_____ ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ _____ ТЕХНИКА

УДК 621.793.162

ШИРОКОДИАПАЗОННЫЙ СПЕКТРАЛЬНЫЙ ЭЛЛИПСОМЕТР С ПЕРЕКЛЮЧЕНИЕМ ОРТОГОНАЛЬНЫХ СОСТОЯНИЙ ПОЛЯРИЗАЦИИ НА БАЗЕ МОНОХРОМАТОРА МДР-41

© 2019 г. В. И. Ковалев^{*a*,*}, В. В. Ковалев^{*a*}, А. И. Руковишников^{*a*}, С. В. Ковалев^{*a*}, С. У. Увайсов^{*b*}

^а Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН Россия, 141190, Фрязино Московской обл., пл. Введенского, 1 ^b МИРЭА—Российский технологический университет Россия, 119454, Москва, просп. Вернадского, 78 *e-mail: ellipsometry@yandex.ru Поступила в редакцию 21.03.2019 г. После доработки 21.03.2019 г. Принята к публикации 13.04.2019 г.

Описан эллипсометр с переключением ортогональных состояний поляризации, главной особенностью которого является использование сдвоенного источника излучения и поляризационных призм Глана—Томпсона из кальцита со сведением и разделением ортогонально поляризованных пучков. Достигнуты высокие воспроизводимость и стабильность измерений эллипсометрических параметров Ψ и Δ в спектральном диапазоне 400—2200 нм. При времени интегрирования в каждой точке 2 с среднеквадратичный шум на длине волны 800 нм и толщине окисла кремния 450 нм для Ψ и Δ составил 0.0025° и 0.016° соответственно. Среднеквадратичный шум на длине волны 1800 нм и толщине окисла кремния 513 нм для Ψ и Δ составил 0.005° и 0.03° соответственно.

DOI: 10.1134/S0032816219050215

введение

Области практического использования метода спектральной эллипсометрии стремительно расширяются, что стимулирует интерес к дальнейшему повышению технических параметров эллипсометров и приводит к упрощению их конструкции. В настоящее время наиболее востребованы технически совершенные спектральные эллипсометры (с.э.) двух типов: эллипсометры с двумя вращающимися компенсаторами [1] и эллипсометры с фазовой модуляцией [2].

Альтернативный метод переключения ортогональных состояний поляризации (п.о.с.п.) имеет более высокие воспроизводимость и стабильность при измерении эллипсометрических параметров и не содержит движущихся поляризационных элементов [3, 4]. Расчетные формулы эллипсометрии с п.о.с.п. приведены в [5].

Следует отметить тенденцию к расширению спектрального диапазона с.э. в инфракрасную область, повышению спектрального разрешения с.э., их точности и стабильности [6–8]. Важно обеспечить возможность регулирования спектрального разрешения и предельно малый уровень рассеянного излучения. Использование ре-

шеточных монохроматоров и спектрометров высокого класса в качестве источника излучения для с.э. позволяет решать эти задачи [9].

В данной работе представлен с.э. на базе монохроматора МДР-41, реализующий метод п.о.с.п., позволяющий точно измерить изменение состояния поляризации пучка излучения при отражении от образца, связанное с его оптическими параметрами. Одновременное измерение спектров амплитудных и фазовых эллипсометрических параметров Ψ и Δ обеспечивает измерение оптических констант и толщин достаточно сложных пленочных структур и структурированных поверхностей. Спектральные эллипсометры широко используются в научных исследованиях, а также находят применение в промышленности как средство неразрушающего контроля.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Внешний вид установки и оптическая схема широкодиапазонного спектрального эллипсометра на базе монохроматора МДР-41 представлены на рис. 1. Линза блока осветителя *I* проектирует изображение нити накаливания галогенной

Рис. 1. Внешний вид (**a**) и оптическая схема (**б**) широкодиапазонного спектрального эллипсометра на базе монохроматора МДР-41. *I* – блок источника излучения, *II* – блок светофильтров, *III* – монохроматор МДР-41, *IV* – система плоских и сферических зеркал, *V* – блок эллипсометра; *1*, *2* – диафрагмы на выходной щели; *3* – механический прерыватель; *4*, *5* – призмы Глана–Томпсона; *6* – полированные кремниевые пластины; *7* – сферические зеркала (*F* = 25 мм); *8*, *10* – кремниевые фотодиоды; *9*, *11* – InGaAs-фотодиоды; *S* – исследуемый образец.

