между функциями $e(\gamma,R)$ и $e_{\rm d}(\gamma,r).$

 Π редложение 1 [1, предложение 1]. Справедливо соотношение

$$e(\gamma, 1 - R) = e_{\mathbf{d}}(\gamma, R), \quad 0 \leqslant R \leqslant 1, \quad \gamma \geqslant 0.$$
 (5)

В силу предложения 1 и формулы (5) достаточно исследовать функцию $e_{\rm d}(\gamma,r)$. В данной статье мы ограничимся случаем $\gamma \to 0$, исследуя функцию $e_{\rm d}(0,r)$.

 $^{^{2}}$ Для упрощения формул здесь и далее не будем использовать знак целой части.

Замечание 3. По существу в статье рассматривается случай, когда распределения P(x,y) и Q(x,y) имеют вид $P(x,y) = p(x)P(y\,|\,x)$ и $Q(x,y) = p(x)Q(y\,|\,x)$, где распределение p(x) одно и то же для P(x,y) и Q(x,y). В более общей постановке задачи это может быть не так.

3. Известный входной блок. Предположим, что мы знаем входной блок $\boldsymbol{x} \in E_{\text{in}}^n$ (тогда можно считать, что $\boldsymbol{x} = \mathbf{0}$) и наблюдаем выходной блок $\boldsymbol{y} \in E_{\text{out}}^n$. Если требуется только $\alpha_n \to 0$, $n \to \infty$ (т.е. $\gamma = 0$), и нас интересует только экспонента (по n) вероятности ошибки 2-го рода β_n , то при $n \to \infty$ в силу центральной предельной теоремы (или в силу леммы Неймана – Пирсона) оптимальным множеством решения в пользу H_0 (т.е. p_0) является сферический слой $\mathbf{B_0}(p_0 + \delta) \setminus \mathbf{B_0}(p_0 - \delta)$ в E_{out}^n (см. (1)), где $\delta > 0$ мало. Тогда для экспоненты (по n) вероятности ошибки 2-го рода β_n имеем

$$\frac{1}{n}\log \beta_n = \frac{1}{n}\log \left[\binom{n}{p_0 n} (1-p_1)^{(1-p_0)n} p_1^{p_0 n} \right] + o(1), \quad n \to \infty,$$

и поэтому при $n \to \infty$ получаем

$$\frac{1}{n}\log\frac{1}{\beta_n} = -(1-p_0)\log(1-p_1) - p_0\log p_1 - h(p_0) + o(1) = D(p_0 \parallel p_1) + o(1), \quad (6)$$

где $h(p) = -p \log p - (1-p) \log (1-p)$ и

$$D(a \parallel b) = a \log \frac{a}{b} + (1 - a) \log \frac{1 - a}{1 - b}.$$
 (7)

Замечание 4. Величина $D(a \parallel b)$ из (7) представляет собой расхождение (divergence) для двух бернуллиевских случайных величин с параметрами a и b соответственно. В русскоязычной литературе $D(a \parallel b)$ чаще называется расстоянием Кульбака – Лейблера. Величина $D(a \parallel b)$ дает наилучшую экспоненту для вероятности ошибки 2-го рода при заданной вероятности ошибки 1-го рода (т.е. когда ее экспонента равна нулю) при проверке простой гипотезы H_0 : p=a против простой альтернативы H_1 : p=b.

При $\gamma = r = 0$ для величины $e_{\rm d}(0,0)$ (см. (4)) из (6) получаем

$$e_{\rm d}(0,0) = D(p_1 \parallel p_0).$$
 (8)

4. Неизвестный входной блок и критическая скорость. Если мы знаем входной блок $x \in E_{\rm in}^n$ и $\alpha_n \to 0$, то наилучшая экспонента $e_{\rm d}(0,0)$ вероятности ошибки 2-го рода β_n дается формулой (8).

Если же мы знаем только, что входной блок x принадлежит множеству $\mathcal{X} \subseteq E_{\text{in}}^n$ мощности $X \sim 2^{rn}$, то для наилучшего такого множества \mathcal{X} экспонента $e_{\mathrm{d}}(0,r)$ вероятности ошибки 2-го рода β_n определяется формулой (4). Ясно, что

$$e_{\mathbf{d}}(\gamma, r) \leqslant e_{\mathbf{d}}(\gamma, 0), \quad \gamma \geqslant 0, \quad 0 \leqslant r \leqslant 1.$$
 (9)

Функция $e_{\rm d}(\gamma,r)$ не возрастает по r. Поэтому возникает естественный вопрос: существует ли $r(\gamma) > 0$, для которого в (9) выполняется равенство, и если да, то какова максимальная такая скорость $r_{\rm crit}(\gamma)$? Ограничиваясь случаем $\gamma = 0$, определим $r_{\rm crit}(p_0,p_1) = r_{\rm crit}(p_0,p_1,0)$ как (см. (8))

$$r_{\text{crit}} = r_{\text{crit}}(p_0, p_1) = \sup\{r : e_d(0, r) = e_d(0, 0) = D(p_0 \parallel p_1)\}.$$
 (10)

Иными словами, какова наибольшая мощность 2^{rn} "наилучшего" множества \mathcal{X} , для которого можно достичь такой же асимптотической эффективности, как и при известном входном блоке \boldsymbol{x} (хотя мы и не знаем входной блок \boldsymbol{x})?

Аналогично введем критическую скорость $R_{\rm crit}$ для исходной задачи (см. (3))

$$R_{\text{crit}}(p_0, p_1) = \inf\{R : e(0, R) = e(0, 1) = D(p_0 \parallel p_1)\}. \tag{11}$$

В силу предложения 1 и (11) имеем

$$R_{\text{crit}}(p_0, p_1) = 1 - r_{\text{crit}}(p_0, p_1).$$
 (12)

Основной результат статьи составляет

Теорема 1. Если $p_1 < p_0 \leqslant 1/2$, то существует $p_1^*(p_0) \leqslant p_0$, такое что для любого $p_1 \leqslant p_1^*(p_0)$ справедлива формула

$$r_{\text{crit}}(p_0, p_1) = 1 - R_{\text{crit}}(p_0, p_1) = 1 - h(p_0), \quad 0 < p_1 \le p_1^* < p_0 \le 1/2.$$
 (13)

Замечание 5. Хотя величина $r_{\rm crit}(p_0,p_1)$ в (13) совпадает с пропускной способностью канала ДСК (p_0) , ее происхождение (10) связано с функцией $e_{\rm d}(0,r)$, аналогичной функции надежности E(r,p) в теории информации [9,10]. При этом точный вид функции E(r,p) до сих пор известен только частично [11]. Поэтому, как и в [11–13], в доказательстве теоремы 1 используются достаточно недавние результаты о спектре двоичных кодов. Полное описание функции $e_{\rm d}(\gamma,r)$ выглядит трудной задачей.

В § 2 приводится граница снизу для $r_{\rm crit}$ (предложение 2). В § 3 выводится общая формула для вероятности ошибки 2-го рода β_n (лемма 1). В § 4, используя метод "двух гипотез", доказывается теорема 1. Но граница сверху (13) для $r_{\rm crit}$, вообще говоря, слабее соответствующей границы снизу из § 2. В § 5 с помощью дополнительных комбинаторных соображений выводится еще одна граница сверху для $r_{\rm crit}$ (предложение 3). В § 6 показывается точность границы снизу для $r_{\rm crit}$ из предложения 2 при условии, что выполняется некоторое дополнительное условие. В Приложении приводятся некоторые необходимые аналитические результаты.

