## \_ ФИЗИЧЕСКИЕ ПРИБОРЫ ДЛЯ ЭКОЛОГИИ, \_\_\_ МЕДИЦИНЫ, БИОЛОГИИ

УЛК 539.1.074.3

## РАДИОМЕТРИЧЕСКИЙ МЕТОД ИЗМЕРЕНИЯ АКТИВНОСТИ 14C В ОБЛУЧЕННОМ ГРАФИТЕ

© 2019 г. С. М. Игнатов<sup>а</sup>, В. Н. Потапов<sup>а</sup>, \*, Ю. Н. Симирский<sup>а</sup>, А. В. Степанов<sup>а</sup>

<sup>а</sup> Национальный исследовательский центр "Курчатовский институт" Россия, 123182, Москва, пл. Академика Курчатова, 1

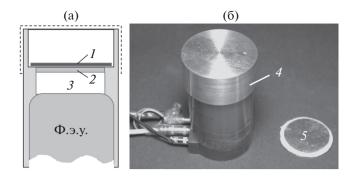
\* e-mail: potapov\_v@mail.ru

Поступила в редакцию 22.08.2018 г. После доработки 22.08.2018 г. Принята к публикации 10.10.2018 г.

Разработан радиометрический метод измерения активности <sup>14</sup>C в образцах облученного графита. В экспериментах использовались образцы графитовых блоков кладки уран-графитовых реакторов, готовящихся к выводу из эксплуатации и последующему демонтажу. В реакторном графите в процессе облучения нейтронами образуется радионуклид <sup>14</sup>C с периодом полураспада 5730 лет, который представляет большую опасность с радиоэкологической точки зрения. Поэтому в процессе вывода из эксплуатации уран-графитовых реакторов необходимо контролировать содержание <sup>14</sup>C в радиоактивных отходах, образующихся при демонтаже графитовых кладок и элементов технологических конструкций. Учитывая общий объем графита в уран-графитовых реакторах, желательно иметь оперативный метод контроля содержания <sup>14</sup>C в графите. Таким методом может быть радиометрический метод, способ реализации которого описан в этой работе.

## **DOI:** 10.1134/S0032816219020228

#### **ВВЕДЕНИЕ**


В атомной отрасли в настоящее время работают десятки энергоблоков с уран-графитовыми реакторами. Кроме того, большое количество промышленных уран-графитовых реакторов (у.г.р.) находятся в процессе подготовки к выводу из эксплуатации. В облученном графите таких реакторов, наряду с продуктами активации и деления (аварийные ячейки), содержится большое количество радиоактивного углерода <sup>14</sup>С. Учитывая общую массу графита в кладках и съемных элементах у.г.р. (десятки тысяч тонн) [1-3], облученный графит является опасным техногенным источником радиоактивного загрязнения окружающей среды. Поэтому при выводе из эксплуатации таких реакторов и при долговременном хранении облученного графита необходимо обеспечить контроль содержания (активности) <sup>14</sup>С для определения соответствия критериям приемлемости для захоронения (НП-093-14).

Традиционным для определения активности <sup>14</sup>С в реакторном графите является радиохимический метод, основанный на окислении исследуемого образца до двуокиси углерода с последующим определением активности <sup>14</sup>С с использованием жидкостных сцинтилляционных бетаспектрометров [1, 4–7]. Данный способ является

трудоемким, но в то же время достаточно надежным, так как позволяет исключить влияние сопутствующих радионуклидов, содержащихся в облученном графите (это, как правило,  $^{137}$ Cs,  $^{90}$ Sr,  $^{60}$ Co,  $^{134}$ Cs и т.д.). Все эти радионуклиды являются в основном  $\beta$ - и  $\gamma$ -излучающими, поэтому создают трудности при измерении полезного сигнала, связанного с излучением радионуклида  $^{14}$ C. Таким образом, радиохимический метод может быть использован для интеркалибровки других методов измерения активности  $^{14}$ C.

<sup>14</sup>С является чистым β-излучающим радионуклидом с максимальной энергией β-частиц 156 кэВ и периодом полураспада 5730 лет.

Проблема радиометрического метода измерения активности <sup>14</sup>С заключается в мешающем влиянии фонового излучения техногенных радионуклидов, присутствующих в облученном графите, так как β-частицы, попадая в чувствительный объем детектора, имеют 100%-ную эффективность регистрации. Как правило, наибольшее влияние фонового излучения приходится на низкоэнергетическую область спектра, а именно в этой части спектра формируется полезный сигнал — зарегистрированное β-излучение <sup>14</sup>С с энергией менее 156 кэВ. Поэтому для решения этой проблемы важно выбрать оптимальные параметры бета-ра-



**Рис. 1.** Условная схема (а) и внешний вид (б) спектрометрической установки для измерения удельной активности  $^{14}$ С в образце реакторного графита. I — исследуемый образец; 2 — пластиковый сцинтиллятор (полистирол); 3 — световод из плексигласа; 4 — бетаспектрометр; 5 — образец с графитом на фильтре.

