ЭЛЕКТРОНИКА И РАДИОТЕХНИКА

УДК 621.373

МОЩНЫЙ ИСТОЧНИК СВЕРХШИРОКОПОЛОСНЫХ ИМПУЛЬСОВ СИНТЕЗИРОВАННОГО ИЗЛУЧЕНИЯ

© 2019 г. А. М. Ефремов, В. И. Кошелев*, В. В. Плиско, Е. А. Севостьянов

Институт сильноточной электроники СО РАН Россия, 634055, Томск, просп. Академический, 2/3 *e-mail: koshelev@lhfe.hcei.tsc.ru Поступила в редакцию 16.03.2018 г. После доработки 28.03.2018 г. Принята к публикации 15.04.2018 г.

Создан мощный источник сверхширокополосного излучения на основе синтеза электромагнитных импульсов с разной полосой частот. Разработан четырехканальный формирователь биполярных импульсов длительностью 0.5 и 1 нс с высокой стабильностью. Каждый элемент решетки 2 × 2 комбинированных антенн возбуждался от своего канала формирователя. Исследовано два режима синтеза излучения: по максимальной напряженности поля и максимальной ширине спектра. Для первого режима получены импульсы излучения с полосой частот 0.39–2.13 ГГц и эффективным потенциалом 600 кВ, для второго – импульсы синтезированного излучения с расширенной полосой частот 0.15 – 2.7 ГГц и эффективным потенциалом 200 кВ. Частота повторения импульсов была 100 Гц.

DOI: 10.1134/S003281621806006X

введение

Мощные источники сверхширокополосного (с.ш.п.) излучения разрабатываются для исследований восприимчивости электронного оборудования к воздействию электромагнитных полей, биологических эффектов и радаров с распознаванием объектов [1]. Важной задачей здесь является расширение спектра мощных импульсов излучения. Выделим два направления решения данной задачи.

Первое направление связано с уменьшением длительности импульса излучения. В рамках этого направления созданы мощные источники с.ш.п.-излучения на основе антенн типа IRA [2]. Нами предложено [3] расширять спектр излучения за счет сложения мощных электромагнитных импульсов в свободном пространстве при возбуждении решетки комбинированных антенн биполярными импульсами напряжения разной длительности.

Первый мощный источник синтезированного излучения [4] состоял из решетки 2 × 2 комбинированных антенн, возбуждаемой от четырехканального формирователя биполярных импульсов длительностью 2 и 3 нс. Для формирования диаграммы направленности с максимумом в главном направлении [5, 6] антенны, возбуждаемые биполярными импульсами одинаковой длительности, располагались по диагонали. Цель данной работы — разработка и исследование мощного источника синтезированного излучения в более высоком диапазоне частот на основе возбуждения решетки комбинированных антенн биполярными импульсами длительностью 0.5 и 1 нс.

В отличие от источника [4], где использовались разные комбинированные антенны, оптимизированные для биполярных импульсов длительностью 2 и 3 нс, в данном источнике использовались одинаковые антенны с расширенной полосой согласования для излучения биполярных импульсов длительностью 0.5 и 1 нс.

1. КОНСТРУКЦИЯ МОЩНОГО ИСТОЧНИКА СИНТЕЗИРОВАННОГО ИЗЛУЧЕНИЯ

Источник с.ш.п.-импульсов синтезированного излучения (рис. 1) состоит из генератора биполярных импульсов и четырехэлементной антенной решетки. В состав четырехканального генератора биполярных импульсов напряжения входят: генератор высоковольтных монополярных импульсов "Синус-160" (I), промежуточная ступень обострения 2 и четырехканальный формирователь биполярных импульсов 3. Элементами решетки 4 служат комбинированные антенны, которые подключаются к выходам генератора коаксиальными кордельными кабелями PK 50-17-51, заполненными элегазом (SF₆) с давлением 5 атм. Расстояние между центрами элементов решетки в двух плос-

Рис. 1. Мощный источник сверхширокополосного излучения. *1* – генератор монополярных импульсов; *2* – промежуточная ступень обострения; *3* – четырехканальный формирователь биполярных импульсов; *4* – четырехэлементная антенная решетка.