В статье $f \sim g$ означает, что $n^{-1} \ln f = n^{-1} \ln g + o(1), n \to \infty$, а $f \lesssim g$ означает $n^{-1} \ln f \leqslant n^{-1} \ln g + o(1), n \to \infty$.

\S 2. Граница снизу для $r_{ m crit}$

Следующий результат следует из [1, предложение 2].

Предложение 2. Для $r_{\mathrm{crit}}(p_0,p_1)$ справедливы оценки снизу

$$r_{\text{crit}}(p_0, p_1) \geqslant 1 - h(p_0), \quad ecnu \quad 0 < p_1 < p_0 \leqslant 1/2,$$
 (14)

u

$$r_{\text{crit}}(p_0, p_1) \geqslant 1 - h(p_0) - D(p_0 \parallel p_1), \quad ecnu \quad 0 < p_0 < p_1 \leqslant 1/2.$$
 (15)

Доказательство. Для заданного r, 0 < r < 1, выберем случайно и равновероятно множество \mathcal{X} из $X = 2^{rn}$ входных блоков x. В [1, предложение 2] было показано, что если $p_0 < p_1 \leqslant 1/2$, то для любого τ , $p_0 \leqslant \tau \leqslant p_1$, существует множество \mathcal{X} и метод принятия решения, для которого выполняются неравенства

$$\frac{1}{n}\log\frac{1}{\alpha_n} \ge D(\tau \| p_0), \quad \frac{1}{n}\log\frac{1}{\beta_n} \ge \min\{D(\tau \| p_1), 1 - h(\tau) - r\}. \tag{16}$$

Если достаточно иметь $\alpha_n \to 0$, $n \to \infty$, то полагая в (16) $\tau = p_0$, из (10) получаем (15).

Аналогично, если $p_1 < p_0 \leqslant 1/2$, то меняя в (16) местами p_0 с p_1 и α_n с β_n , для любого τ имеем

$$\frac{1}{n}\log\frac{1}{\alpha_n} \ge \min\{D(\tau \| p_0), 1 - h(\tau) - r\}, \quad \frac{1}{n}\log\frac{1}{\beta_n} \ge D(\tau \| p_1). \tag{17}$$

Если $\alpha_n \to 0, \, n \to \infty$, то полагая в (17) $\tau = p_0$, из (10) получаем (14). \blacktriangle

\S 3. Общая формула для вероятности ошибки 2-го рода β_n

Пусть $C_n(r) = \{x_1, \dots, x_M\}$ – множество (код) из $M = 2^{rn}$ различных входных (кодовых) блоков. Для кода $C_n(r)$ и вероятности ошибки 1-го рода α_n обозначим через $\mathcal{D}_0 = \mathcal{D}_0(C_n, \alpha_n) \subseteq E_{\mathrm{out}}^n$ оптимальное множество решения в пользу H_0 , минимизирующее вероятность ошибки 2-го рода β_n . Хотя множество \mathcal{D}_0 имеет довольно сложный вид, можно установить некоторые его свойства, достаточные для доказательства теоремы 1.

Выберем малое $\delta>0,$ и для каждого ${\pmb x}_k,$ $k=1,\ldots,M,$ введем сферический слой в E^n_{out}

$$SL_{\boldsymbol{x}_k}(p_0, \delta) = \mathbf{B}_{\boldsymbol{x}_k}(p_0 + \delta) \setminus \mathbf{B}_{\boldsymbol{x}_k}(p_0 - \delta) = \{ \boldsymbol{u} : |d(\boldsymbol{x}_k, \boldsymbol{u}) - p_0 n| \leqslant \delta n \}, \tag{18}$$

где $\mathbf{B}_{x}(p)$ определено в (1). Для каждого x_{k} введем также множество

$$D_{\boldsymbol{x}_k}(\delta) = \mathcal{D}_0 \cap SL_{\boldsymbol{x}_k}(p_0, \delta). \tag{19}$$

Так как необходимо иметь $\alpha_n \to 0$, $n \to \infty$, то оптимальное множество \mathcal{D}_0 содержит "существенную" часть каждого множества $SL_{\boldsymbol{x}_k}(p_0,\delta)$, $k=1,\ldots,M$. Для того чтобы оценить это, заметим, что для любых \boldsymbol{x}_k и $\boldsymbol{u},\boldsymbol{z} \in SL_{\boldsymbol{x}_k}(p_0,\delta)$ имеем

$$\frac{\mathbf{P}(\boldsymbol{u} \mid p_0, \boldsymbol{x}_k)}{\mathbf{P}(\boldsymbol{z} \mid p_0, \boldsymbol{x}_k)} = \left(\frac{q_0}{p_0}\right)^{d(\boldsymbol{z}, \boldsymbol{x}_k) - d(\boldsymbol{u}, \boldsymbol{x}_k)} \leqslant \left(\frac{q_0}{p_0}\right)^{2\delta n}, \quad q_0 = 1 - p_0.$$
(20)

По экспоненциальному неравенству Чебышева (граница Чернова) для любого x_k и малых $\delta>0$ получаем

$$\log \mathbf{P}\{\boldsymbol{u} \notin SL_{\boldsymbol{x}_k}(p_0, \delta) \,|\, \boldsymbol{x}_k, p_0\} \leqslant -\frac{n\delta^2}{2p_0q_0}.$$
 (21)

Тогда в силу (18), (19) и (21) для любого \boldsymbol{x}_k имеем

$$\mathbf{P}\left\{D_{\boldsymbol{x}_{k}}(\delta) \mid p_{0}, \boldsymbol{x}_{k}\right\} \geqslant 1 - \mathbf{P}\left\{\boldsymbol{u} \notin \mathcal{D}_{0} \mid p_{0}, \boldsymbol{x}_{k}\right\} - \mathbf{P}\left\{\boldsymbol{u} \notin SL_{\boldsymbol{x}_{k}}(p_{0}, \delta) \mid p_{0}, \boldsymbol{x}_{k}\right\} \geqslant$$

$$\geqslant 1 - \alpha_{n} - e^{-n^{2}\delta^{2}/(2p_{0}q_{0})},$$
(22)

а в силу (20) также имеем

$$\delta_1 |SL_{\boldsymbol{x}_k}(p_0, \delta)| \leqslant |D_{\boldsymbol{x}_k}(\delta)| \leqslant |SL_{\boldsymbol{x}_k}(p_0, \delta)|,$$

$$\delta_1 = \left(1 - \beta_n - e^{-n^2 \delta^2 / (2p_0 q_0)}\right) \left(\frac{p_0}{q_0}\right)^{2\delta n}.$$
(23)

Так как $D_{x_k}(\delta) \subseteq \mathcal{D}_0$ для любого x_k , то в силу (19), (22) и (23) для вероятности $\mathbf{P}(e \mid p_1, x_i)$ имеем

$$\mathbf{P}(e \mid p_{1}, \boldsymbol{x}_{i}) = \mathbf{P}\{\mathcal{D}_{0} \mid p_{1}, \boldsymbol{x}_{i}\} \sim \mathbf{P}\left\{\bigcup_{k=1}^{M} D_{\boldsymbol{x}_{k}}(\delta) \mid p_{1}, \boldsymbol{x}_{k}\right\} \sim$$

$$\sim \delta_{1} \mathbf{P}\left\{\bigcup_{k=1}^{M} SL_{\boldsymbol{x}_{k}}(p_{0}, \delta) \mid p_{1}, \boldsymbol{x}_{i}\right\}.$$
(24)

Для t > 0 и каждого x_i введем множество

$$D_{\boldsymbol{x}_i}(t,p) =$$

$$= \{ \boldsymbol{u} : \text{ существует } \boldsymbol{x}_k \neq \boldsymbol{x}_i, \text{ такое что } d(\boldsymbol{x}_i,\boldsymbol{u}) = tn, d(\boldsymbol{x}_k,\boldsymbol{u}) = pn \}.$$
 (25)

