## \_\_\_\_\_ ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ \_\_\_\_ ТЕХНИКА

УДК 621.386.8

# РЕГИСТРАЦИЯ ПРОФИЛЯ ФРОНТА ЛАЗЕРНОГО ИМПУЛЬСА С ПИКОСЕКУНДНЫМ РАЗРЕШЕНИЕМ И БОЛЬШИМ ДИНАМИЧЕСКИМ ДИАПАЗОНОМ НА МНОГОКАНАЛЬНЫХ УСТАНОВКАХ

© 2019 г. Л. А. Душина<sup>*a*,\*</sup>, А. Г. Кравченко<sup>*a*</sup>, Д. Н. Литвин<sup>*a*</sup>, В. В. Мисько<sup>*a*</sup>, А. В. Сеник<sup>*a*</sup>, А. Е. Чаунин<sup>*a*</sup>

<sup>а</sup> РФЯЦ-ВНИИ экспериментальной физики Россия, 607190, Саров Нижегородской обл., просп. Мира, 37 \*e-mail: dushinala@gmail.com Поступила в редакцию 30.07.2018 г. После доработки 30.07.2018 г. Принята к публикации 13.09.2018 г.

Представлены результаты разработки методики измерения мощностного контраста лазерного импульса путем регистрации профиля фронта импульса с большим динамическим диапазоном. Методика разработана на основе скоростного фотохронографа и волоконно-оптических линий связи и позволяет обеспечить следующие параметры регистрации: динамический диапазон измерения мощностного контраста лазерного импульса на длине волны  $\lambda = 0.53$  мкм –  $10^7$ ; временное разрешение канала регистрации – не хуже 60 пс. Показан путь повышения мощностного контраста до  $10^{11}$  за счет использования оптической схемы на основе элементов с нелинейным пропусканием.

DOI: 10.1134/S0032816219020071

### введение

Эксперименты на мощных лазерных установках. связанные с облучением мишеней. в том числе по лазерному термоядерному синтезу, требуют детальной информации о профиле фронта лазерного импульса. В зависимости от его крутизны лоля поглощенной лазерной энергии, переработанной в кинетическую энергию оболочки мишени и определяющей, в конечном счете, параметры микровзрыва, может изменяться в значительных пределах. В современных установках мегаджоульного уровня энергии требуется измерение профиля фронта с динамическим диапазоном ≥10<sup>6</sup> и высоким временным разрешением ( $\tau_P \leq 0.1$  нс). Такие параметры удается достичь, используя в качестве детектора оптический фотохронографический регистратор на основе электронно-оптического преобразователя (э.о.п.), работающего в режиме шелевой развертки изображения [1].

### СХЕМА ИЗМЕРИТЕЛЬНОГО КАНАЛА

Разработанная методика в основном ориентирована на регистрацию мощностного контраста лазерного импульса (л.и.) путем регистрации профиля фронта импульса с большим динамическим диапазоном в условиях большого числа лазерных каналов. При эксплуатации многоканальной установки с большим количеством подсистем важной становится задача минимизации площади размещаемого оборудования, стоимости оборудования и его обслуживания. Комплекс регистрации л.и. можно строить на основе волоконно-оптических линий связи (в.о.л.с.) по принципу один канал — одно волокно с последующим вводом ряда каналов на один э.о.п. [2]. Применение э.о.п. с фотокатодом большой длины позволяет объединить в одном приборе десятки измерительных каналов.

На рис. 1 приведена схема измерения мощностного контраста, выполненная на основе в.о.л.с. Излучение для регистрации поступает на фокусирующую линзу *I*, которая строит на входе волоконного световода *2* изображение ближней зоны л.и. в параксиальных лучах  $\alpha \le \alpha_a$ , где  $\alpha_a =$  $= 10^\circ$  — апертурный угол ввода излучения в в.о.л.с. Этим достигается равномерная засветка световода, исключающая оптический пробой на его торце.

Выход световода 2 разбит на несколько меньших по диаметру световодов. Для усреднения излучения и выравнивания его по отдельным каналам регистрации используется световод со смешанным коллектором. Расстояние между выходом



**Рис. 1.** Схема измерения мощностного контраста, выполненная на основе в.о.л.с. *1* – фокусирующая линза; *2* – воло-конный световод; *3* – оптические ослабители; *4* – кварцевый стержень; *5* – в.о.л.с.; *6* – фотохронограф.