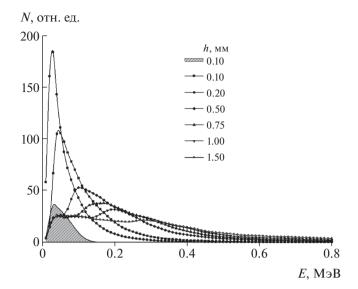
диометра (материал сцинтиллятора и его толщину) и обеспечить подготовку образца графита для измерений.

## ОПИСАНИЕ БЕТА-РАДИОМЕТРА ДЛЯ ИЗМЕРЕНИЯ АКТИВНОСТИ <sup>14</sup>С В ОБРАЗЦАХ ОБЛУЧЕННОГО ГРАФИТА

Радиометрический метод измерения активности <sup>14</sup>С в облученном графите разрабатывался в процессе обследования графитовой кладки выведенного из эксплуатации исследовательского реактора РФТ (НИЦ "Курчатовский институт"). Реактор был остановлен и частично демонтирован в 1962 г. Графитовая кладка активной зоны оставалась в стальном штатном корпусе в течение более 50-ти лет, поэтому основными техногенными радионуклидами, содержащимися в графите, к моменту демонтажа активной зоны являлись долгоживущие радионуклиды  $^{137}$ Cs и  $^{90}$ Sr( $^{90}$ Y). Радионуклид <sup>90</sup>Sr практически всегда находится в равновесии с <sup>90</sup>Y, поэтому в дальнейшем для краткости будем обозначать только <sup>90</sup>Sr, подразумевая, что всегда присутствует также равновесный <sup>90</sup>Y.

На рис. 1а представлена схема бета-радиометра, предназначенного для реализации радиометрического способа измерения активности <sup>14</sup>С в образцах реакторного графита.

Данный бета-спектрометр был реализован с использованием ф.э.у. HAMAMATSUPMT-R10601 [8], внешний вид спектрометра вместе с образцом графита показан на рис. 1б. Поскольку в этой схеме спектрометра использовался тонкий сцинтиллятор, то для выравнивания чувствительности фотокатода ф.э.у. применялся световод цилиндрической формы толщиной 15 мм из плексигласа.


Образец для измерения формировали в виде осажденного на фильтр порошка графита. В случае высоких концентраций мешающих радионук-

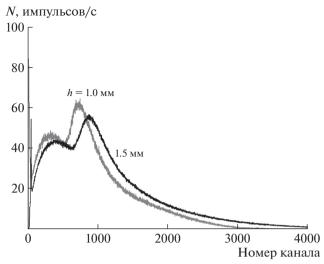
лидов <sup>137</sup>Cs и <sup>90</sup>Sr графит подвергали выщелачиванию. Пробу графита дважды в течение 1 ч выщелачивали горячей концентрированной азотной кислотой и окончательно в течение 1 ч — горячей царской водкой. Данная процедура позволяла уменьшить концентрации мешающих радионуклидов в 15—20 раз. Массу осажденного порошка графита измеряли путем взвешивания и определяли толщину слоя графита, выраженную в граммах на квадратный сантиметр (диаметр мишени 40 мм).

## ВЫБОР ОПТИМАЛЬНЫХ ПАРАМЕТРОВ БЕТА-РАДИОМЕТРА

Поскольку образцы реакторного графита содержат ү-излучающие радионуклиды, то использовался сцинтиллятор из полистирола, что позволило минимизировать эффективность регистрации у-излучения. Снижению эффективности регистрации у-излучения способствовало уменьшение толщины пластины сцинтиллятора, так как чем тоньше пластина, тем меньше влияние у-излучения сопутствующих радионуклидов. Расчеты показали, что для полного поглощения В-частиц <sup>14</sup>С с максимальной энергией 156 кэВ достаточно пластины сцинтиллятора толщиной всего 100 мкм. Однако это не означает, что такая толщина сцинтиллятора является оптимальной. При очень тонких пластинах сцинтиллятора начинает проявляться негативное влияние В-излучения высокоэнергетических частиц радионуклидов, таких как  $^{90}$ Sr,  $^{137}$ Cs и т.п. Для анализа подобной ситуации была создана математическая модель спектрометрической системы, основанная на методе Монте-Карло. Это позволило провести оптимизацию параметров спектрометрической системы и, в частности, выбрать оптимальную толщину сцинтиллятора и толщину исследуемого образца. На рис. 2 показано изменение характера аппаратурного спектра излучения <sup>90</sup>Sr в зависимости от толщины полистирола. Там же представлен спектр излучения <sup>14</sup>С с той же удельной активностью. Соглано рисунку, влияние излучения <sup>90</sup>Sr на область интереса (низкоэнергетический интервал, расположенный ниже 156 кэВ) в значительной степени зависит от толщины полистирола.