 Π емма 1. Для вероятности ошибки 2-го рода β_n кода $C_n = \{x_1, \dots, x_M\}$ и оптимального решения \mathcal{D}_0 в пользу H_0 при $n \to \infty$ справедлива формула

$$\frac{\log \beta_n}{n} \sim \max_{t>0} \left\{ \frac{1}{n} \log \left[\frac{1}{M} \sum_{i=1}^{M} |D_{\boldsymbol{x}_i}(t, p_0)| \right] + t \log p_1 + (1-t) \log(1-p_1) \right\}.$$
 (26)

 $\mathit{Kpumuчecкas}\ \mathit{cкopocmb}\ r_{\mathrm{crit}}(p_0,p_1)$ определяется формулой $(M=2^{rn})$

$$r_{\text{crit}}(p_0, p_1) = \sup\{r : F(p_0, p_1, r) \le 0\} = \inf\{r : F(p_0, p_1, r) > 0\},$$
 (27)

 $e \partial e$

$$F(p_0, p_1, r) = \lim_{n \to \infty} \min_{|\mathcal{C}_n| \le M} \max_t F(p_0, p_1, r, \mathcal{C}_n, t),$$

$$F(p_0, p_1, r, \mathcal{C}_n, t) = \frac{1}{n} \log \left[\sum_{i=1}^M |D_{\boldsymbol{x}_i}(t, p_0)| \right] + (p_0 - t) \log \frac{1 - p_1}{p_1} - r - h(p_0).$$
(28)

Доказательство. Используя (24) при $\delta=o(1)$ и $\delta_1=e^{o(n)}$ при $n\to\infty$, имеем

$$\beta_{n} = \max_{i} \mathbf{P}(e \mid p_{1}, \boldsymbol{x}_{i}) \sim \frac{1}{M} \sum_{i=1}^{M} \mathbf{P}(e \mid p_{1}, \boldsymbol{x}_{i}) \sim$$

$$\sim \frac{\delta_{1}}{M} \sum_{i=1}^{M} \mathbf{P} \left\{ \bigcup_{k=1}^{M} SL_{\boldsymbol{x}_{k}}(p_{0}, \delta) \mid p_{1}, \boldsymbol{x}_{i} \right\}. \tag{29}$$

Из (25) и (26) для каждого x_i

$$\mathbf{P}\left\{\bigcup_{k=1}^{M} SL_{\boldsymbol{x}_{k}}(p_{0}, \delta) \mid p_{1}, \boldsymbol{x}_{i}\right\} \sim \mathbf{P}\left\{\bigcup_{t>0} D_{\boldsymbol{x}_{i}}(t, p_{0}) \mid p_{1}, \boldsymbol{x}_{i}\right\} \sim \\ \sim \max_{t>0} \left\{p_{1}^{tn}(1-p_{1})^{(1-t)n} |D_{\boldsymbol{x}_{i}}(t, p_{0})|\right\}.$$

$$(30)$$

Поэтому из (29) и (30) следует формула (26).

Так как

$$\mathbf{P}\left\{SL_{x_{i}}(p_{0},\delta)\,|\,p_{1},x_{i}\right\} \sim \mathbf{P}\left\{d(x_{i},u) \geqslant p_{0}n\,|\,p_{1},x_{i}\right\} \sim 2^{-D(p_{0}\|p_{1})n}$$

то правая часть (26) возрастает по r (т.е. по $M=2^{rn}$), начиная с $-D(p_1 \parallel p_0)$. Поэтому из (6) и (26) следует, что критическая скорость $r_{\rm crit}$ равна максимальной

скорости r, такой что

$$\min_{\{\boldsymbol{x}_i\}} \max_{t>0} \left\{ \frac{1}{n} \log \left[\sum_{i=1}^{M} |D_{\boldsymbol{x}_i}(t, p_0)| \right] + t \log p_1 + (1-t) \log(1-p_1) \right\} - r \leqslant \\
\leqslant -D(p_0 \| p_1). \tag{31}$$

Заметим, что

$$D(p_0 \parallel p_1) + t \log p_1 + (1 - t) \log(1 - p_1) = -h(p_0) + (p_0 - t) \log \frac{1 - p_1}{p_1}.$$
 (32)

Из (31) и (32) следуют формулы (27), (28). ▲

Отметим, в частности, что из (53) при $t = p_0$ имеем

$$F(p_0, p_1, r, \mathcal{C}_n, p_0) = o(1), \quad n \to \infty.$$

В анализе соотношений (27), (28) основную трудность составляет оценка мощностей $|D_{x_i}(t, p_0)|$ в (28), которые зависят от геометрии кода C_n . Аналогичная проблема возникала в [11–13] при исследовании функции надежности E(R, p) канала ДСК(p). Прямая оценка этих мощностей ведет к весьма громоздким формулам.

\S 4. Граница сверху для $r_{\rm crit}$: две гипотезы

Получим простую (но не очень точную) оценку сверху для $r_{\text{crit}}(p_0, p_1)$, используя популярный в математической статистике (чаще в теории оценивания) метод "двух гипотез". Используя для этого формулу (26), выберем из кода $C_n(r) = \{x_1, \dots, x_M\}$, $M = 2^{rn}$, какие-либо два кодовых слова, скажем, x_1 и x_2 с $d(x_1, x_2) = \omega n$. Можно считать, что для скорости r > 0 величина ω удовлетворяет ограничениям

$$0 < \omega \leqslant \omega_{\min}(r)$$
,

где величина $\omega_{\min}(r)$ будет определена далее. Заменим код $\mathcal{C}_n(r)$ кодом \mathcal{C}' из двух выбранных кодовых слов $\mathcal{C}' = \{x_1, x_2\}$. Тогда $\beta_n(\mathcal{C}) \geqslant \beta_n(\mathcal{C}')$. Аналогично (29), (30) имеем

$$\beta_n(C') \sim 2^{-D(p_0 || p_1)n} + \mathbf{P} \left\{ SL_{x_2}(p_0, \delta) | p_1, x_1 \right\}.$$

Нас интересует, когда для x_1, x_2 справедливо неравенство

$$\frac{1}{n}\log \mathbf{P}\left\{SL_{x_{2}}(p_{0},\delta) \mid p_{1},x_{1}\right\} > -D(p_{0} \parallel p_{1}). \tag{33}$$

Оценим вероятность в левой части (33). Для $d(x_i, x_k) = \omega n$ обозначим

$$S_{\boldsymbol{x}_i,\boldsymbol{x}_k}(t,p,\omega) = \{\boldsymbol{u}: d(\boldsymbol{x}_i,\boldsymbol{u}) = tn, d(\boldsymbol{x}_k,\boldsymbol{u}) = pn, d(\boldsymbol{x}_i,\boldsymbol{x}_k) = \omega n\}.$$
(34)

Тогда (см. Приложение)

$$\frac{1}{n}\log|S_{\boldsymbol{x}_{i},\boldsymbol{x}_{k}}(t,p,\omega)| = g(t,p,\omega) + o(1), \quad n \to \infty,$$

$$\frac{1}{n}\log\mathbf{P}\left\{S_{\boldsymbol{x}_{i},\boldsymbol{x}_{k}}(t,p,\omega) \mid p_{1},\boldsymbol{x}_{i}\right\} = g(t,p,\omega) - t\log\frac{1-p_{1}}{p_{1}} + \log(1-p_{1}) + o(1), \tag{35}$$

