ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 2020, № 4, с. 51–57

_____ ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ _____ ТЕХНИКА

УДК 53.084:535

ТЕОРЕТИЧЕСКАЯ И ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА ТОЧНОСТИ ОДНОВРЕМЕННОГО РАСПРЕДЕЛЕННОГО ИЗМЕРЕНИЯ ТЕМПЕРАТУР И ДЕФОРМАЦИЙ В АНИЗОТРОПНЫХ ВОЛОКОННЫХ СВЕТОВОДАХ МЕТОДОМ ПОЛЯРИЗАЦИОННО-БРИЛЛЮЭНОВСКОЙ РЕФЛЕКТОМЕТРИИ¹

© 2020 г. Ф. Л. Барков^{*a*,*}, Ю. А. Константинов^{*a*}, В. В. Бурдин^{*a*,*b*}, А. И. Кривошеев^{*a*,*b*}

^а Пермский федеральный исследовательский центр УрО РАН Россия, 614990, Пермь, ул. Ленина, 13а ^b Пермский национальный исследовательский политехнический университет Россия, 614990, Пермь, Комсомольский просп., 29 *e-mail: fbarkov@pstu.ru Поступила в редакцию 10.02.2020 г. После доработки 11.03.2020 г. Принята к публикации 12.03.2020 г.

Построена модель для определения зависимости точности метода разделения температуры и деформации с помощью поляризационно-бриллюэновской рефлектометрии, основанной на измерении бриллюэновского сдвига частоты в двух поляризационных осях волоконного световода, от инструментальных и калибровочных погрешностей. Показано, что погрешности, обусловленные невязкой калибровочных коэффициентов, пренебрежимо малы. Определены оптимальные аппаратные требования к рефлектометру. Экспериментальные данные, полученные на максимально доступном авторам разрешении спектрального сканирования, находятся в согласии с результатами компьютерного моделирования.

DOI: 10.31857/S0032816220040229

введение

Задача одновременного измерения температур и деформаций в распределенной сенсорике актуальна с точки зрения как производственных, так и научных приложений. Например, это исследование механических напряжений в контуре волоконно-оптического гироскопа при вариации температур, исследование деформаций новых материалов с памятью формы, тестирование узлов и элементов ответственных инженерных сооружений, летательных аппаратов в условиях агрессивных сред при воздействии совокупности различных факторов.

Существуют разные методики разделения температурных и деформационных воздействий, например: использование двух различных волокон с записанными в них брэгговскими решетками [1, 2], внесение в конструкцию волоконного световода двух бессердцевинных волоконных тейперов с разными диаметрами [3], поляризационно-бриллюэновская рефлектометрия [4, 5], фазочувствительная рефлектометрия [6], использование волокна с двумя сердцевинами [7], получение рефлектограмм для двух поляризационных мод в волокне, сохраняющем состояние поляризации вводимого излучения, с последующим корреляционным анализом рэлеевского спектра [8]. Характерными являются точностные характеристики в пределах нескольких градусов по температуре (°C) и нескольких микрострейн (µє) по деформации.

Поляризационно-бриллюэновская рефлектометрия успешно применяется для разделения температуры и деформации. Так, в работах [4, 5] представлен метод, основанный на анализе динамической акустической решетки, генерируемой во время вынужденного бриллюэновского рассеяния. Метод обеспечивает высокую точность определения температур и деформаций, порядка 3 µє по деформациям и 0.08°С по температурам, но в то же время требует значительного усложнения аппаратной части сенсора.

Интересным представляется вопрос о возможности применения другого метода, суть которого заключается в том, что две поляризационные оси

¹ Результаты данного исследования были представлены и обсуждены на третьей международной конференции "Оптическая рефлектометрия, метрология и сенсорика 2020" (http://or-2020.permsc.ru/, 22–24 сентября, Россия, Пермь).

анизотропного волоконного световода рассматриваются как два независимых волокна, соответственно зависимости бриллюэновского сдвига частоты от температуры и деформации неодинаковы.

Основы бриллюэновской рефлектометрии без поляризационной чувствительности изложены в [9].