Подобная ситуация наблюдается и для излучения радионуклида  $^{137}$ Cs. Чем тоньше сцинтилляционная пластина, тем меньше энергии передается сцинтиллятору, поэтому при очень тонких пластинах сцинтиллятора основной вклад в низкоэнергетическую область аппаратурного спектра дают  $\beta$ -частицы высокой энергии, формируя некоторую область в виде "горба" (рис. 3). Очевидно, что по мере увеличения толщины пластины положение этого "горба" смещается в область более высоких энергий. Учитывая эту особенность

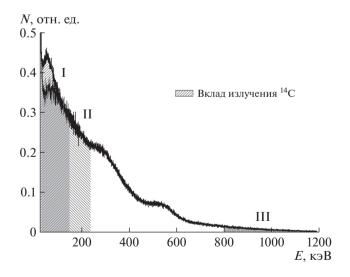



**Рис. 2.** Аппаратурные спектры  $\beta$ -излучения графитового образца, содержащего радионуклид <sup>90</sup>Sr, рассчитанные для пластиковых сцинтилляторов (полистирол) различной толщины h. Заштрихованная область — аппаратурный спектр излучения <sup>14</sup>C.

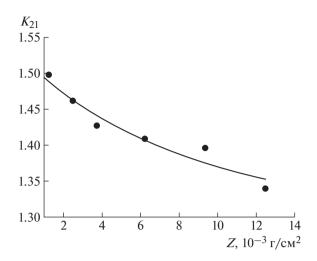
формирования аппаратурного спектра, подбором толщины пластины сцинтиллятора можно минимизировать влияние высокоэнергетических  $\beta$ -частиц в области интереса, т.е. уменьшить фоновую подложку спектра в диапазоне низких энергий.

Дальнейший вывод относительно оптимальной толщины пластины сцинтиллятора может быть сделан после изложения предлагаемого метода измерения активности  $^{14}$ C.

## РАДИОМЕТРИЧЕСКИЙ МЕТОД ИЗМЕРЕНИЯ АКТИВНОСТИ <sup>14</sup>С


Основной задачей радиометрического метода измерений является выделение полезного сигнала, обусловленного регистрацией излучения <sup>14</sup>С на фоне излучения других радионуклидов. Достигается это использованием нескольких энергетических интервалов аппаратурного спектра и существующих между ними корреляционных коэффициентов. На рис. 4 представлены типичные аппаратурные спектры образцов графита. Нижний спектр получен на образце графита, содержащем радионуклиды <sup>90</sup>Sr и <sup>137</sup>Cs в отсутствие радионуклида <sup>14</sup>С (характеризует фоновую составляющую спектра). Верхний спектр получен при наличии в графите радионуклида  $^{14}\mathrm{C}$  при том же содержании радионуклидов  $^{90}\mathrm{Sr}$  и  $^{137}\mathrm{Cs}$  (основной спектр). На этом рисунке выделены три энергетические области (I, II и III), которые использовались при определении полезного сигнала (раз-




**Рис. 3.** Аппаратурные спектры  $\beta$ -излучения  $^{90}$ Sr, измеренные на детекторе при различной толщине пластины сцинтиллятора.

ностная величина области I между основным и фоновым спектрами).

Обозначим через  $n_1$ ,  $n_2$  и  $n_3$  скорости счета зарегистрированных импульсов в энергетических интервалах спектра I, II и III соответственно. Для оценки фоновой составляющей области I необходимо использовать корреляционные коэффициенты  $K_{31}$ ,  $K_{32}$  и  $K_{21}$ . По-прежнему будем предполагать, что основными сопутствующими радионуклидами в графите являются  $^{90}$ Sr и  $^{137}$ Cs. В этом случае область спектра III будет формироваться



**Рис. 4.** Аппаратурные спектры, иллюстрирующие вклад излучения  $^{14}$ С на фоне излучения радионуклидов  $^{90}$ Sr и  $^{137}$ Cs. I—III— энергетические области, используемые при определении полезного сигнала.