где $g(t, p, \omega)$ определено в (78). Поэтому при $n \to \infty$ (см. (76), (77))

$$\frac{1}{n} \log \mathbf{P} \left\{ SL_{x_2}(p_0, \delta) \mid p_1, x_1 \right\} =
= \frac{1}{n} \max_{t} \log \mathbf{P} \left\{ S_{x_1, x_2}(t, p_0, \omega) \mid p_1, x_1 \right\} + o(1) = f(p_0, p_1, \omega) + o(1),$$
(36)

где

$$f(p_0, p_1, \omega) = \max_t f(p_0, p_1, \omega, t),$$

$$f(p_0, p_1, \omega, t) = g(t, p_0, \omega) - t \log \frac{1 - p_1}{p_1} + \log(1 - p_1).$$
(37)

Имеем

$$f'_t(p_0, p_1, \omega, t) = \log \frac{\omega - t}{t} - \log \frac{p_0 + t - \omega}{1 - p_0 - t} - 2 \frac{1 - p_1}{p_1}, \quad f''_{tt}(p_0, p_1, \omega, t) < 0.$$
(38)

В силу (32) и (35)-(37) неравенство (33) принимает вид

$$\max_{t} F(p_0, p_1, \omega, t) > 0, \tag{39}$$

где

$$F(p_0, p_1, \omega, t) = f(p_0, p_1, \omega, t) + D(p_0 \parallel p_1) =$$

$$= g(t, p_0, \omega) + (p_0 - t) \log \frac{1 - p_1}{p_1} - h(p_0).$$
(40)

Если для каких-либо p_0, p_1 и ω выполняется неравенство (39), то справедлива соответствующая граница сверху (14), (15). Обозначим через $t_1^0 = t_1^0(p_0, p_1, \omega)$ максимизирующую величину t в (37) (она же остается максимизирующей в (39)). Тогда

$$f(p_0, p_1, \omega) = f(p_0, p_1, \omega, t_1^0(p_0, p_1, \omega)). \tag{41}$$

Из уравнения $f_t'(p_0,p_1,\omega,t)=0$ для t_1^0 из (38) получаем

$$t_1^0 = t_1^0(p_0, p_1, \omega) = \frac{\sqrt{1 + (v_0 - 1)[(\omega - p_0)^2 v_0 - (1 - \omega - p_0)^2 + 1]} - 1}{v_0 - 1},$$

$$v_0(p_1) = \left(\frac{1 - p_1}{p_1}\right)^2 \geqslant 1.$$
(42)

Тогда из (40) и (42) имеем

$$F(p_0, p_1, \omega, t_1^0) = g(t_1^0, p_0, \omega) + (p_0 - t_1^0) \log \frac{1 - p_1}{p_1} - h(p_0).$$
(43)

Можно проверить, что для функции $F(p_0,p_1,\omega,t_1^0)$ из (43) вытекают свойства $F(p_0,p_1,0,t_1^0)=0$ и $F''_{\omega\omega}<0,\omega>0$. Поэтому достаточно проверить неравенство (39) с $t=t_1^0$ только для минимальной для кода $\mathcal{C}_n(r)$ величины ω (т.е. для его кодового расстояния $d(\mathcal{C})$).

Пусть $\omega_{\min}(r)n$ — максимально возможное минимальное расстояние кода $C_n(r)$. Для величины $\omega_{\min}(r)$ известна граница [14, формула (1.5)]

$$r \leqslant h\left[\frac{1}{2} - \sqrt{\omega_{\min}(1 - \omega_{\min})}\right], \quad \omega_{\min} = \omega_{\min}(r).$$
 (44)

Рассмотрим два возможных случая: 1) $p_1 < p_0 \leqslant 1/2$ и 2) $p_0 < p_1 \leqslant 1/2$.

1) Случай $p_1 < p_0 \leqslant 1/2$. Полагая $r = 1 - h(p_0)$, обозначим через $\omega_0 = \omega_0(p_0)$ корень уравнения (см. (44))

$$1 - h(p_0) = h \left[\frac{1}{2} - \sqrt{\omega(1 - \omega)} \right].$$

Тогда неравенство (39) принимает вид ($\omega_0 = \omega_0(p_0)$)

$$F(p_0, p_1, \omega_0, t_1^0) = g(t_1^0, p_0, \omega_0) + (p_0 - t_1^0) \log \frac{1 - p_1}{p_1} - h(p_0) > 0.$$
(45)

Можно проверить (с помощью Maple), что (45) выполняется, если $p_1 \leqslant p_1^*(p_0)$, где

p_0	,	,	,	,	,	0,4	,	,	
$p_1^*(p_0)$	0,0003	0,003	0,016	0,056	0,17	0,317	0,4	0,48	

Если $p_0 \leq 0.20707$ (т.е. $\omega < 0.273$), то в [14, формула (1.4)] имеется оценка чуть более точная (но более громоздкая), чем (44).

2) Случай $p_0 < p_1 \leqslant 1/2$. Можно проверить, что неравенство (39) не выполняется ни при каких $p_0 < p_1$!

\S 5. Граница сверху для r_{crit} : комбинаторика

Приведем еще одну границу сверху для r_{crit} , по-прежнему основанную на формуле (26), но использующую дополнительные комбинаторные соображения.

1. Комбинаторная лемма. В коде $C_n = \{x_i\}$ будем называть (x_i, x_j) ω -парой, если $d(x_i, x_j) = \omega n$. Будем говорить, что точка $y \in E^n$ является (ω, p, t) -покрытой, если существует ω -пара (x_i, x_j) , такая что $d(x_i, y) = pn$, $d(x_j, y) = tn$. Обозначим через $K(y, \omega, p, t)$ число (ω, p, t) -покрытий точки y (учитывая кратность покрытий), т.е.

$$K(\boldsymbol{y}, \omega, p, t) =$$

$$= |\{(\boldsymbol{x}_i, \boldsymbol{x}_j) : d(\boldsymbol{x}_i, \boldsymbol{x}_j) = \omega n, d(\boldsymbol{x}_i, \boldsymbol{y}) = pn, d(\boldsymbol{x}_j, \boldsymbol{y}) = tn\}|, \quad \omega > 0.$$
(46)

Введем множества (ср. (25))

$$D_{\boldsymbol{x}_i}(t, p, \omega) = \bigcup_{\boldsymbol{x}_k} S_{\boldsymbol{x}_i, \boldsymbol{x}_k}(t, p, \omega) = \{ \boldsymbol{u} : \text{ существует } \boldsymbol{x}_k,$$
такое что $d(\boldsymbol{x}_i, \boldsymbol{x}_k) = \omega n, \ d(\boldsymbol{x}_i, \boldsymbol{u}) = tn, \ d(\boldsymbol{x}_k, \boldsymbol{u}) = pn \}.$

$$(47)$$

Тогда

$$D_{\boldsymbol{x}_i}(t,p) = \bigcup_{\omega>0} D_{\boldsymbol{x}_i}(t,p,\omega).$$

Для t > 0 введем величину

$$m_t(\mathbf{y}) = |\{\mathbf{x}_i : \mathbf{x}_i \in \mathbf{S}_{\mathbf{y}}(t)\}|. \tag{48}$$

Тогда для любых $\boldsymbol{y}, p, t > 0$

$$K(\boldsymbol{y},t,p) = m_t(\boldsymbol{y})m_p(\boldsymbol{y}). \tag{49}$$

Лемма 2. Для кода $\{x_i\}$ и $\omega, p, t > 0$ справедлива формула (см. (46) и (47))

$$\sum_{i=1}^{M} |D_{\boldsymbol{x}_i}(t, p, \omega)| \leq \sum_{\boldsymbol{y} \in E^n} K(\boldsymbol{y}, \omega, t, p).$$
(50)