волоконного световода 2 и входом в.о.л.с. 5 (около 5 см) выбирается из условия полного перекрытия элементарных световых конусов от отдельных жил световода. Для исключения искажающего влияния спекловой структуры когерентного излучения на регистрацию после волоконного рассеивателя и для более эффективного ввода энергии выходной световод стыкуется с в.о.л.с. через светопровод в виде кварцевого стержня 4 с полированными поверхностями.

Высокая чувствительность позволяет применить систему измерения с ранжированием сигнала до 10<sup>7</sup>—10<sup>8</sup> раз.

Между выходами световода 2 и кварцевыми стержнями 4 установлены оптические ослабители с шагом ослабления 100. Для измерений мощностного контраста в одной точке используются три канала с ранжированием сигнала. Кабели в.о.л.с. в плоскости времяанализирующей щели фотохронографа сформированы в виде линейки.

Чтобы уменьшить влияние рассеяния и расплывания сигналов в областях насыщения на соседние сигналы, измеряемые в нелинейном режиме сигналы регистрировались с временной задержкой, подобранной так, чтобы области сигналов с насыщением выводились за область регистрации э.о.п. Кроме того, э.о.п. фотохронографа содержит пластины гашения, уводящие пучок фотоэлектронов с рабочей траектории в специальную ловушку, что позволяет исключить рассеяние большого сигнала внутри э.о.п. и попадание его на выходной экран.

# ЭКСПЕРИМЕНТАЛЬНАЯ ОТРАБОТКА МЕТОДИКИ

Экспериментальная отработка методики измерения мощностного контраста л.и. проводилась на излучении импульсного неодимового лазера ЛТИ-44 (производство ВНИИОФИ, Москва) на длине волны  $\lambda = 0.53$  мкм. Длительность импульса составляла T = 5 нс, энергия E = 40 мДж. Лазерный импульс имел нестабильную временную субструктуру с периодом от 0.2 до 0.5 нс. Основная направленность исследований заключалась в получении информации о возможности достижения максимального динамического диапазона регистрации глубокого профиля фронта, а также в проверке работоспособности измерительной схемы на основе в.о.л.с.

В качестве детектора использовался оптический щелевой фотохронограф [1]. Пространственное разрешение прибора по входу 21 пара штрихов/мм с контрастом 7.5%. Техническое временное разрешение регистратора, задаваемое длительностью развертки (10 нс/экран) и входной щелью регистратора (50 мкм), составляло 60 пс (предельное физическое временное разрешение э.о.п. – не хуже 3 пс). Линейный динамический диапазон фотохронографа ДДР<sub>лин</sub> = 1300.

На рис. 2 представлены результаты регистрации профиля фронта лазерного импульса с учетом указанной методической временной задержки и коэффициентов ранжирования соответствующих каналов. В первом канале, максимально ослабленном, ведется регистрация формы л.и. в линейном режиме работы э.о.п. с динамическим диапазоном  $\mathcal{ДДP}_{\text{лин}} = 1300$ . Второй и третий каналы регистрируют в режиме насыщения э.о.п. с ростом мощности облучения соответственно шагу ранжирования. Задержка сигнала второго канала относительно первого составляет 5 нс, задержка между третьим и вторым сигналами – 2.5 нс. Диаграммы мощности приведены в относительных единицах.

Мощность облучения в третьем (открытом) канале была в несколько раз ниже максимально допустимой облученности фотокатода  $P_S^{\text{max}} = 5 \cdot 10^6 \text{ Вт/см}^2$ , которая примерно соответствует порогу повреждения [2].

В результате обработки сигнала л.и., зарегистрированного с ранжированием, была получена форма профиля фронта импульса с динамическим диапазоном ~10<sup>7</sup>. Скорость нарастания фронта л.и. составила 0.5 нс при изменении мощности на порядок.



**Рис. 2.** Результат обработки эопограмм с учетом коэффициентов ранжирования и временных задержек каналов: *1*, *2*, *3* – эопограммы регистрации импульса л.и.