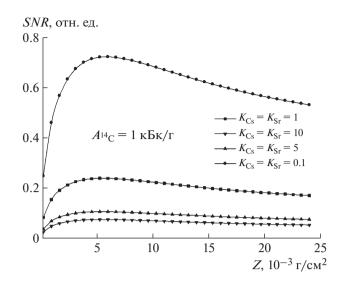


**Рис. 5.** Зависимость коэффициента коррекции  $K_{21}$  для излучения <sup>137</sup>Cs от толщины исследуемого образца: точки — расчет, линия — аппроксимация.

только зарегистрированными высокоэнергетическими  $\beta$ -частицами  ${}^{90}$ Sr и  ${}^{90}$ Y, а  $\beta$ -частицы  ${}^{137}$ Cs в этой области практически отсутствуют. Тогда коэффициент  $K_{31}$  определяет вклад в область I излучения  ${}^{90}$ Sr, т.е. имеет место соотношение  $K_{31} = n_1^{\rm Sr}/n_3^{\rm Sr}$ , соответственно для области II —  $K_{32} = n_2^{\rm Sr}/n_3^{\rm Sr}$ . Здесь  $n_1^{\rm Sr}, n_2^{\rm Sr}$  и  $n_3^{\rm Sr}$  — скорости счета зарегистрированных  $\beta$ -частиц излучения радионуклида  ${}^{90}$ Sr в энергетических областях I, II и III соответственно. Аналогично коэффициент  $K_{21} = n_1^{\rm Cs}/n_2^{\rm Cs}$  определяет вклад  $\beta$ -излучения радионуклида  ${}^{137}$ Cs.

Таким образом, имея значения этих коэффициентов, полезный сигнал  $n_s$  (скорость счета зарегистрированного  $\beta$ -излучения <sup>14</sup>С в области I) можно оценить по формуле

$$n_s = n_1 - K_{21}(n_2 - K_{32}n_3) - K_{31}n_3.$$
 (1)


Коэффициенты  $K_{31}$ ,  $K_{32}$  и  $K_{21}$  не являются константами, а имеют функциональную зависимость от толщины образца графита.

Для выявления этих зависимостей были проведены расчеты с помощью модели Монте-Карло. На рис. 5 представлен пример зависимости коэффициента  $K_{21}$  от толщины Z, г/см $^2$ , слоя графита в мишени.

Как показал анализ этой зависимости, она хорошо аппроксимируется функцией вида

$$K_{21}(Z) = K_{21}(0)\exp(-bZ/c(Z+c)),$$
 (2)

где  $K_{21}(0)$  — значение корреляционного коэффициента для тонкого, практически нулевой толщины, слоя. Преимущество такого представления заключается в том, что величина  $K_{21}(0)$  определяется экспериментальным путем с использовани-



**Рис. 6.** Зависимость отношения сигнал/шум от толщины образца при различных соотношениях активностей  $^{14}$ C и  $^{90}$ Sr,  $^{137}$ Cs.

ем мишени в виде нанесенного на твердую подложку раствора радионуклида  $^{137}$ Cs. После высыхания раствора на подложке образуется тонкий слой, содержащий равномерно распределенный радионуклид  $^{137}$ Cs. Аналогично определяли коэффициенты  $K_{31}(0)$  и  $K_{32}(0)$  для радионуклида  $^{90}$ Sr, поскольку для этого радионуклида зависимости  $K_{31}(Z)$  и  $K_{32}(Z)$  также описываются функциями вида (2) со своими значениями констант b и c для каждого коэффициента.

При реализации предлагаемого метода ширины энергетических интервалов I и II аппаратурного спектра (рис. 6) выбирали примерно одинаковыми по величине:  $\Delta E_1 = 40-150$  кэВ и  $\Delta E_2 =$ = 150-240 кэВ. Правая граница интервала II, а именно 240 кэВ, определяла толщину пластикового сцинтиллятора. По мере увеличения толщины пластины сцинтиллятора можно было выйти из-под влияния "горба" высокоэнергетических β-частиц <sup>90</sup>Sr и <sup>137</sup>Cs в энергетическом интервале спектра II. Это достигалось при толщине пластины сцинтиллятора h = 1.5 мм, что позволяло рассматривать ее как оптимальную. Энергетический интервал III располагался в высокоэнергетической части спектра ( $\Delta E_3 = 800{-}1100$  кэВ) и использовался для оценки влияния  $\beta$ -излучения <sup>90</sup>Sr и <sup>90</sup>Y на фоновую составляющую спектра. В энергетической области спектра III практически отсутствует вклад β-частиц <sup>137</sup>Cs с максимальной энергией 1175 кэВ, так как, с одной стороны, выход на распад для этих частиц составляет 5.6%, а с другой – большинство этих частиц оставляет только малую долю своей начальной энергии в тонком сцинтилляторе.