Также, если (см. (48))

$$\max_{\mathbf{y}} m_p(\mathbf{y}) = 2^{o(n)}, \quad n \to \infty, \tag{51}$$

то для любых $\omega, t > 0$

$$\sum_{i=1}^{M} |D_{\boldsymbol{x}_i}(t, p, \omega)| = 2^{o(n)} \sum_{\boldsymbol{y} \in E^n} K(\boldsymbol{y}, \omega, t, p), \quad n \to \infty.$$
 (52)

Доказательство. Пусть $\boldsymbol{y} \in E^n$ и имеется m упорядоченных пар $(\boldsymbol{x}_i, \boldsymbol{x}_j)$ с $d(\boldsymbol{x}_i, \boldsymbol{x}_j) = \omega n$ и $d(\boldsymbol{x}_i, \boldsymbol{y}) = tn$, $d(\boldsymbol{x}_j, \boldsymbol{y}) = pn$. Эти m пар $(\boldsymbol{x}_i, \boldsymbol{x}_j)$ имеют $m_1 \leqslant m$ различных первых аргументов $\{\boldsymbol{x}_i\}$. Тогда \boldsymbol{y} присутствует m раз в правой части (50) и m_1 раз в левой части, что доказывает формулу (50). Если выполнено условие (51), то $m_1 = me^{o(n)}$, откуда следует равенство (52). Отметим также, что в силу (49) имеем

$$\sum_{i=1}^{M} |D_{\boldsymbol{x}_i}(t,p)| = \sum_{\boldsymbol{y}: m_p(\boldsymbol{y}) \geqslant 1} \frac{K(\boldsymbol{y},t,p)}{m_p(\boldsymbol{y})} = \sum_{\boldsymbol{y}: m_p(\boldsymbol{y}) \geqslant 1} m_t(\boldsymbol{y}) \sim$$

$$\sim M2^{h(t)n} - \sum_{\boldsymbol{y}: m_p(\boldsymbol{y}) = 0} m_t(\boldsymbol{y}). \tag{53}$$

Из первого равенства в (53) также следуют формулы (50) и (52). \blacktriangle

Формула (53) выглядит простой и привлекательной, однако ее правая часть имеет вид "большое минус большое", что неудобно. Отметим, что в (53) нельзя пренебрегать последней суммой, так как тогда получим только $r_{\text{crit}} \leq 1$, что неинтересно.

2. Еще одна граница сверху для r_{crit}. Оценим сверху последнюю сумму в (53) следующим образом. Имеем

$$\sum_{\mathbf{y}: m_{p_0}(\mathbf{y}) = 0} m_t(\mathbf{y}) \leqslant 2^{h(t)n} |\{\mathbf{y}: m_{p_0}(\mathbf{y}) = 0\}|.$$
(54)

Максимум мощности $|\{y:m_{p_0}(y)=0\}|$ достигается, когда код $\mathcal C$ является шаром $\mathbf B_0(\tau)$ радиуса τn , где $r=h(\tau)$. Поэтому

$$\max_{C} |\{ \boldsymbol{y} : m_{p_0}(\boldsymbol{y}) = 0 \}| = 2^n - |\mathbf{B_0}(\tau + p_0)| \sim 2^{h(\tau + p_0)n}, \quad \tau + p_0 \ge 1/2,$$

$$\max_{C} |\{ \boldsymbol{y} : m_{p_0}(\boldsymbol{y}) = 0 \}| \sim 2^n, \quad \tau + p_0 \le 1/2.$$
(55)

Если $\tau+p_0\geqslant 1/2$, т.е. если $r\geqslant h(1/2-p_0)$, то из (53)–(55) получаем

$$\sum_{i=1}^{M} |D_{\boldsymbol{x}_i}(t, p_0)| \geqslant 2^{h(t)n} \left[M - 2^{h(\tau + p_0)n} \right] = 2^{h(t)n} \left[2^{h(\tau)n} - 2^{h(1 - \tau - p_0)n} \right] \sim M 2^{h(t)n},$$

если $\tau > 1 - \tau - p_0$, т.е. $\tau > (1 - p_0)/2$, или, эквивалентно, если $r > h[(1 - p_0)/2]$.

Поэтому если $r\geqslant \max\{h(1/2-p_0),h[(1-p_0)/2]\}=h[(1-p_0)/2],$ то при любом $p_0\neq p_1$ равенство (28) принимает вид

$$F(p_0, p_1, r) = \max_{t>0} \left\{ h(t) + (p_0 - t) \log \frac{1 - p_1}{p_1} \right\} - h(p_0) =$$

$$= h(p_1) + (p_0 - p_1) \log \frac{1 - p_1}{p_1} - h(p_0) > 0, \quad p_0 \neq p_1,$$

так как максимум по t достигается при $t = p_1$. Поэтому это дает следующую границу сверху для r_{crit} (более слабую, чем (13)):

$$r_{\text{crit}}(p_0, p_1) \le h[(1 - p_0)/2], \quad p_0 \ne p_1.$$
 (56)

Замечание 6. Отметим, что $1-h(p_0) < h(1/2-p_0) < h[(1-p_0)/2], \ 0 < p_0 < 1/2.$ Усилим оценку (56). Наряду с (54) также имеем

$$\sum_{\mathbf{y}: m_{p_0}(\mathbf{y}) = 0} m_t(\mathbf{y}) \leqslant M |\{\mathbf{y}: m_{p_0}(\mathbf{y}) = 0\}|.$$

Поэтому если $\tau + p_0 \ge 1/2$ и $t \ge 1 - \tau - p_0$, то

$$\sum_{i=1}^{M} |D_{\boldsymbol{x}_i}(t, p_0)| \geqslant M \left[2^{h(t)n} - 2^{h(1-\tau-p_0)n} \right] \sim M 2^{h(t)n}.$$

В силу (39), (40) необходимо иметь

$$\max_{t \ge 1 - \tau - p_0} f(t, p_0, p_1) > 0,$$

$$f(t, p_0, p_1) = h(t) + (p_0 - t) \log \frac{1 - p_1}{p_1} - h(p_0).$$
(57)

Максимум по $t\geqslant 1-\tau-p_0$ функции $f(t,p_0,p_1)$ достигается при $t=\max\{p_1,1-\tau-p_0\}$, так как

$$\max_{t} f(t, p_{0}, p_{1}) = f(p_{1}, p_{0}, p_{1}) > 0, \quad p_{0} \neq p_{1}, \quad f(p_{0}, p_{0}, p_{1}) = 0,
f'_{t}(t, p_{0}, p_{1}) = \log \frac{1 - t}{t} - \log \frac{1 - p_{1}}{p_{1}}, \quad f''_{tt}(t, p_{0}, p_{1}) < 0,
\operatorname{sign} f'_{t}(t, p_{0}, p_{1}) = \operatorname{sign}(p_{1} - t).$$
(58)

Поэтому если $p_1\geqslant 1-\tau-p_0,$ то из (57), (58) для $p_0\neq p_1$ получаем

$$\max_{t \ge 1 - \tau - p_0} f(t, p_0, p_1) = h(p_1) + (p_0 - p_1) \log \frac{1 - p_1}{p_1} - h(p_0) > 0.$$
(59)

Тогда если $\tau \geqslant \max\{1/2-p_0,1-p_0-p_1\}=1-p_0-p_1,$ то для $p_0 \neq p_1$ выполняется неравенство (59), откуда следует оценка

$$\tau_{\text{crit}} \leqslant 1 - p_0 - p_1, \quad r_{\text{crit}} = h(\tau_{\text{crit}}).$$
 (60)