В общем случае можно записать

$$\begin{pmatrix} \Delta f_1 \\ \Delta f_2 \end{pmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \begin{pmatrix} \Delta T \\ \Delta \varepsilon \end{pmatrix},$$
(1)

где Δf_1 , Δf_2 — изменения бриллюэновского сдвига частоты для двух осей, обусловленные температурными ΔT и механическими $\Delta \varepsilon$ воздействиями, т.е. разница между бриллюэновским сдвигом fпри воздействии ΔT , $\Delta \varepsilon$ и при отсутствии воздействий; a_{ij} — частные производные от бриллюэновского сдвига по температуре и деформации, являющиеся соответствующими чувствительностями. Необходимым и достаточным условием однозначности пересчета измеряемых величин f_1 , f_2 в значения температуры и деформации является невырожденность матрицы A.

Точность измерения бриллюэновских сдвигов f_1, f_2 определяется рядом факторов [10–12]. При частотном сканировании спектр подвергается дискретизации, что заведомо вносит ошибку в определение бриллюэновского сдвига частоты. Помимо этого, даже при бесконечно малом шаге сканирования неточность определения максимума бриллюэновского спектра может быть вызвана зашумленностью сигнала. Для увеличения отношения сигнал/шум (с./ш.) используются различные приемы, например использование фильтрации низких частот, модуляция интенсивности волны накачки и зондирующей волны, модуляция длины волны зондирующего сигнала [13–15].

На первый взгляд, чем меньше шаг сканирования по частоте при измерении бриллюэновских сдвигов, тем меньше погрешность в определении температур и деформаций, и зависимость должна носить линейный характер. Однако на практике качество оцифровки и дальнейшей машинной расшифровки бриллюэновского спектра может нелинейно зависеть от его разрешения ввиду зашумленности спектра.

Понижение разрешения некоторых рефлектометров и анализаторов в ряде диапазонов выбранных шагов дискретизации может, напротив, работать как фильтр низких частот, повышая достоверность регистрации максимума бриллюэновского спектра Стокса или антистокса. Кроме того, уменьшение шага сканирования приводит к пропорциональному увеличению продолжительности эксперимента, что далеко не всегда приемлемо при решении практических задач.

Таким образом, огромное значение имеет определение "оптимального" шага сканирования, при котором, с одной стороны, еще достигается необходимая точность измерения температуры и деформации, а с другой — эксперимент можно проводить в реальном времени. Это позволит определить аппаратные требования для бриллюэновских анализаторов.

Помимо инструментальных погрешностей, как и при любых косвенных измерениях, имеется еще один источник ошибок, а именно, различие между действительными и расчетными значениями коэффициентов матрицы *А*. Даже при идеальном экспериментальном определении величин бриллюэновских сдвигов f_1, f_2 это приведет к ошибке их пересчета в температуру и деформацию.

Следует ожидать, что чем менее вырождена матрица *A*, тем более устойчивым будет результат пересчета к вариациям коэффициентов матрицы. Однако исследования влияния калибровочных погрешностей на точность разделения температуры и деформации до этого по информации авторов не проводились.

В данной работе авторы ставили следующие задачи: первая — моделирование зависимости точности методики от калибровочных (невязка коэффициентов матрицы *A*) и инструментальных (шаг сканирования и отношение сигнал/шум) погрешностей, вторая — экспериментальная проверка результатов моделирования на доступном оборудовании.

ОЦЕНКА ПОГРЕШНОСТИ КОСВЕННЫХ ИЗМЕРЕНИЙ

На начальном этапе исследования необходимо было оценить влияние ошибок, обусловленных погрешностями в расчетах при косвенных измерениях. С этой целью был поставлен следующий эксперимент:

1. Путем снятия калибровочных кривых определены значения коэффициентов матрицы *А*.

2. На компьютере задавалось некоторое распределение температурного и деформационного полей вдоль волокна. С использованием значений, полученных на первом шаге, рассчитывалось соответствующее распределение значений f_1 , f_2 . Искусственно внося погрешности в значения коэффициентов матрицы, авторы исследовали как это влияет на изменение рассчитываемых значений температуры и деформации.

Калибровочное измерение состояло из двух этапов. На первом этапе волокно в свободной намотке прошло термоциклирование с одночасовой выдержкой на температурах 25, 30, 40, 50 и 60°С для двух состояний поляризации. При этом для всей длины волокна снимались показания бриллюэновского сдвига при пространственном разрешении 0.1 м и шаге частотного сканирования 5 МГц.

Рис. 1. Зависимость бриллюэновских сдвигов f_x и f_y от температуры, полученная во время калибровочного эксперимента.