костях было одинаковым и равнялось d = 16 см. Решетка находилась в безэховой камере, где и проводились измерения.

2. ЧЕТЫРЕХКАНАЛЬНЫЙ ГЕНЕРАТОР БИПОЛЯРНЫХ ИМПУЛЬСОВ

Для получения высоковольтных биполярных импульсов напряжения мы используем коаксиальные отрезки линий и двухэлектродные газовые разрядники высокого давления, собранные по схеме с разомкнутой линией [7]. В созданном ранее [4] четырехканальном формирователе длительность фронтов биполярных импульсов напряжения длительностью 2 и 3 нс равна 0.4—0.6 нс, что недостаточно для получения биполярных импульсов длительностью 1 и 0.5 нс. Обострить фронты биполярных импульсов можно увеличением скорости нарастания напряжения на электродах разрядников формирователя.

В данной работе для обострения фронтов биполярных импульсов 0.5 и 1 нс мы использовали промежуточную ступень обострения. Она состоит из коаксиальной линии и двухэлектродного разрядника и включена между генератором монополярных импульсов и блоком из четырех формирователей.

На принципиальной схеме генератора биполярных импульсов напряжения (рис. 2) генератор "Синус-160" представлен выходной формирующей линией FL_0 и разрядником S_0 . Эта линия заряжалась от вторичной обмотки трансформатора Тесла до напряжения — 360 кВ с частотой следования импульсов 100 Гц и коммутировалась разрядником S_0 через разделительную линию FL_1 и ограничительное сопротивление R_0 на линию FL_2 промежуточной ступени обострения. Линия FL_1 состоит из набора коаксиальных линий с волновыми сопротивлениями от 45 до 88 Ом и суммарной электрической длиной 2.5 нс.

Формирователи F_1-F_4 собраны по схеме с разомкнутой линией и позволяют формировать биполярные импульсы напряжения с длительностями 1 нс на двух нагрузках по 50 Ом каждая и 0.5 нс на двух других аналогичных нагрузках. При срабатывании разрядника S_1 при напряжении, близком к максимальному, происходит зарядка линий $FL_{51}-FL_{54}$ в режиме бегущих волн через разделительные линии $FL_{41}-FL_{44}$.

Волновые сопротивления и длительности разделительных линий рассчитывались по методике, предложенной в работе [8], и подобраны таким образом, чтобы иметь более высокое зарядное напряжение линий $FL_{51}-FL_{54}$ с коэффициентом увеличения напряжения 1.3–1.5. При срабатывании разрядников $S_{11}-S_{14}$, а затем и разрядников $S_{21}-S_{24}$ с относительными задержками, равными двойным пробегам волны по линиям $FL_{61}-FL_{64}$, в передающих линиях $FL_{81}-FL_{84}$, нагруженных на согласованные нагрузки $R_{11}-R_{14}$, формируются биполярные импульсы напряжения. Формирователи F_1 и F_2 позволяют формировать импульсы длительностью 1 нс, а F_3 и F_4 – длительностью 0.5 нс.

Конструкция промежуточной ступени обострения и блока формирователей биполярных импульсов F_1-F_4 , представленная на рис. 3, состоит из шести газовых объемов. В первом объеме с внутренним диаметром 78 мм в среде азота под давлением 40 атм размещены линии FL_1-FL_3 , разрядник S_1 и емкостный делитель зарядного напряжения D_1 . В четырех независимых объемах с внутренними диаметрами 25 мм, ограниченных изоляторами 1 и 2, в среде азота под давлениями 30–40 атм расположены все кроме правых частей $FL_{81}-FL_{84}$, разрядники $S_{11}-S_{14}$ и $S_{21}-S_{24}$ и емкостные делители зарядного напряжения $D_{21}-D_{24}$.

Рис. 2. Принципиальная схема четырехканального генератора биполярных импульсов. *F* – формирователи, *FL* – коаксиальные линии (электрическая длина линии [нс]/ее волновое сопротивление [Ом]), *S* – разрядники, *R* – сопротивления.