Если же $p_1 < 1 - \tau - p_0$, то максимум в (57) достигается при $t = 1 - \tau - p_0$, и тогда

$$\max_{t \ge 1 - \tau - p_0} f(t, p_0, p_1) = f(1 - \tau - p_0, p_0, p_1).$$

Заметим, что

$$f(p_0, p_0, p_1) = 0, \quad f'_{t=p_0}(t, p_0, p_1) \neq 0, \quad p_0 \neq p_1,$$

$$f''_{tt}(t, p_0, p_1) < 0, \quad \operatorname{sign} f'_t(t, p_0, p_1) = \operatorname{sign}(p_1 - t).$$

Пусть также $p_0>1-\tau-p_0$ (т.е. $\tau>1-2p_0$). Тогда $\max_{t\geqslant 1-\tau-p_0}f(t,p_0,p_1)>0$ (достаточно выбрать t близким к p_0). Тогда

$$\tau_{\text{crit}} \leqslant 1 - 2p_0, \quad r_{\text{crit}} = h(\tau_{\text{crit}}).$$
 (61)

В результате из (60) и (61) получаем

Предложение 3. При любых $p_0, p_1 \in [0, 1/2]$ для $r_{\rm crit}$ справедлива оценка сверху

$$\tau_{\text{crit}}(p_0, p_1) \leqslant \min\{1 - p_0 - p_1, 1 - 2p_0\}, \quad r_{\text{crit}} = h(\tau_{\text{crit}}).$$
(62)

Следствие. Если $p_0 = 1/2$, то из (62) следует $\tau_{\text{crit}}(1/2, p_1) = r_{\text{crit}}(1/2, p_1) = 0$.

Ранее этот частный результат был получен другим способом в [1, предложение 3]. Там же найдена наилучшая экспонента $e_{\rm d}(\gamma,r)$ из (4) для $\gamma\geqslant 0,\,0\leqslant r\leqslant 1$.

\S 6. "Потенциальная" аддитивная граница сверху для $r_{ m crit}$

Теорема 1 была доказана, заменяя в формуле (26) экспоненциальное число M кодовых слов $\{x_i\}$ двумя ближайшими кодовыми словами (x_i, x_j) . Такой способ исследования дает оптимальный результат, только если можно выбрать пару (x_i, x_j) с $d(x_i, x_j) = \omega n$ и малым $\omega > 0$. В рассматриваемой постановке задачи этого сделать нельзя.

Для того чтобы усилить теорему 1, необходимо рассмотреть в (26) экспоненциальное число M кодовых слов $\{x_i\}$, что значительно труднее (см. [11–13]). Усилим теорему 1 при условии, что в формуле (26) можно применить аддитивную аппроксимацию.

Предположим, что при $n \to \infty$ для всех $\{x_i\}$ в формуле (26) справедливо аддитивное приближение

$$\mathbf{P}\left\{\bigcup_{k\neq i} SL_{\boldsymbol{x}_k}(p_0, \delta) \mid p_1, \boldsymbol{x}_i\right\} = 2^{o(n)} \sum_{k\neq i} \mathbf{P}\left\{SL_{\boldsymbol{x}_k}(p_0, \delta) \mid p_1, \boldsymbol{x}_i\right\}.$$
(63)

Тогда (см. (36)) при $d(\boldsymbol{x}_i, \boldsymbol{x}_k) = \omega_{ik} n$

$$\mathbf{P}\left\{\bigcup_{k\neq i} SL_{\boldsymbol{x}_k}(p_0, \delta) \mid p_1, \boldsymbol{x}_i\right\} = 2^{o(n)} \sum_{k\neq i} 2^{f(p_0, p_1, \omega_{ik})n}$$

и

$$\sum_{i=1}^{M} \mathbf{P} \left\{ \bigcup_{k \neq i} SL_{\boldsymbol{x}_{k}}(p_{0}, \delta) \mid p_{1}, \boldsymbol{x}_{i} \right\} = 2^{o(n)} \sum_{i=1}^{M} \sum_{k \neq i} 2^{f(p_{0}, p_{1}, \omega_{ik})n}.$$
 (64)

Для того чтобы далее развить соотношение (64), введем некоторые дополнительные понятия. Спектром (распределением расстояний) $B(\mathcal{C}) = (B_0, B_1, \ldots, B_n)$ кода \mathcal{C} длины n называется (n+1)-вектор с компонентами

$$B_i = |\mathcal{C}|^{-1} |\{(x, y) : x, y \in \mathcal{C}, d(x, y) = i\}|, \quad i = 0, 1, \dots, n.$$
 (65)

Иными словами, B_i равно среднему числу кодовых слов \boldsymbol{y} на расстоянии i от кодового слова \boldsymbol{x} . Общее число упорядоченных кодовых пар $(\boldsymbol{x},\boldsymbol{y}) \in \mathcal{C}$ с $d(\boldsymbol{x},\boldsymbol{y}) = i$ равно $|\mathcal{C}|B_i$. Обозначим также $B_{\omega n} = 2^{b(\omega,r)n}$.

Тогда формулу (64) можно продолжить следующим образом:

$$\sum_{i=1}^{M} \mathbf{P} \left\{ \bigcup_{k \neq i} SL_{\boldsymbol{x}_{k}}(p_{0}, \delta) \mid p_{1}, \boldsymbol{x}_{i} \right\} = 2^{o(n)} M \sum_{\omega > 0} 2^{[b(\omega, r) + f(p_{0}, p_{1}, \omega)]n}.$$

Поэтому (см. (36), (37))

$$\frac{1}{n} \log \left[\sum_{i=1}^{M} \mathbf{P} \left\{ \bigcup_{k \neq i} SL_{\boldsymbol{x}_{k}}(p_{0}, \delta) \mid p_{1}, \boldsymbol{x}_{i} \right\} \right] =
= r + \max_{\omega, t} \left\{ b(\omega, r) + f(p_{0}, p_{1}, \omega, t) \right\} + o(1),$$
(66)

где $f(p_0,p_1,\omega,t)$ определено в (37). Тогда для функции $F(p_0,p_1,r)$ из (28) и (66) имеем

$$F(p_0, p_1, r) = \max_{\omega, t} \left\{ b(\omega, r) + g(p_0, t, \omega) + (p_0 - t) \log \frac{1 - p_1}{p_1} - h(p_0) \right\}.$$
 (67)

В качестве оценки для $b(\omega,r)$ в (67) используем какую-либо функцию $b_{\text{low}}(\omega,r)$ со следующим свойством: существует величина $\omega_{\text{max}} = \omega_{\text{max}}(r) > 0$, такая что

$$\max_{0 < \omega \le \omega_{\text{max}}} [b(\omega, r) - b_{\text{low}}(\omega, r)] \ge 0, \quad r > 0.$$
(68)

Тогда для того чтобы выполнялось неравенство $F(p_0, p_1, r) > 0$ (см. (27)), достаточно, чтобы было справедливо условие (см. (37) и (67))

$$\min_{0 < \omega \le \omega_{\text{max}}} \max_{t > 0} \left\{ b_{\text{low}}(\omega, r) + g(p_0, t, \omega) + (p_0 - t) \log \frac{1 - p_1}{p_1} - h(p_0) \right\} > 0.$$
 (69)