#### ПЕРСПЕКТИВЫ РАЗВИТИЯ МЕТОДИКИ

Дальнейшее увеличение динамического диапазона измерения профиля фронта л.и. тем же способом ограничено сверху порогом мощности разрушения фотокатода. Для преодоления этого недостатка предлагается ввести следующее изменение в оптическую схему измерения. Поскольку в оптической схеме, представленной на рис. 1, самым слабым по оптической прочности местом является фотокатод э.о.п. в канале с наименьшим коэффициентом ослабления, предлагается перенести критическое место по оптической прочности с фотокатода в специальную промежуточную точку оптической схемы.

Максимально допустимая плотность мощности на фотокатоде составляет  $\approx 10^7$  BT/см<sup>2</sup>. Пороговое значение плотности мощности, соответствующее оптическому пробою на оптоволоконном коллекторе, не превышает  $10^8$  BT/см<sup>2</sup>. Значительное ослабление сигнала за счет предлагаемой системы ввода л.и. в в.о.л.с. между входом волоконно-оптического коллектора и в.о.л.с. позволяет перенести критическое место с фотокатода э.о.п. на защитный элемент с нелинейным коэффициентом пропускания. В качестве такого элемента может использоваться разрушаемое зеркало, насыщающийся светофильтр или пробой на поверхности оптического элемента. В последнем случае образующийся в результате пробоя плазменный непрозрачный слой на пластине экранирует лазерное излучение и отсекает максимальную часть сигнала. Возможная схема представлена на рис. 3 [3].

На первом коллекторе осуществляется измерение фронта л.и. до максимума импульса, поэтому на этот канал подается только часть энергии (~1%). Это достигается путем отведения части л.и. оптическим элементом I с коэффициентом отражения ~1% и ослабляется при необходимости светофильтром 4.

Остальная энергия л.и. подается на вход второго коллектора 6. Установленный перед коллектором элемент 5 с нелинейным коэффициентом пропускания предотвращает разрушение оптической схемы и фотокатода э.о.п.

Оптические ослабители 8 подбираются с одинаковым шагом ранжирования. Шаг необходимо выбирать меньшим или равным динамическому диапазону регистратора. Для корректного восстановления фронта сигнала предлагается сделать два канала с одинаковыми итоговыми коэффициентами ослабления за разными коллекторами. При энергии л.и. 100 Дж, коэффициенте ранжирования 100 на усовершенствованной схеме можно получить мощностной контраст до 10<sup>11</sup>.



**Рис. 3.** Усовершенствованная схема измерения мощностного контраста, выполненная на основе в.о.л.с. *1* – оптический элемент с коэффициентом отражения ~1%; *2* – зеркало; *3* – фокусирующая линза; *4* – светофильтр (ослабитель); *5* – элемент с нелинейным коэффициентом пропускания; *6* – оптоволоконный коллектор; *7* – волоконный световод; *8* – оптические ослабители; *9* – кварцевый стержень; *10* – в.о.л.с.; *11* – фотохронограф.

### ЗАКЛЮЧЕНИЕ

В работе представлены результаты разработки методики измерения мощностного контраста лазерного импульса путем регистрации профиля фронта импульса с большим динамическим диапазоном. Методика разработана на основе скоростного фотохронографа и волоконно-оптических линий связи.

Методика позволяет обеспечить следующие параметры регистрации:

— динамический диапазон измерения мощностного контраста лазерного импульса на длине волны  $\lambda = 0.53$  мкм —  $10^7$ ;

 временное разрешение канала регистрации – не хуже 60 пс. Показан путь повышения мощностного контраста до 10<sup>11</sup> за счет использования оптической схемы на основе элементов с нелинейным пропусканием.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Корниенко Д.С., Кравченко А.Г., Литвин Д.Н., Мисько В.В., Рукавишников А.Н., Сеник А.В., Стародубцев К.В., Тараканов В.М., Чаунин А.Е. // ПТЭ. 2014. № 2. С. 78. doi: 10.7868/S0032816214020104
- 2. Кирдяшкин М.Ю., Муругов В.М., Окутин Г.П., Сеник А.В. // Квантовая электроника. 1992. Т. 19. № 10. С. 1032.
- Литвин Д.Н., Кравченко А.Г., Сеник А.В., Мисько В.В., Чаунин А.Е., Душина Л.А. Патент на изобретение № 2587684 РФ //Бюл. № 17. Опубл. 20.06.2016 г.