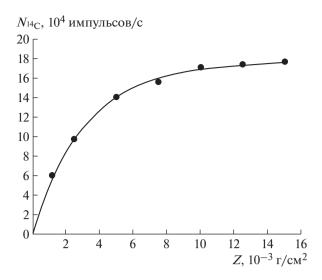
Помимо оптимизации толщины сцинтиллятора при реализации метода, была проведена оптимизация толщины исследуемого образца графита. Эту процедуру выполнили по результатам анализа зависимостей отношения сигнал/шум SNR от толщины Z образца графита при различных соотношениях активностей радионуклидов <sup>14</sup>С и <sup>90</sup>Sr. <sup>137</sup>Cs. На рис. 6 представлены эти зависимости для различных отношений активностей, определяемых параметрами  $K_{Cs} = A_{Cs}/A_{14_C}$  и  $K_{Sr} = A_{Sr}/A_{14_C}$ . Положение максимума этих зависимостей определяет оптимальное значение толщины исследуемого образца ( $Z \sim 0.006 \text{ г/см}^2$ ). Поскольку оптимум неярко выражен, общий вес графита счетного образца диаметром 40 мм может варьироваться от 50 до 100 мг.

Используя выражение (1) и определяя скорость счета  $n_s$  зарегистрированных  $\beta$ -частиц радионуклида  $^{14}\mathrm{C}$ , оценить активность  $^{14}\mathrm{C}$  можно через калибровочный коэффициент  $C_{calibr}=1/n_{^{14}\mathrm{C}}(Z)$ , где  $n_{^{14}\mathrm{C}}(Z)$  — скорость счета в энергетическом интервале  $\Delta E_1$   $\beta$ -частиц  $^{14}\mathrm{C}$  в образце с единичной удельной активностью при толщине Z слоя графита. Для определения активности используется очевидное выражение

$$A_{14_C} = C_{calibr} n_s. (3)$$

Зависимость  $n_{^{14}C}(Z)$ , которая аппроксимировалась функцией вида  $y = a(1 - e^{-bZ})$ , представлена на рис. 7. При этом значение константы a определяли экспериментальным путем (процедура калибровки), а константа b была получена на основании расчетных данных.

Критерием применимости радиометрического способа измерения активности радионуклида <sup>14</sup>С в облученном графите может являться выполнение условия:


$$A_{^{14}\text{C}} \ge \sum_{i} A_{i},\tag{4}$$

где  $A_{^{14}\text{C}}$  — активность  $^{14}\text{C}$  в образце, а  $A_i$  — активности присутствующих в графите i-х радионуклидов.

Если условие (4) не выполняется, то это приводит к большой ошибке измерения из-за влияния статистических флуктуаций фоновой составляющей аппаратурного спектра.

# РЕАЛИЗАЦИЯ РАДИОМЕТРИЧЕСКОГО МЕТОДА ИЗМЕРЕНИЯ АКТИВНОСТИ <sup>14</sup>С В ОБЛУЧЕННОМ ГРАФИТЕ ПРИ НАЛИЧИИ КОМПЛЕКСА МЕШАЮЩИХ ТЕХНОГЕННЫХ РАДИОНУКЛИДОВ

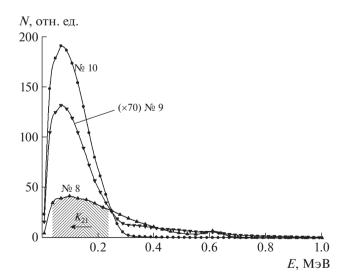
Выше описан метод измерения активности <sup>14</sup>С в облученном графите после его длительной вы-



**Рис. 7.** Зависимость скорости счета в рабочем энергетическом интервале аппаратурного спектра (40—150 кэВ) от толщины графита в исследуемом образце: точки — расчет, линия — аппроксимация выражением  $y = a(1 - e^{-bZ})$ .

держки (хранения), когда среди радионуклидов присутствуют в основном долгоживущие  $^{90}$ Sr и  $^{137}$ Cs. Однако на практике приходится иметь дело и со "свежим" графитом, в котором присутствуют и другие радионуклиды, такие как  $^{134}$ Cs,  $^{54}$ Mn,  $^{144}$ Ce,  $^{60}$ Co,  $^{154}$ Eu и т.п.

Примером могут служить образцы реакторного графита с Ленинградской АЭС (реакторы РБМК-1000), радионуклидный состав одного из образцов на момент измерения активности <sup>14</sup>С приведен в табл. 1.