Используем в (69) в качестве $b_{\text{low}}(\omega,r)$ наилучшую из известных таких функций $\mu(r,\alpha,\omega),\ h_2(\tau)=h_2(\alpha)-1+r,\ c$ произвольным $\alpha\in[\delta_{GV}(r),1/2]$ (см. (81), (82) и теорему 2 в Приложении). Для функции $\mu(r,\alpha,\omega)$ выполняется условие (68), она монотонно возрастает по r, и $\omega_{\text{max}}=G(\alpha,\tau),\$ где $G(\alpha,\tau)$ определено в (79). Тогда для того чтобы выполнялось неравенство (69), достаточно, чтобы было справедливо условие

$$\min_{0 < \omega \leqslant \omega_{\text{max}}} \max_{t > 0} K(p_0, p_1, r, \omega, t) > 0, \tag{70}$$

где

$$K(p_0, p_1, r, \omega, t) = \mu(r, p_0, \omega) + g(p_0, t, \omega) + (p_0 - t) \log \frac{1 - p_1}{p_1} - h(p_0).$$
(71)

Заметим, что $K(p_0,p_1,r,0,p_0)=0$. Чтобы избежать громоздких вычислений, положим $t=p_0$. Функция $K(p_0,p_1,r,\omega,p_0)=0$ вогнута по ω , т.е. $K''(p_0,p_1,r,\omega,p_0)_{\omega\omega}<0$ (проще всего это проверить с помощью Maple). Поэтому минимум по ω достигается при $\omega=\omega_{\max}=G(\alpha,\tau)$, и условие (70) достаточно проверить для $\omega=G(\alpha,\tau)$. Известна полезная формула [11, лемма 4]

$$\mu(r, \alpha, G(\alpha, \tau)) = h_2(G(\alpha, \tau)) + r - 1, \quad h_2(\alpha) - h_2(\tau) = 1 - r. \tag{72}$$

Далее рассмотрим только более простой

Случай $p_1 < p_0 \leqslant 1/2$. Положим $r=r_0=1-h(p_0)$ и $\alpha=p_0$ (заметим, что тогда $\delta_{GV}(r_0)=p_0,\, \tau=0$). Тогда $G(\alpha,\tau)=2p_0(1-p_0),$ и условие (70) достаточно проверить для $\omega=2p_0(1-p_0).$ Из (71), (72) при $\alpha=p_0,\, \tau=0,\, r=r_0=1-h(p_0),\, t=p_0$ и $\omega_{\max}=G(\alpha,\tau)=2p_0(1-p_0)$ имеем

$$K(p_0, p_1, 1 - h(p_0), \omega_{\text{max}}, p_0) = h_2(\omega_{\text{max}}) + g(p_0, p_0, \omega_{\text{max}}) - 2h(p_0),$$

где

$$g(p, p, 2p(1-p)) = 2p(1-p) + [1 - 2p(1-p)]h\left[\frac{p^2}{1 - 2p(1-p)}\right].$$

Можно проверить, что при $\omega_0 = 2p_0(1-p_0)$ справедливо равенство

$$K(p_0, p_1, 1 - h(p_0), \omega_0, p_0) = h_2(\omega_0) + \omega_0 + (1 - \omega_0)h\left(\frac{p_0^2}{1 - \omega_0}\right) - 2h(p_0) = 0.$$
 (73)

Также имеем

$$[K(p_0, p_1, 1 - h(p_0), \omega_0, t)]_t' = \frac{1}{2} \log \frac{(1 - t)^2 - (1 - \omega_0 - p_0)^2}{t^2 - (\omega_0 - p_0)^2} - \log \frac{1 - p_1}{p_1},$$

$$[K(p_0, p_1, 1 - h(p_0), \omega_0, t)]_{tt}'' < 0.$$
(74)

Поэтому при $t = p_0$ имеем

$$[K(p_0, p_1, 1 - h(p_0), \omega_0, t)]'_{t=p_0} = \log \frac{1 - p_0}{p_0} - \log \frac{1 - p_1}{p_1} < 0, \quad p_1 < p_0, \tag{75}$$

Из (73)–(75) следует, что

$$K(p_0, p_1, 1 - h(p_0), \omega_0, t) > 0, \quad t < p_0.$$

Поэтому неравенство (70) выполняется для любых $r > r_0 = 1 - h(p_0)$ и $p_1 < p_0 \leqslant 1/2$. В результате получаем следующий условный результат.

Предложение 4. Если справедливо аддитивное приближение (63), то тогда $r_{\text{crit}}(p_0, p_1) = 1 - h(p_0), \ 0 < p_1 < p_0 \leqslant 1/2.$

Замечание 7. Можно показать, что теорема 1 и формула (13) справедливы при любых $p_1 < p_0 \leqslant 1/2$. Для этого можно действовать аналогично [11], используя лемму 2 и рассматривая по отдельности случаи равенства в формуле (50) (по существу, это эквивалентно рассмотренному в \S 6 случаю) и неравенства в ней. Доказательство во втором случае оказывается неоправданно громоздким (и ориентированным только на двоичный канал ДСК(p)). По этой причине мы его не приводим. Определенно, есть более простой способ доказательства.

ПРИЛОЖЕНИЕ

1. Функция $g(t,p,\omega)$ и формула (35). Рассмотрим кодовые слова x=0 и x_1 с $d(x,x_1)=w(x_1)=\omega n$, а также множество $S_{x,x_1}(t,p,\omega)$ из (34). Можно считать, что $x_1=(1,\ldots,1,0,\ldots,0)$, причем x_1 имеет сначала ωn "единиц", а затем $(1-\omega)n$ "нулей". Пусть также $u\in S_{x,x_1}(t,p,\omega)$ имеет u_1n "единиц" на первых ωn позициях и u_2n "единиц" на следующих $(1-\omega)n$ позициях. Так как $u_1+u_2=t,\,\omega-u_1+u_2=p,$ то

$$u_1 = \frac{t - p + \omega}{2}, \quad u_2 = \frac{t + p - \omega}{2},$$
 (76)

и при $n \to \infty$ получаем

$$\frac{1}{n}\log|S_{\boldsymbol{x},\boldsymbol{x}_1}(t,p,\omega)| = \frac{1}{n}\log\left[\binom{\omega n}{u_1 n}\binom{(1-\omega)n}{u_2 n}\right] = \\
= \omega h\left(\frac{u_1}{\omega}\right) + (1-\omega)h\left(\frac{u_2}{1-\omega}\right) + o(1) = g(t,p,\omega) + o(1), \tag{77}$$

где

$$g(t, p, \omega) = \omega h \left(\frac{t + \omega - p}{2\omega} \right) + (1 - \omega) h \left(\frac{t + p - \omega}{2(1 - \omega)} \right). \tag{78}$$

Также имеем

$$2g'_{\omega}(p,t,\omega) = -2\log\frac{1-\omega}{\omega} + \log\frac{(1-\omega)^2 - (1-t-p)^2}{\omega^2 - (t-p)^2},$$

$$2g'_t(p,t,\omega) = \log\frac{(1-t)^2 - (1-\omega-p)^2}{t^2 - (\omega-p)^2}, \quad g''_{tt}(p,t,\omega) < 0, \quad g''_{\omega\omega}(p,t,\omega) \le 0.$$

Для корня ω_0 уравнения $g_\omega'(t,p,\omega)=0$ имеем

$$\omega_0 = \frac{p-t}{1-2t}, \quad g(t, p, \omega_0) = h(t).$$

2. Функция $\mu(R, \alpha, \omega)$. Введем функцию [14] $(0 \le \tau \le \alpha \le 1/2)$

$$G(\alpha, \tau) = 2 \frac{\alpha(1 - \alpha) - \tau(1 - \tau)}{1 + 2\sqrt{\tau(1 - \tau)}} \geqslant 0.$$

$$(79)$$

Для α, τ , таких что $0 \leqslant \tau \leqslant \alpha \leqslant 1/2$ и $h_2(\alpha) - h_2(\tau) = 1 - R$, введем функцию [16]

$$\mu(R, \alpha, \omega) = h_2(\alpha) - 2 \int_0^{\omega/2} \log \frac{P + \sqrt{P^2 - 4Qy^2}}{Q} dy - (1 - \omega)h_2\left(\frac{\alpha - \omega/2}{1 - \omega}\right),$$

$$P = \alpha(1 - \alpha) - \tau(1 - \tau) - y(1 - 2y), \quad Q = (\alpha - y)(1 - \alpha - y).$$
(80)

Определим функцию $\delta_{GV}(R)\leqslant 1/2$ (граница Варшамова – Гилберта) как

$$1 - R = h_2(\delta_{GV}(R)), \quad 0 \le R \le 1.$$
 (81)

Важность функции $\mu(R,\alpha,\omega)$ и ее связь со спектром кода $\{B_i\}$ определяет следующий вариант теоремы 3 из [15].