Рис. 3. Конструкция промежуточной ступени обострения и четырехканального формирователя биполярных импульсов. *1*, *2* – изоляторы; *3* – диск; *D* – делители напряжения.

Линии FL_{71} — FL_{74} имеют изоляцию из капролона. Электродами кольцевого разрядника S_1 являются концы внутренних проводников линий FL_2 и FL_3 . Межэлектродный зазор в разряднике S_1 равен 1.4 мм. Электроды обостряющих разрядников S_{11} — S_{14} встроены в концы линий FL_{51} — FL_{54} и FL_{61} — FL_{64} , межэлектродные расстояния равны 1.2—1.4 мм. Электродами срезающих разрядников S_{21} — S_{24} служат диски 3 толщиной 2 мм и цилиндрические вставки, установленные на наружных проводниках линий FL_{61} — FL_{64} с зазорами 0.7 мм.

Материал электродов разрядников S_1 , $S_{11}-S_{14}$ и $S_{21}-S_{24}$ – медь. Оси четырех формирователей расположены в диаметрально противоположных точках на окружности Ø53 мм. Давление азота в

объемах промежуточной линии и в формирователях F_1-F_4 автоматически поддерживалось с точностью 0.5 атм с помощью системы контроля и регулировки давления, выполненной на базе 5 датчиков давления модели PSD-30 и 10 клапанов напуска и сброса газа. Идентичные по конструкции правые части передающих линий $FL_{81}-FL_{84}$ с встроенными делителями напряжения на связанных линиях $D_{31}-D_{34}$ и нагрузки $R_{11}-R_{14}$ имеют элегазовую изоляцию под давлением 5 атм.

Импульс зарядного напряжения на линию FL_2 поступал от генератора "Синус-160" по линии FL_1 , а выходные биполярные импульсы после срабатывания разрядников S_1 , $S_{11}-S_{14}$ и $S_{21}-S_{24}$ передавались по четырем передающим линиям

Рис. 4. Биполярные импульсы напряжения, полученные с делителей $D_{31}-D_{34}$, для формирователей F_1-F_4 .

 FL_{81} — FL_{84} с волновым сопротивлением 50 Ом каждая в согласованные резистивные нагрузки либо в передающие антенны.

Для регистрации выходных биполярных импульсов с делителей напряжения $D_{31}-D_{34}$ и импульсов с делителей зарядных напряжений на линиях FL_2 и $FL_{51}-FL_{54}$ использовался осциллограф TDS 6604 с полосой пропускания до 6 ГГц. Делители $D_{31}-D_{34}$ калибровались при помощи подачи биполярных импульсов напряжения с длительностями 1 и 0.5 нс на входы правых частей линий $FL_{81}-FL_{84}$ от низковольтных генераторов. Эксперимент показал хорошее согласие форм импульсов на выходах линий и восстановленных с коэффициентом ослабления 65 импульсов с делителей напряжения $D_{31}-D_{34}$. Емкостные делители $D_{21} D_{24}$ не калиброваны и служат для оценки времени зарядки напряжения на линиях $FL_{51}-FL_{54}$.

Разрядник S_1 пробивался при напряжении 170 кВ с задержкой 4.3 нс. Регулировкой давлений и зазоров в разрядниках $S_{11}-S_{14}$ и $S_{21}-S_{24}$ добивались симметрии формы биполярных импульсов напряжения с делителей $D_{31}-D_{34}$ и синхронизации моментов перехода через ноль по отдельности для формирователей F_1 , F_2 и F_3 , F_4 . Времена зарядки линий $FL_{51}-FL_{54}$ до моментов коммутации разрядников $S_{11}-S_{14}$ составили 800–950 пс.