Указанные в табл. 1 радионуклиды, кроме  $^{90}$ Sr, являются у-излучающими, поэтому процедура реализации радиометрического метода измерения активности <sup>14</sup>С несколько усложняется. Необходимы дополнительные гамма-спектрометрические измерения образца облученного графита для определения его радионуклидного состава и удельных активностей радионуклидов. Измерения проводили, используя гамма-спектрометрический комплекс InSpector-2000 компании Canberra, который включал в себя полупроводниковый детектор на основе высокочистого германия GC-4018. Анализ у-спектров проводили с помощью программного обеспечения GENIE-2000. В этой ситуации основная задача метода измерения заключалась в определении корреляционных коэффициентов  $K_{21}$ ,  $\hat{K}_{31}$  и  $K_{32}$ , используемых в выражении (1) при выделении полезного сигнала  $n_s$ . Для этого нужно иметь информацию о фоновых спектрах, формируемых радионуклидами, обнаруженными в исследуемом образце.

| Таблица 1. Радионуклидный состав и удельная актив- |
|----------------------------------------------------|
| ность образца графита с Ленинградской АЭС          |

| Радионуклидный состав<br>образца № 8 | Удельная активность,<br>кБк/г |
|--------------------------------------|-------------------------------|
| <sup>137</sup> Cs                    | $33 \pm 3$                    |
| <sup>134</sup> Cs                    | 13 ± 1                        |
| $^{90}\mathrm{Sr}$                   | $2.7 \pm 0.5$                 |
| <sup>144</sup> Ce                    | $1.5 \pm 0.2$                 |
| $^{106}\mathrm{Rh}$                  | $2.0\pm0.2$                   |
| <sup>60</sup> Co                     | $1.3 \pm 0.1$                 |
| $^{65}$ Zn                           | $1.2 \pm 0.1$                 |
| <sup>155</sup> Eu                    | $0.23 \pm 0.02$               |
| <sup>154</sup> Eu                    | $0.21 \pm 0.02$               |
| $^{110m}$ Ag                         | $0.034 \pm 0.003$             |
| <sup>95</sup> Zr                     | $0.028 \pm 0.004$             |
| $^{54}Mn$                            | $0.021 \pm 0.004$             |
| <sup>46</sup> Sc                     | $0.008 \pm 0.002$             |

Предположим, что в образце обнаружено N радионуклидов с удельными активностями  $A_i$  (i=1,2,...,N). Если известны аппаратурные  $\beta$ -спектры для каждого i-го радионуклида в образце с единичной удельной активностью  $\varphi_i(E)$ , то результирующий фоновый спектр будет определяться по формуле

$$\Phi(E) = \sum_{i=1}^{N} \varphi_i(E) A_i.$$
 (5)



**Рис. 8.** Фоновые аппаратурные β-спектры образцов графита ЛАЭС (№ 8-10), рассчитанные по данным активностей техногенных радионуклидов (см. табл. 1).

Для всех обнаруженных радионуклидов аппаратурные спектры  $\phi_i(E)$  для образца графита оптимальной толщины ( $\sim 0.006 \text{ г/см}^2$ ) и с удельной активностью 1 Бк/г были рассчитаны методом Монте-Карло.

При реализации методики измерений с помощью формулы (5) рассчитывались фоновые аппаратурные спектры для стандартного образца с учетом его радионуклидного состава, а затем по этим сформированным спектрам определялись коэффициенты  $K_{21}$ ,  $K_{31}$  и  $K_{32}$ .

Примеры сформированных фоновых спектров трех образцов графита с Ленинградской АЭС представлены на рис. 8.

При наличии большой активности техногенных радионуклидов в образцах облученного графита будет возрастать методическая погрешность измерения, что скажется на величине минимально детектированной активности.

## РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ АКТИВНОСТИ <sup>14</sup>С И ИНТЕРКАЛИБРОВКИ ОБРАЗЦОВ ОБЛУЧЕННОГО ГРАФИТА

Интеркалибровку радиометрического метода измерения активности <sup>14</sup>С осуществляли путем сравнения с результатами измерений радиохимическим методом. Использовали следующий радиохимический метод определения активности <sup>14</sup>С в реакторном графите. Пробы графита массой 0.2-0.3 г сжигали в токе кислорода при температуре 850-900°C. Образовавшийся  $^{14}$ CO<sub>2</sub> собирали в двух последовательно расположенных ловушках, заполненных 20%-ным раствором NaOH. Примерно 90-95% газа  ${}^{14}\text{CO}_2$  конденсировалось в первой ловушке. В полученном растворе радиоактивный углерод находился в форме Na<sub>2</sub><sup>14</sup>CO<sub>3</sub>. Спектр 14С получали, используя высокочувствительный спектрометрический комплекс СКС-07P-В11 [4] с жидким сцинтиллятором ULTIMA GOLD AB. Концентрацию <sup>14</sup>С в образцах рассчитывали с помощью программного обеспечения "Liquid Master" [9].