лампы вдоль входной щели монохроматора *III*. На выходной щели монохроматора установлены две диафрагмы высотой 1 мм и регулируемой шириной, разделенные по высоте щели на 6 мм. Система четырех плоских и двух сферических зеркал IV(F = 65 мм) формирует коллимированные пучки излучения, направляемые на два входа призмы Глана—Томпсона из кальцита 4 со сведением падающих пучков.

Последовательное прерывание пучков излучения диафрагм диском обтюратора 3 позволяет получить на выходе призмы Глана–Томпсона коллимированные пучки излучения с ортогональными азимутами линейной поляризации P_1 и P_1 + 90° ($P_1 = 30^\circ$), последовательно падающие на исследуемый образец *S* под углом 70°. Отраженные от образца пучки излучения разделяются призмой Глана–Томпсона 5 на пучки с ортогональными азимутами поляризации A_1 и A_1 + 90° ($A_1 = 10^\circ$), которые зеркалами 7 фокусируются на фотоприемники 8-11.

По измеряемым отношениям сигналов на фотоприемниках определяются эллипсометрические параметры Ψ и Δ [5]. При сканировании монохроматора получаем спектральные зависимости Ψ и Δ .

КАЛИБРОВКА ЭЛЛИПСОМЕТРА

Для описанного метода спектральной эллипсометрии калибровка очень проста и проводится в два этапа. На первом этапе в положении на просвет измеряются спектр отношения чувствительностей каналов $h_a(\lambda)$, соответствующих двум поляризациям после анализатора, и разность углов поляризатора и анализатора P - A. Приведенные в [5] формулы для четырех комбинаций поляризаций для положения на просвет упрощаются:

$$R_1 = \frac{h_a}{\mathrm{tg}^2(P-A)}, \quad R_2 = h_a \mathrm{tg}^2(P-A), \quad (1)$$

где R_1 , R_2 — отношения интенсивностей на двух фотоприемниках. Отсюда

$$h_{\rm a} = (R_1 R_2)^{1/2}, \quad P - A = \operatorname{arctg}[(R_2 / R_1)^{1/4}].$$
 (2)

На втором этапе при угле падения 70° с образцом кремния с тонким слоем окисла измеряются отношения интенсивностей лучей R_1 , R_2 . Путем решения обратной задачи определяются угол поляризатора P, угол падения излучения на образец и толщина слоя окисла кремния.

Рис. 2. Спектральная зависимость Ψ и Δ для пленки ZnS на полированной с двух сторон подложке GaAs.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В качестве объектов для экспериментальных исследований, подтверждающих эффективность и высокие точностные качества изготовленного с.э., были использованы структура GaAs/ZnS-четвертьволнового устройства для CO₂-лазера и калибровочные пластины Ocean Optics Step-Wafer. На рис. 2 представлены измеренные спектры Ψ и Δ для образца GaAs/ZnS в диапазоне длин волн 400–2200 нм.

Для расчета параметров слоя ZnS использовалась спектральная зависимость показателя преломления *n* по упрощенной формуле Зельмейера:

$$n(\lambda)^{2} = n_{0}^{2} + 1/\left(1 - \frac{\lambda_{0}^{2}}{\lambda^{2}}\right), \qquad (3)$$

где n_0 — значение показателя преломления на бесконечной длине волны; λ_0 — длина волны, на которой *n* равно бесконечности. Для определения n_0 использовался рассчитываемый параметр n_m , соответствующий значению показателя преломления на длине волны $\lambda_m = 550$ нм:

$$n_{\rm m}^2 = n_0^2 + 1/\left(1 - \frac{\lambda_0^2}{\lambda_{\rm m}^2}\right).$$
 (4)

Спектральная зависимость показателя поглощения *k* аппроксимировалась экспоненциальной функцией

$$k(\lambda) = k_{\rm m} \exp\left(\frac{\lambda_{\rm m} - \lambda}{\lambda_{\rm l}}\right),$$
 (5)

где $k_{\rm m}$ — значение показателя поглощения k на длине волны $\lambda_{\rm m} = 550$ нм, $\lambda_{\rm l}$ — интервал длины волны, на котором k меняется в e раз.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 6 2019

Поскольку упрощенной формулой сложно точно описать дисперсию в широком диапазоне длин волн, он был разделен на 2 области: 400–600 нм и 600–2200 нм. Во втором диапазоне методом наименьших квадратов отклонений были определены толщина d = 1247 нм слоя ZnS и параметры $n_{\rm m} = 2.36$, $\lambda_0 = 336$ нм, $k_{\rm m} = 0.001$ и $\lambda_1 = 200$ нм. Для той же толщины в первом диапазоне определены параметры $n_{\rm m} = 2.36$, $\lambda_0 = 297$ нм, $k_{\rm m} = 0.001$ и $\lambda_1 = 200$ нм. На рис. 3 представлены спектральные зависимости показателей преломления и поглощения n, k, полученные по приведенным формулам (3)–(5) с указанными параметрами.