Было установлено, что поляризационно-чувствительное измерение в данной конфигурации достаточно требовательно к динамическому диапазону бриллюэновского анализатора, поэтому уменьшение шага частотного сканирования приводило к сбою в измерениях.

На втором этапе эксперимента часть свободно намотанного волокна была помещена в стенд, обеспечивающий заданные продольные натяжения. На участке волокна 1 м при постоянной температуре окружающей среды 25°С было осуществлено продольное растяжение с усилиями до 5 H. На указанном участке волокна также фиксировались бриллюэновские сдвиги f_x и f_y .

Для опыта с термическими испытаниями зависимость бриллюэновских сдвигов f_x и f_y от температуры приведена на рис. 1. Зависимости для опыта с натяжением волокон выглядят аналогично, имея лишь несколько иной наклон по отношению к оси абсцисс.

По тангенсам угла наклона кривых были получены значения коэффициентов матрицы:

$$A = \begin{pmatrix} 1.271 \,\mathrm{M}\Gamma\mathrm{II}/^{\circ}\mathrm{C} \ 0.043 \,\mathrm{M}\Gamma\mathrm{II}/\mathrm{\mu}\varepsilon \\ 1.159 \,\mathrm{M}\Gamma\mathrm{II}/^{\circ}\mathrm{C} \ 0.044 \,\mathrm{M}\Gamma\mathrm{II}/\mathrm{\mu}\varepsilon \end{pmatrix}.$$
(2)

По заданным значениям ΔT и $\Delta \varepsilon$ с использованием данных коэффициентов рассчитывались изменения бриллюэновских сдвигов Δf_x и Δf_y . При обратном пересчете Δf_x и Δf_y с использованием тех же коэффициентов матрицы, естественно, получаются исходные ΔT и $\Delta \varepsilon$. Однако при внесении изменений в коэффициенты матрицы будут получены некие другие значения $\Delta T'$ и $\Delta \varepsilon'$. Зависимость

Рис. 2. Зависимость погрешности расчетного эксперимента от погрешности ввода калибровочных коэффициентов.

средней по модулю разности между ΔT и ΔT от вариации коэффициентов матрицы представлена на рис. 2. Видно, что результаты неодинаково чувствительны к разным коэффициентам матрицы, но общий вид зависимости одинаков – чем больше погрешность коэффициентов матрицы, тем менее точно определяется температура. Для достижения точности измерений температуры в несколько процентов погрешности коэффициентов не должны превышать долей процента.

Зависимость погрешности определения деформации, не представленная на рис. 2, носит аналогичный характер.

ИМИТАЦИОННАЯ МОДЕЛЬ

Следующим шагом стало создание модели для определения зависимости точности метода от шага сканирования по частоте и отношения сигнал/шум бриллюэновского спектра.

Предположим, что имеется некое распределение температуры и деформации по длине волокна, а значения коэффициентов матрицы A точно известны. Сканирование по частоте с бесконечно малым шагом позволило бы определить абсолютно точные значения бриллюэновских сдвигов, что в свою очередь дало бы при пересчете ровно начальные распределения измеряемых величин. Однако из-за конечного шага сканирования, а также из-за шумов получаемые в эксперименте значения f_1, f_2 обладают некоей погрешностью, что приводит к погрешностям расчета температуры и деформации.

Для создания типового бриллюэновского спектра достаточно обратиться к литературе. Моделирование процесса рассеяния Мандельштама—Бриллюэна хорошо исследовано различными авторами [16, 17]. Однако для задачи частотного сканирова-

Рис. 3. Имитационная модель бриллюэновского спектра в максимальном разрешении.

ния вполне уместно использовать простое выражение, наглядно описывающее бриллюэновский спектр [18]:

$$P(f) = \frac{1}{\pi} \left(\frac{W}{(f - f_b)^2 + w^2} \right) + R,$$
 (3)

где f_b — центральная длина волны стоксовой компоненты бриллюэновского спектра; w — параметр, связанный с шириной его полосы; R — амплитуда шумовой компоненты. Величину R целесообразно задавать соразмерной той, что визуализируется на типовом бриллюэновском спектре.

Выражение для второго состояния поляризации выглядит аналогично. Величины f_{bx} и f_{by} рассчитываются на основе изменений бриллюэновских сдвигов Δf_x и Δf_y , полученных по (1) и (2). Построенный по данному выражению фрагмент спектра, содержащий бриллюэновский компонент в максимальном разрешении, представлен на рис. 3.