Теорема 2 [15, теорема 3]. Для любого (R,n)-кода и любого $\alpha \in [\delta_{GV}(R), 1/2]$ существуют $r_1(R,\alpha) > 0$ и ω , $0 < r_1(R,\alpha) \leqslant \omega \leqslant G(\alpha,\tau)$, где $h_2(\tau) = h_2(\alpha) - 1 + R$, а $G(\alpha,\tau)$ определено в (79), такие что

$$n^{-1}\log B_{\omega n} \geqslant \mu(R,\alpha,\omega) + o(1), \quad n \to \infty.$$
 (82)

Для $\mu(R,\alpha,\omega)$ из (80) справедливо также неинтегральное представление (83)–(85).

Замечание 8. Теорема 2 уточняет теорему 5 из [16] (см. также [12, теорема 2]). При $r_1=0$ теорема 2 переходит в теорему 5 из [16]. В [15, теорема 3] имеются оценки для $r_1(R,\alpha)>0$.

Предложение 5 [11, предложение 3]. Для функции $\mu(R,\alpha,\omega)$ справедливо представление

$$\mu(R,\alpha,\omega) = (1-\omega)h_2\left(\frac{\alpha-\omega/2}{1-\omega}\right) - h_2(\alpha) + 2h_2(\omega) + \omega\log\frac{2\omega}{e} - T(A,B,\omega), \quad (83)$$

где

$$T(A, B, \omega) = \omega \log(v - 1) - (1 - \omega) \log \frac{v^2 - A^2}{v^2 - B^2} + B \log \frac{v + B}{v - B} - A \log \frac{v + A}{v - A} - \frac{(v - 1)(B^2 - A^2)}{(v^2 - B^2) \ln 2},$$

$$v = \frac{\sqrt{B^2 \omega^2 - 2a_1 \omega + a_1^2 + a_1}}{\omega}, \quad a_1 = \frac{B^2 - A^2}{2},$$
(84)

u

$$h_2(\alpha) - h_2(\tau) = 1 - R, \quad A = 1 - 2\alpha, \quad B = 1 - 2\tau, \quad 0 \leqslant \tau \leqslant \alpha \leqslant 1/2.$$
 (85)

Для любых $\alpha_0(R) \leqslant \alpha < 1/2$ и $\omega > 0$ имеем

$$\frac{d\mu(R,\alpha,\omega)}{d\alpha} > 0, \quad \alpha_0(R) = h_2^{-1}(1-R).$$

Также для любых $\alpha > 0$ и R > 0 имеем $\mu(R, \alpha, 0) = 0$ и $\mu'_{\omega}(R, \alpha, \omega)|_{\omega = 0} > 0$. Кроме того, для любых $0 \leqslant \tau \leqslant \alpha \leqslant 1/2$ и $0 < \omega < G(\alpha, \tau)$

$$\mu_{\omega^2}^{"}(R,\alpha,\omega) > 0.$$

Для любого $\omega > 0$ имеем $\mu(0, 1/2, \omega) = 0$.

Автор благодарит Ш. Ватанабе (Shun Watanabe) и рецензента за полезные обсуждения и конструктивные критические замечания, улучшившие статью.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Бурнашев М.В., Амари Ш., Хан Т.С.* О некоторых задачах проверки гипотез с информационными ограничениями // Теория вероятн. и ее примен. 2000. Т. 45. № 4. С. 625–638.
- 2. *Бурнашев М.В., Хан Т.С., Амари Ш.* О некоторых задачах оценивания с информационными ограничениями // Теория вероятн. и ее примен. 2001. Т. 46. № 2. С. 233–246.
- 3. Ahlswede R., Csiszár I. Hypothesis Testing with Communication Constraints // IEEE Trans. Inform. Theory. 1986. V. 32. \mathbb{N} 4. P. 533–542.
- 4. Han T.S., Kobayashi K. Exponential-type Error Probabilities for Multiterminal Hypothesis Testing // IEEE Trans. Inform. Theory. 1989. V. 35. № 1. P. 2–14.
- 5. Ahlswede R., Burnashev M.V. On Minimax Estimation in the Presence of Side Information about Remote Data // Ann. Statist. 1990. V. 18. № 1. P. 141–171.
- Han T.S., Amari S. Statistical Inference under Multiterminal Data Compression // IEEE Trans. Inform. Theory. 1998. V. 44. № 6. P. 2300–2324.
- 7. Shimokawa H., Han T.S., Amari S. Error Bounds of Hypothesis Testing with Data Compression // Proc. 1994 IEEE Int. Sympos. on Information Theory (ISIT'94). Trondheim, Norway. June 27 July 1, 1994. P. 114.
- 8. Watanabe S. Neyman–Pearson Test for Zero-Rate Multiterminal Hypothesis Testing // Proc. 2017 IEEE Int. Sympos. on Information Theory (ISIT'2017). Aachen, Germany. June 25–30, 2017. P. 116–120.

- 9. Elias P. Coding for Noisy Channels // IRE Conv. Rec. 1955. V. 4. P. 37–46. Reprinted in: Key Papers in the Development of Information Theory. New York: IEEE Press, 1974. P. 102–111.
- 10. $Gallager\ R.G.$ Information Theory and Reliable Communication. New York: John Wiley & Sons, 1968.
- 11. *Бурпашев М.В.* О функции надежности ДСК: расширение области, где она известна в точности // Пробл. передачи информ. 2015. Т. 51. № 4. С. 3–22.
- 12. *Бурпашев М.В.* Спектр кода и функция надежности: двоичный симметричный канал // Пробл. передачи информ. 2006. Т. 42. № 4. С. 3–22.
- 13. *Бурпашев М.В.* Усиление оценки сверху для функции надежности двоичного симметричного канала // Пробл. передачи информ. 2005. Т. 41. № 4. С. 3–22.
- 14. McEliece R.J., Rodemich E.R., Rumsey H., Jr., Welch L.R. New Upper Bounds on the Rate of a Code via the Delsarte–MacWilliams Inequalities // IEEE Trans. Inform. Theory. 1977. V. 23. № 2. P. 157–166.
- 15. *Бурнашев М.В.* О границах снизу для спектра двоичного кода // Пробл. передачи информ. 2019. Т. 55. № 4. С. 76–85.
- 16. Litsyn S. New Bounds on Error Exponents // IEEE Trans. Inform. Theory. 1999. V. 45. N 2. P. 385–398.

Бурнашев Марат Валиевич Институт проблем передачи информации им. А.А. Харкевича РАН burn@iitp.ru Поступила в редакцию 10.04.2020 После доработки 15.05.2020 Принята к публикации 19.05.2020