Выходные биполярные импульсы, полученные с делителей $D_{31}-D_{34}$, показаны на рис. 4. Импульсы имеют амплитуду до 80 кВ и длительности 1 и 0.5 нс при частоте следования 100 Гц. Длительность импульсов определялась путем аппроксимации фронтов и спадов до пересечений с нулевыми линиями. Среднеквадратичный разброс времени моментов перехода биполярных импульсов через ноль между каналами не превышает 50 пс. Среднеквадратичный разброс амплитуды зарядного напряжения генератора "Синус-160" относительно ее среднего значения равно около 1%. При этом среднеквадратичный разброс амплитуд биполярных импульсов относительно их среднего значения для всех формирователей F_1-F_4 составляет не более 5–6%.

Из энергии, запасенной в формирующей линии FL_0 , 3.6 Дж в промежуточную линию передается 36%, а в нагрузку — 4% (0.14 Дж). Анализ показал, что основные потери энергии связаны с пробоем разрядников при напряжении ниже максимального и потерями в самих разрядниках при коммутации. Выходная пиковая мощность биполярных импульсов достигала 500 МВт.

3. МОДЕЛИРОВАНИЕ СИНТЕЗА ЭЛЕКТРОМАГНИТНЫХ ИМПУЛЬСОВ

Предварительно для оценки характеристик синтезированных импульсов были проведены численные расчеты. Для моделирования с.ш.п.импульса, излученного комбинированной антенной, использовалась производная суммы двух гауссовых функций [5]:

$$E(t,\tau) = \frac{8}{\tau} \left(\frac{4t}{\tau} - 2\right) e^{-\left(\frac{4t}{\tau} - 2\right)^2} - \frac{8}{\tau} \left(\frac{4t}{\tau} - 4\right) e^{-\left(\frac{4t}{\tau} - 4\right)^2}, \quad (1)$$

Рис. 5. Импульсы излучения (**a**), рассчитанные по формуле (1), при возбуждении антенн биполярными импульсами напряжения длительностью 0.5 нс (*1*) и 1 нс (*2*), и их соответствующие спектры (**б**).

Рис. 6. Зависимости пиковой напряженности поля (**a**) и спектра суммарного импульса по уровню $-10 \, \text{дБ}$ (**б**) от задержки между импульсами. 1 - ширина спектра $\Delta f = f_{\text{B}} - f_{\text{H}}$; 2 - относительная ширина спектра $\Delta f/f_0$; 3 - отношение верхней и нижней граничных частот $b = f_{\text{B}}/f_{\text{H}}$.

где τ — длительность биполярного импульса напряжения, возбуждающего антенну, по уровню 0.1 амплитуды. Формула (1) достаточно хорошо моделирует реальные импульсы E(t), излученные комбинированными антеннами, оптимизированными для излучения биполярных импульсов 0.5 нс [9] и 1 нс [10] и их спектры S(f). Импульсы, рассчитанные по формуле (1), приведены на рис. 5а, а их спектры показаны на рис. 56.

При сложении импульсов излучения результат определяется как характеристиками импульсов, так и их временными задержками относительно друг друга. Таким образом, изменяя задержку между импульсами излучения с разной длительностью (шириной спектра), можем получать импульсы с разными характеристиками: длительностью, амплитудой и шириной спектра.

Будем оптимизировать синтезированный импульс по двум параметрам: максимальной амплитуде поля и максимальной ширине спектра. Заметим, что спектр импульса можно характеризовать следующими параметрами [11]:

1) шириной спектра $\Delta f = f_{\rm B} - f_{\rm H}$, где $f_{\rm H}$ – нижняя, а $f_{\rm B}$ – верхняя граничные частоты спектра излучения, оцененные по уровню –10 дБ;

2) относительной шириной спектра $\Delta f/f_0$, где $f_0 = (f_{\rm B} + f_{\rm H})/2$ – центральная частота спектра излучения;

3) отношением верхней и нижней граничных частот $b = f_{\rm B}/f_{\rm H}$.

Для анализа характеристик синтезированного импульса построим зависимости пиковой напряженности поля $E_{\rm n}$ и ширины спектра по уровню -10 дБ от задержки между импульсами (рис. 6).