В качестве образцов для измерений были отобраны элементы графитовой кладки реакторов РФТ (НИЦ "Курчатовский институт") (образцы № 1–7), Ленинградской АЭС (образцы № 8–10) и промышленных у.г.р. СХК (г. Северск) (образцы № 11–14). Результаты измерений представлены в табл. 2 и в графическом виде на рис. 9. При совпадении результатов измерений радиохимическим и радиометрическим методами соответствующая им точка должна попадать на диагональную прямую на рис. 9.

Основными сопутствующими радионуклидами в графитовых образцах являлись радионукли-

14

| Образец<br>№ п/п | Масса, мг | <sup>137</sup> Cs, Бк/г | <sup>90</sup> Sr, Бк/г | <sup>14</sup> С, Бк/г<br>(радиометрия)* | <sup>14</sup> С, Бк/г<br>(радиохимия)** |
|------------------|-----------|-------------------------|------------------------|-----------------------------------------|-----------------------------------------|
| 1                | 77        | 1780                    | 315                    | $266 \pm 130$                           | 280                                     |
| 2                | 82        | 2151                    | 338                    | $135 \pm 140$                           | 140                                     |
| 3                | 80        | 5362                    | 3494                   | $1370 \pm 300$                          | 610                                     |
| 4                | 80        | 3750                    | 5270                   | $2130 \pm 450$                          | 2100                                    |
| 5                | 86.2      | 12150                   | 17440                  | $5190 \pm 550$                          | 550                                     |
| 6                | 79.6      | 3210                    | 5100                   | $12500 \pm 430$                         | 7800                                    |
| 7                | 81        | 3245                    | 2345                   | $2340 \pm 560$                          | 2100                                    |
| 8                | 80        | 33300                   | 2663                   | $(1.19 \pm 0.004) \cdot 10^6$           | $1.20 \cdot 10^{6}$                     |
| 9                | 78        | 90                      | _                      | $(0.867 \pm 0.003) \cdot 10^6$          | $1.20 \cdot 10^{6}$                     |
| 10               | 49.7      | 240                     | 426                    | $(0.885 \pm 0.005) \cdot 10^6$          | $0.88 \cdot 10^{6}$                     |
| 11               | 77        | $1.09 \cdot 10^{5}$     | $2.06 \cdot 10^4$      | $(1.92 \pm 0.03) \cdot 10^5$            | $1.89\cdot 10^5$                        |
| 12               | 77        | $1.43 \cdot 10^3$       | $0.794 \cdot 10^3$     | $(1.48 \pm 0.04) \cdot 10^5$            | $1.46 \cdot 10^{5}$                     |
| 13               | 76        | $1.04 \cdot 10^{5}$     | $1.58 \cdot 10^4$      | $(1.91 \pm 0.01) \cdot 10^5$            | $1.90 \cdot 10^{5}$                     |
|                  |           | 1                       | 1                      | 1                                       |                                         |

Таблица 2. Характеристики образцов и результаты их измерений радиометрическим и радиохимическим методами

 $0.747 \cdot 10^{5}$ 

83

ды <sup>137</sup>Сs и <sup>90</sup>Sr, поэтому их удельные активности указаны в табл. 2. Как уже упоминалось (см. табл. 1), в образцах ЛАЭС присутствовали и другие радионуклиды, однако их влияние было невелико.


Результаты сравнений, представленные в графическом виде, дают наглядную картину точности измерений, из которой следует выделить результаты измерений образцов № 5 и № 3. По данным измерений радиохимическим способом эти образцы имеют примерно одинаковую удельную активность, а именно 550 и 610 Бк/г. Однако результаты радиометрических и радиохимических измерений для образца № 5 отличаются практически на порядок, а для образца № 3 — в два раза. Причиной такого расхождения является влияние фонового излучения техногенных радионуклидов этих двух образцов. В данном случае не выполняется условие (4), ограничивающее применение радиометрического метода измерения.