На рис. 4 представлены измеренные и расчетные эллипсометрические параметры Ψ и Δ для калибровочных пластин Si-SiO₂ Ocean Optics Step-Wafer с толщиной окисла 4 нм и 450 нм. Отметим, что выраженное сглаживание пиков в ин-

Рис. 3. Спектральная зависимость показателя преломления n и показателя поглощения k для пленки ZnS.

КОВАЛЕВ и др.

Рис. 4. Спектральные зависимости эллипсометрических параметров Ѱ и Δ для Si/SiO₂ толщиной 4 нм (а) и 450 нм (б).

Рис. 5. Временные зависимости параметров Ψ и Δ образца Si/SiO₂ толщиной 513 нм на длине волны 1800 нм (**a**) и толщиной 450 нм на длине волны 800 нм (**б**). Время интегрирования 2 с.

фракрасной области спектра вызвано несовершенством задней поверхности пластин.

На рис. 5 представлены зависимости Ψ и Δ от времени (шумы) для образца Si/SiO₂ с толщиной окисла 450 нм на длине волны 800 нм и с толщиной окисла 513 нм на длине волны 1800 нм. Время измерения каждой точки составляло 2 с. Средне-квадратичный шум на длине волны 800 нм и толщине окисла 450 нм составил 0.0025° (для Ψ) и 0.016°(для Δ); на длине волны 1800 нм и толщине окисла 513 нм – 0.005° (для Ψ) и 0.03° (для Δ).

ЗАКЛЮЧЕНИЕ

В данной работе продемонстрирована эффективность использования сдвоенных источников излучения и призм Глана–Томпсона с разделением и сведением ортогонально поляризованных пучков, позволивших исключить достаточно сложный переключатель ортогональных состояний поляризации в устройстве спектрального эллипсометра. Особенность используемых призм заключается в отсутствии изменений геометрии пучков с длиной волны излучения, что позволяет повысить спектральное разрешение за счет постоянного положения фокусировки на фотоприемнике с малой активной частью.

Экспериментально показано, что использование предложенной простой конструкции с.э. на основе монохроматора МДР-41 позволяет достичь высоких технических характеристик. Описанный подход предоставляет широкие возможности создания прецизионных с.э. с расширенным спектральным диапазоном. Так, реализация с.э. с рабо-

ШИРОКОДИАПАЗОННЫЙ СПЕКТРАЛЬНЫЙ ЭЛЛИПСОМЕТР

чим диапазоном длин волн 400—5000 нм возможна с устройством совмещения ортогонально поляризованных пучков, изготовленным из YVO₄.

СПИСОК ЛИТЕРАТУРЫ

1. *Liu S., Chen X., Zhang C.* // Thin Solid Films. 2015. V. 584. P. 176.

https://doi.org/10.1016/j.tsf.2015.02.006

- Garcia-Caurel E., De Martino A., Gaston J., Yan L. // Appl. Spectroscopy. 2013. V. 67. P. 1. https://doi.org/10.1366/12-06883
- Ковалев В.И., Руковишников А.И., Ковалев С.В., Ковалев В.В. // ПТЭ. 2014. № 5. С. 99. https://doi.org/10.7868/S0032816214050097

- 4. Ковалёв В.И., Руковишников А.И., Ковалёв С.В., Ковалёв В.В. // Опт. журн. 2016. Т. 83. Вып. 3. С. 55.
- 5. Ковалев В.И., Руковишников А.И., Перов П.И., Россуканый Н.М., Авдеева Л.А. // Радиотехника и электроника. 1999. Т. 44. № 11. С. 1404.
- 6. *Aspnes D.E.* // Thin Solid Films. 2014. V. 571. P. 334. https://doi.org/10.1016/j.tsf.2014.03.056
- 7. *Hinrichs K., Eichhorn K.J.* Ellipsometry of Functional Organic Surfaces and Films. Berlin-Heidelberg: Springer, 2014. https://doi.org/10.1007/978-3-319-75895-4
- Furchner A., Walder C., Zellmeier M., Rappich J., Hinrichs K. // Appl. Opt. 2018. V. 57. № 27. P. 7895. https://doi.org/10.1364/AO.57.007895
- 9. http://www.angstromadvanced.com/products/phe104.asp