Максимальная пиковая напряженность поля (рис. 6а) достигается при задержке $\Delta t = 0.376$ нс, соответствующей синхронизации положительных максимумов импульсов. При этом амплитуды импульсов суммируются, а отношение верхней и

2019

Рис. 7. Сложение импульсов с задержкой -0.16 нс: **а** – импульс излучения при возбуждении антенны биполярным импульсом длительностью 0.5 нс (*1*), 1 нс (*2*) и суммарный импульс излучения (*3*); **б** – спектр суммарного импульса излучения.

нижней граничных частот суммарного импульса по сравнению с импульсами, излученными при возбуждении антенн биполярными импульсами длительностью 0.5 и 1 нс, увеличивается примерно на 27%.

Из рис. 66 видно, что для всех трех параметров, характеризующих спектр импульса, максимальные значения соответствуют задержкам -0.16 и 0.91 нс.

На рис. 7 приведены суммарный импульс для задержки $\Delta t = -0.16$ нс и его спектр. По сравнению с одиночным импульсом отношение верхней и нижней граничных частот суммарного импульса увеличилось в 2.26 раза и составило более трех октав. При этом амплитуда поля суммарного импульса по отношению к амплитуде исходных импульсов излучения не уменьшилась. В табл. 1 приведены частотные характеристики для одиночных импульсов (рис. 5) и суммарных импульсов для задержек 0.376 и -0.16 нс (рис. 7).

Численные расчеты, аналогичные [5], показали также, что для получения симметричной диаграммы направленности для обоих режимов синтеза (максимальная амплитуда и максимальная ширина спектра), что удобно в экспериментальных исследованиях, антенны в решетке 2 × 2, возбуждаемые биполярными импульсами одинаковой длительности, должны располагаться по диагонали.

4. ХАРАКТЕРИСТИКИ РЕШЕТКИ КОМБИНИРОВАННЫХ АНТЕНН

Элементами решетки служили комбинированные антенны размерами $15 \times 15 \times 17$ см. В отличие от других наших источников с.ш.п.-излучения [1], в этом источнике одна и та же антенна использовалась для излучения биполярных импульсов длительностью 1 нс и 0.5 нс. Для этого разработанная ранее базовая комбинированная антенна [10] для импульсов длительностью 1 нс была модифицирована (полоса согласования расширена в высокочастотную область) для более эффективного излучения импульса длительностью 0.5 нс. Это достигалось уменьшением диаметра коаксиала на входе антенны и изменением геометрии электродов антенны.

Для исследования пространственно-временных характеристик излучения антенн использовались низковольтные биполярные импульсы напряже-

Импульс с.ш.пизлучения	$f_{\rm H},$ ГГц	$f_{\scriptscriptstyle \mathrm{B}},$ ГГц	f_0 , ГГц	∆ <i>f</i> , ГГц	$\Delta f/f_0$	$b = f_{\rm B}/f_{\rm H}$
0.5 нс	0.664	3.074	1.869	2.41	1.289	4.632
1 нс	0.332	1.537	0.934	1.205	1.29	4.632
0.5 + 1 нс, макс. амплитуда	0.354	2.092	1.223	1.737	1.42	5.9
0.5 + 1 нс, макс. спектр	0.274	2.874	1.574	2.6	1.652	10.48

Таблица 1. Параметры расчетных импульсов излучения

Рис. 8. Осциллограмма импульса, излученного комбинированной антенной при возбуждении биполярным импульсом длительностью 0.5 нс: *1* – модифицированная антенна, *2* – базовая антенна [10].

ния. На рис. 8 для сравнения приведены осциллограммы импульсов, излученных модифицированной и базовой [10] комбинированными антеннами, возбуждаемыми биполярным импульсом длительностью 0.5 нс. Видно, что амплитуда импульса, излученного модифицированной антенной, увеличилась на 40%.