Условие (4) в значительной степени является качественным критерием, так как оно не дает точного значения границы применимости радиометрического метода. Это подтверждают результаты измерений, например, образцов № 1 и № 2. В этих случаях сумма активностей <sup>137</sup>Сѕ и <sup>90</sup>Ѕг несколько превышает активность <sup>14</sup>С, однако результаты, полученные различными методами, хорошо совпадают, хотя статистическая погрешность измерений весьма существенная. Следует

отметить, что при удельной активности  $^{14}$ С в облученном графите свыше  $10^4$  Бк/г радиометрический метод дает достаточно устойчивые по точности результаты измерений. Этот факт является важным, поскольку для облученного графита уровень активности  $10^4$  Бк/г является граничным

 $0.95 \cdot 10^{5}$ 

 $(1.28 \pm 0.01) \cdot 10^5$ 



**Рис. 9.** Графическое сопоставление (сравнение) результатов измерений методами радиохимии и радиометрии. Стрелками указаны результаты измерений, не удовлетворяющие условию (4).

<sup>\*</sup> В этой колонке указаны только статистические погрешности измерений.

<sup>\*\*</sup> Погрешность радиохимического метода не превышает 20%.

значением для отнесения его в категорию твердых радиоактивных отходов класса 2 [10].

## ЗАКЛЮЧЕНИЕ

По результатам проведенных исследований можно сделать вывод, что радиометрический метод измерения активности <sup>14</sup>С в облученном реакторном графите может являться альтернативой радиохимическому методу. Однако по надежности радиометрический метод уступает радиохимическому из-за возможного влияния на результаты измерений техногенных радионуклидов, содержащихся в образцах графита. В то же время этот метол имеет свои преимущества и, прежле всего, является более оперативным и менее трудоемким. Наиболее рутинной является процедура подготовки проб, требующая формирования мишени в виде осажденного на фильтр порошка графита в ряде случаев в сочетании с предварительной частичной очисткой от радионуклидов <sup>137</sup>Cs и <sup>90</sup>Sr, а при наличии широкого спектра техногенных радионуклидов (образцы графита без длительной выдержки) необходимо также дополнительное гамма-спектрометрическое измерение образцов.

Следует также отметить, что описанный выше радиометрический способ исключает возможность измерения активности трития, так как верхняя граница шума спектрометрического тракта составляет  $\sim 30-35~$  кэB, а максимальная энергия  $\beta$ -частиц трития -18.6~ кэB.

Как правило, в облученном графите всегда присутствует радионуклид <sup>36</sup>Cl, который также является "чистым" β-излучателем с максимальной энергией частиц 708.6 кэВ. Однако влияние β-излучения этого радионуклида невелико, так

как активность  ${}^{36}$ Cl в облученном графите примерно на 2-3 порядка ниже активности  ${}^{14}$ C [1].

Авторы весьма признательны Д.А. Кулешову за предоставленные образцы облученного графита с Ленинградской АЭС, а также руководству ОДЦ УГР за научно-техническое сотрудничество по проблеме облученного графита промышленных реакторов.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Бушуев А.В., Кожин А.Ф., Петрова Е.В., Зубарев В.Н., Алеева Т.Б., Гирке Н.А. Радиоактивный реакторный графит. Монография. М.: НИЯУ МИФИ, 2015.
- 2. *Хвостова М.С.* // Известия томского политехнического университета. 2012. Т. 302. № 1. С. 184.
- 3. Раменков А.А. // Росэнергоатом. 2011. № 03. С. 32.
- 4. http://www.greenstar.ru/ckc-07p-b11.html
- 5. *Бушуев А.В.*, *Петрова Е.В.*, *Кожин А.Ф.*, *Шты-фурко А.И.*, *Масалов Д.П.* // Атомная энергия. 2006. Т. 101. Вып. 5. С. 358.
- 6. Wickeder D.A. // Royal society of chemistry. Special publication. 1999. V. 234. P. 170.
- 7. Гирке Н.А., Бушуев А.В., Кожин А.Ф., Петрова Е.В., Алеева Т.Б., Зубарев В.Н. // Атомная энергия. 2012. Т. 112. Вып. 1. С. 51.
- https://www.hamamatsu.com/resources/pdf/etd/R10601 -100 TPMH1334E.pdf
- 9. Simirskii Iu., Stepanov A., Semin I., Volkovich A. // Proc. of GLOBAL 2017. Seoul, Korea, September 24—29, 2017, A-042. http://www.global2017.org/
- 10. Постановление Правительства РФ от 19.10.2012 № 1069. (ред. от 04.02.2015) "О критериях отнесения твердых, жидких и газообразных отходов к радиоактивным отходам, критериях отнесения радиоактивных отходов к особым радиоактивным отходам и к удаляемым радиоактивным отходам и критериях классификации удаляемых радиоактивных отходов".