Дискретные (оцифрованные с шагом *b*) спектры могут быть записаны следующим образом:

$$P_{ix} = P_{ix}, \quad P_{iy} = P_{iy}, \quad j = b(\text{div}b),$$
 (4)

где *i* — номер отсчета в дискретной функции, div — операция деления без остатка. По положениям максимумов дискретных функций P_{ix} и P_{jy} определялись заново бриллюэновские сдвиги f'_x и f'_y для обеих осей волоконного световода для каждой координаты по длине световода и сочетания температурного воздействия и усилий натяжения. Далее, оперируя коэффициентами матрицы *A*, можно получить уже разделенные значения температуры и продольного натяжения. Различие между полученными и исходными результатами и определяет точность метода.

Полученные в ходе моделирования результаты представлены на рис. 4. По оси ординат отложено среднее по модулю расхождение исходной и полученной температур, по оси абсцисс — шаг сканирования. Усреднение проводилось по 100000 точкам.

Рис. 4. Полученные моделированием погрешности определения температуры в зависимости от шага сканирования ∆ и отношения сигнал/шум: *1* – шум отсутствует, *2* – с./ш. = 1000, *3* – с./ш. = 100, *4* – с./ш. = 10.

В отсутствие шума зависимость практически линейна, небольшие отклонения обусловлены лишь конечным количеством усредняемых данных. Однако добавление даже небольшого шума (с./ш. = 100) приводит к тому, что на начальном интервале график существенно искажается — погрешность определения температуры не стремится к нулю, а остается на уровне порядка 5°С. Лишь при увеличении шага сканирования до ~5 МГц погрешность, вызванная шагом сканирования, начинает преобладать. При еще меньшем отношении сигнал/шум погрешности катастрофическим образом возрастают и даже при очень малых шагах сканирования превышают 10°С.

Таким образом, для получения точности измерения температуры в несколько градусов Цельсия необходимо выполнение двух условий: с./ш. >1000 и шаг сканирования по частоте $\Delta < 0.5$ МГц.

Результаты моделирования измерения температуры и деформации при шаге сканирования по частоте $\Delta = 0.5$ МГц и с./ш. = 1000 представлены на рис. 5. Из рисунка видно, что погрешность определения температуры не превышает 3°C, деформации – 10µє.

ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА МОДЕЛИ

Для экспериментальной проверки результатов моделирования был собран исследовательский стенд (рис. 6).

Двадцать метров анизотропного волоконного световода "Панда" производства ПАО "ПНППК" (Пермская научно-производственная приборостроительная компания) с коэффициентом затухания оптического сигнала 1.4 дБ/км на длине волны 1550 нм и модовым двулучепреломлением 7 · 10⁻⁴ были намотаны рядами на сплошной алюминиевый цилиндр вручную без перехлестов. Часть световода (несколько метров) была собрана в бухту (так называемая "свободная намотка") и в дальнейшем располагалась в непосредственной близости от алюминиевого цилиндра в ходе всех экспериментов.

Со световодом методом дуговой сварки с контролем угла относительно главной оптической оси были соединены два интегрально-оптических поляризатора с поляризационной экстинкцией более 28 дБ и вносимыми потерями около 4 дБ. В ходе эксперимента эти сварные соединения сначала были соединены "ось в ось" (далее по тексту это состояние назовем 0° или "ось x"), во второй его части быстрые оси входных волокон поляризаторов были совмещены с медленными осями исследуемого образца (далее по тексту – 90° или "ось y").

Исследуемый образец на алюминиевом цилиндре и бухта с волокном, уложенным "свободной намоткой", были помещены в лабораторную термокамеру Espec 712 (Espec, Япония). Один из выходных торцов интегрально-оптического поляризатора был подключен к ходу Pump (накачка) бриллюэновского анализатора Ditest STA-R 202 (Omnisens, Швейцария), второй – через буферное волокно (200 м SMF28, Corning, США) к входу Probe (зондирование).

Была установлена температура 25°С, сняты значения изменений бриллюэновских сдвигов f_1 , f_2 вдоль волокна, на основании этих значений рассчитаны пространственные распределения температуры и деформации. Затем аналогичные эксперименты были проведены при температуре 30, 40, 50, 60°С.