Диаграмма направленности модифицированной антенны (рис. 9) измерялась по пиковой мощности (E_n^2) при возбуждении антенны импульсами 1 и 0.5 нс в *E*- и *H*-плоскостях. *E*-плоскости соответствовал угол места δ , а *H*-плоскости — азимутальный угол ϕ . При измерениях комбинированную антенну вращали вокруг ее центра, а неподвижная приемная антенна находилась на расстоянии 4.4 м от нее. По сравнению с базовой антенной ширина диаграммы направленности на полувысоте при возбуждении биполярным импульсом 1 нс увеличилась на 10° в *Н*-плоскости и на 20° в *Е*-плоскости. Диаграмма направленности при возбуждении антенны импульсом 0.5 нс у́же. Как и в предыдущих наших работах [1], для измерения излученных импульсов использовалась приемная TEM-антенна, представляющая собой половину TEM-рупора с высотой раскрыва 8 см. Сигнал с выхода приемной TEM-антенны регистрировался осциллографом LeCroy WaveMaster 830Zi с полосой пропускания 16 ГГц.

Диаграммы направленности по пиковой мощности решетки 2 × 2 приведены на рис. 10а для случая возбуждения импульсами с задержками, оптимизированными для максимальной амплитуды поля, на рис. 10б – для максимальной ширины спектра. Благодаря тому, что элементы, возбуждаемые импульсами одинаковой длительности, расположены по диагонали, максимумы диаграмм направленности расположены на оси ($\delta = \phi = 0$), перпендикулярной плоскости решетки.

5. ИЗЛУЧЕНИЕ МОЩНЫХ СИНТЕЗИРОВАННЫХ ИМПУЛЬСОВ

На рис. 11 приведены осциллограммы импульсов (rE), излученных комбинированными антеннами при возбуждении высоковольтными биполярными импульсами напряжения длительностью 0.5 и 1 нс, и их спектры. Измерения проводились в дальней зоне на расстоянии от решетки r = 4.4 м.

Измерив формы импульсов излучения (рис. 11) и их относительные задержки, мы рассчитали задержки, необходимые для получения синтезированных импульсов с максимальной амплитудой и максимальной шириной спектра. На рис. 12 приведена осциллограмма синтезированного импульса с задержками, оптимизированными для получения максимальной амплитуды поля, и его спектр, рассчитанный при помощи быстрого преобразования Фурье. Получены импульсы излуче-

Рис. 9. Диаграммы направленности элемента решетки в *H*- (1) и *E*-плоскостях (2) при возбуждении биполярным импульсом напряжения длительностью 1 нс (**a**) и 0.5 нс (**б**).

Рис. 10. Диаграммы направленности решетки 2 × 2 в *H*- (1) и *E*-плоскостях (2) при сложении импульсов, оптимизированном для максимальной амплитуды (**a**) и для максимальной ширины спектра (**б**).

Рис. 11. Осциллограммы импульсов излучения (**a**) и их спектры (**б**) при возбуждении антенн биполярными импульсами напряжения длительностью 0.5 нс (I) и 1 нс (2).

Рис. 12. Осциллограмма синтезированного импульса (а) при синхронизации по максимуму амплитуды и его спектр (б).

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 1 2019

Рис. 13. Осциллограмма синтезированного импульса (**a**), излученного решеткой с задержками, оптимизированными для получения максимальной ширины спектра, и его спектр (**б**).

Таблица 2. Экспериментальные параметры мощных импульсов с.ш.п.-излучения

Импульс с.ш.пизлучения	$f_{\rm H},$ ГГц	$f_{\scriptscriptstyle \mathrm{B}},$ ГГц	f_0 , ГГц	Δf , ГГц	$\Delta f/f_0$	$b = f_{\rm B}/f_{\rm H}$
0.5 нс	0.49	2.72	1.6	2.23	1.39	5.55
1 нс	0.33	2.07	1.2	1.74	1.45	6.27
0.5 + 1 нс, макс. амплитуда	0.39	2.13	1.26	1.74	1.38	5.46
0.5 + 1 нс, макс. спектр	0.15	2.7	1.43	2.55	1.79	18

ния с эффективным потенциалом (произведением пиковой напряженности электрического поля E_{Π} на расстояние *r* в дальней зоне) $rE_{\Pi} = 600$ кВ.