Шаг сканирования по частоте при определении бриллюэновского сдвига составлял 5 МГц. Характерный бриллюэновский спектр представлен на рис. 7, из которого можно оценить отношение с./ш. ~10.

Результаты одновременного определения температуры и деформации представлены соответственно на рис. 8а и 8б.

При отсутствии погрешностей на рис. 8а следовало ожидать ряд параллельных прямых, смещение которых друг относительно друга соответствует фактическим температурам. Реальные же результаты показывают, что действительно имеется тенденция к подъему всего графика с ростом температуры, при этом среднее значение температуры по длине волокна находится в удовлетворительном согласии с ожидаемыми величинами.

В то же время имеется ряд участков, где различие между определяемой и заданной температурами составляет несколько десятков градусов, что значительно превышает спрогнозированную погрешность согласно данным рис. 4. Выбросы носят не случайный, а систематический характер повторяются на разных графиках в тех же локациях.

Рис. 5. Моделирование процесса измерения температуры и деформации при значениях параметров: шаг сканирования $\Delta = 0.5 \text{ М}\Gamma\mu$, с./ш. = 1000. *1*, 2 – задано в модели, *I*', 2' – получено в модели.

Рис. 6. Исследовательский стенд поляризационнобриллюэновской рефлектометрии. ВОТDA – бриллюэновский оптический анализатор временной области.

Рис. 7. Бриллюэновский спектр, полученный в результате эксперимента.

Рис. 8. Результаты пересчета измеренных бриллюэновских сдвигов в температуру (**a**) и в деформацию (**б**) при температуре: $1 - 25^{\circ}$ C, $2 - 30^{\circ}$ C, $3 - 40^{\circ}$ C, $4 - 50^{\circ}$ C, $5 - 60^{\circ}$ C.

Авторы полагают, что это может быть обусловлено наличием локальных неоднородностей волокна, в таком случае значения коэффициентов матрицы *A* на этих участках могут сильно отличаться от приведенных в выражении (2), что в соответствии с результатами рис. 4 и должно приводить к большим систематическим погрешностям.

В эксперименте не проводилось количественных измерений деформации. Однако логичным выглядит предположение, что, во-первых, поведение в области свободной намотки должно существенно отличаться от остального волокна, вовторых, деформации в области намотки на цилиндр должны возрастать с повышением температуры вследствие температурного расширения волокна. Экспериментальные данные на рис. 8б качественно согласуются с прогнозируемыми.

Таким образом, измерения в целом носят индикаторный характер (можно заметить изменения физических величин, но нельзя определить их точные значения). Это вполне согласуется с результатами моделирования — даже на однородных участках волокна при данных параметрах ($\Delta = 5 \text{ M}\Gamma\mu$ и с./ш. = 10) погрешность измерения температуры (рис. 4) может достигать 20°С.

ЗАКЛЮЧЕНИЕ

В работе представлено исследование влияния различных факторов на точность метода одновременного распределенного измерения температур и деформаций в анизотропных волоконных световодах "Панда" с помощью поляризационнобриллюэновской рефлектометрии.

Посредством численного моделирования показано, что при нахождении калибровочных коэффициентов с погрешностью <0.1% определяемые данным фактором погрешности малы и не вносят существенных искажений в получаемые значения температуры и деформации.

Результаты моделирования зависимости точности метода от шага сканирования по частоте и отношения сигнал/шум бриллюэновских спектров показали, что оба этих фактора оказывают существенное влияние на определение значений температуры и деформации. Причем при отношении с./ш. < 100 погрешность измерения температуры составляет десятки градусов независимо от шага сканирования. Лишь при повышении с./ш. > 100 можно лобиться уменьшения погрешности до единиц градусов. При этом шаг сканирования по частоте не должен превышать 1 МГц. Отсюда следует, что коммерчески доступные приборы, имеющие характеристики с./ш. ~ 10 и $\Delta \sim 5$ МГц, малопригодны для разделения температуры и деформации данным методом сразу по обоим параметрам.

Проведенные с использованием коммерчески доступного бриллюэновского анализатора эксперименты находятся в согласии с результатами моделирования, а именно показывают, что разделение температуры и деформации возможно лишь на индикаторном уровне. Авторы считают целесообразным повышать достоверность измерений путем постобработки полученного сигнала, например вейвлет-фильтрацией. В работах [19–21] продемонстрированно, что такой обработкой можно в значительной степени повысить точность измерений. Предполагается, что подобную практику можно считать применимой для задачи получения действительных значений температур, усилий натяжения и модового двулучепреломления световода.