На рис. 13 приведена осциллограмма синтезированного импульса с задержками, оптимизированными для получения максимальной ширины спектра. Эффективный потенциал синтезированного излучения rE_n с расширенной полосой частот составляет 200 кВ. Пиковая плотность мощности излучения в главном направлении ($\delta = = \varphi = 0$) на расстоянии 4.4 м составила 50 MBt/м² для варианта синхронизации импульсов с максимальной напряженностью поля и 5.5 MBt/м² для варианта с максимальной шириной спектра. Измеренные частотные характеристики импульсов приведены в табл. 2.

Ширина спектра Δf синтезированного импульса увеличена в 1.1—1.4 раза, а по отношению крайних частот в 2.9—3.2 раза. Отличие полученных экспериментальных результатов от численных расчетов (табл. 1) обусловлено различием модельных и измеренных форм импульсов излучения.

ЗАКЛЮЧЕНИЕ

Создан источник мощных импульсов синтезированного излучения на основе решетки 2 × 2 комбинированных антенн, возбуждаемых биполярными импульсами напряжения длительностью 0.5 и 1 нс. Реализовано два режима синтеза: максимальная напряженность поля и максимальная ширина спектра. В первом режиме получены импульсы излучения с эффективным потенциалом 600 кВ, а во втором — 200 кВ. Режимы изменялись за счет изменения времени задержки между импульсами. Отношение крайних частот спектра синтезированного импульса во втором режиме было увеличено в 3 раза по сравнению с импульсами, излучаемыми комбинированными антеннами, возбуждаемыми биполярными импульсами одинаковой длительности.

Разработан новый четырехканальный формирователь биполярных импульсов разной длительности. На частоте повторения 100 Гц получены биполярные импульсы длительностью 0.5 и 1 нс с амплитудой до 80 кВ при разбросе 5–6% и временной нестабильности импульсов между каналами 50 пс.

Работа была поддержана Российским научным фондом, проект № 16-19-10081.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Koshelev V.I., Buyanov Yu.I., Belichenko V.P.* Ultrawideband Short-Pulse Radio Systems. Boston/London: Artech House, 2017.
- 2. *Giri D.V., Lackner H., Smith I.D., Morton D.V., Baum K.E., Marek J.R., Prather W.D., Scholfield D.W.* // IEEE Trans. Plasma Sci. 1997. V. 25. № 2. P. 318.
- Andreev Yu.A., Buyanov Yu.I., Koshelev V.I., Plisko V.V., Sukhushin K.N. // Proc. Ultra-Wideband, Short-Pulse Electromagnetics 4. New York: Kluwer Academic/Plenum Publishers, 1999. P. 181.

- Efremov A.M., Koshelev V.I., Plisko V.V., Sevostyanov E.A. // Rev. Sci. Instrum. 2017. V. 88. № 9. P. 094705. doi 10.1063/1.5003418
- Koshelev V.I., Plisko V.V., Sevostyanov E.A. // J. Phys.: Conf. Series. 2017. V. 830. P. 012012. doi 10.1088/1742-6596/830/1/012012
- 6. *Кошелев В.И., Плиско В.В., Севостьянов Е.А. //* Изв. вузов. Физика. 2017. Т. 60. № 8. С. 98.
- Andreev Yu.A., Gubanov V.P., Efremov A.M., Koshelev V.I., Korovin S.D., Kovalchuk B.M., Kremnev V.V., Plisko V.V., Stepchenko A.S., Sukhushin K.N. // Laser Part. Beams. 2003. V. 21. № 2. P. 211. doi 10.1017/ S0263034603212088
- Shpak V.G., Oulmascoulov V.R., Shunailov M.R., Yalandin M.I. // Proc. 12th IEEE Inter. Pulsed Power Conf. 27–30 June, 1999. P. 692.
- 9. Ефремов А.М., Кошелев В.И., Ковальчук Б.М., Плиско В.В., Сухушин К.Н. // ПТЭ. 2011. № 1. С. 77.
- 10. Ефремов А.М., Кошелев В.И., Ковальчук Б.М., Плиско В.В., Сухушин К.Н. // Радиотехника и электроника. 2007. Т. 52. № 7. С. 813.
- Federal Communication Comission USA (FCC) 02-48, ET Docket 98-153, First report and order, April 2002.