СПИСОК ЛИТЕРАТУРЫ

- Shishkin V.V., Terentyev V.S., Kharenko D.S., Dostovalov A.V., Wolf A.A., Simonov V.A., Fedotov M.Yu., Shienok A.M., Shelemba I.S., Babin S.A. // J. Sensors. 2016. P. 3230968. https://doi.org/10.1155/2016/3230968
- Sivanesan P., Sirkis J.S., Murata Y., Buckley S.G. // Opt. Engineering. 2002. V. 41. P. 2456. https://doi.org/10.1117/1.1505638
- 3. André R.M., Biazoli C.R., Marques M.B., Silva S.O., Cordeiro C.M.B., Frazao O. // Photonics Technology

Lett. IEEE. 2013. V. 25. P. 155. https://doi.org/10.1109/LPT.2012.2230617

- 4. *Zou W., He Z., Hotate K. //* Opt. Express. 2009. V. 17. P. 1248.
- https://doi.org/10.1364/OE.17.001248
- Hotate K., Zou W., Yamashita R.D., Zuyuan He // Photonic Sensors. 2013. V. 3. P. 332. https://doi.org/10.1007/s13320-013-0130-7
- Froggatt M., Gifford D., Kreger S., Wolfe M., Soller B. // Proc. Opt. Fiber Sens. 23–27 October 2006. P. ThC5. https://doi.org/10.1364/OFS.2006.ThC5
- Zaghloul M.A.S., Wang M., Milione G., Li M.J., Li S., Huang Y.-K., Wang T., Chen K.P. // Sensors. 2018. V. 18. P. 1176. https://doi.org/10.3390/s18041176
- Xin Lu, Soto M.A., Thévenaz L. // Opt. Express. 2017. V. 25. P. 16059. https://doi.org/10.1364/OE.25.016059
- 9. Листвин А.В., Листвин В.Н. Рефлектометрия оптических волокон. М.: ЛЕСАРарт, 2005.
- Zheng H., Fang Z., Wang Z., Bin Lu, Cao Y., Qing Ye, Qu R., Cai H. // Sensors. 2018. V. 18. P. 409. https://doi.org/10.3390/s18020409
- Zaslawski S., Yang Z., Soto M.A., Thévenaz L. // Proc. 26th International Conference on Optical Fiber Sensors, 24–28 September 2018, P. ThE27, https://doi.org/10.1364/OFS.2018.ThE27
- Soto M.A., Thévenaz L. // Opt. Express. 2013. V. 21. P. 31347. https://doi.org/10.1364/OE.21.031347

- Feng C., Preussler S., Kadum J.E., Schneider T. // Sensors. 2019. V. 19. P. 2878. https://doi.org/10.3390/s19132878
- Gyger F, Yang Z., Soto M.A., Yang F, Hey Tow K., Thévenaz L. // Proc. 6th International Conference on Optical Fiber Sensors. 24–28 September 2018. P. ThE69. https://doi.org/10.1364/OFS.2018.ThE69
- Urricelqui J., Sagues M., Loayssa A. // Opt. Express. 2014. V. 22. P. 18195. https://doi.org/10.1364/OE.22.018195
- Laude V., Beugnot J.-Ch. // Appl. Sci. 2018. V. 8 (6). P. 907. https://doi.org/10.3390/app8060907
- Bouyahi M., Zrelli A., Rezig H., Ezzedine T. // Opt. Quant. Electron. 2016. V. 48. P. 103. https://doi.org/10.1007/s11082-016-0395-3
- Thévenaz L., Nikles M., Robert Ph.A. // Proc. Symposium on Optical Fiber Measurements. Boulder CO. 1994. P. 211.
- Shengpeng W., He X., Fang L. // Opt. Commun. 2012. V. 285. P. 4971. https://doi.org/10.1016/j.optcom.2012.07.075
- Feng Z., Jianjun G., Lv Huan, Ligang C. // IOP Conference Series Earth and Environmental Science, 2018, V. 189. P. 032026. https://doi.org/10.1088/1755-1315/189/3/032026
- Soto M.A., Ramirez J.A., Thevenaz L. // Nature Commun. 2016. V. 7. P. 10870. https://doi.org/10.1038/ncomms10870