## ЭЛЕКТРОНИКА И РАДИОТЕХНИКА

УДК 62-932.4

## ДИНИСТОРЫ С СУБНАНОСЕКУНДНЫМ ВРЕМЕНЕМ ПЕРЕКЛЮЧЕНИЯ

© 2020 г. С. В. Коротков<sup>а,\*</sup>, Ю. В. Аристов<sup>а</sup>, А. Л. Жмодиков<sup>а</sup>, Д. А. Коротков<sup>а</sup>

<sup>а</sup> Физико-технический институт им. А.Ф. Иоффе РАН Россия, 194021, Санкт-Петербург, ул. Политехническая, 26 \*e-mail: korotkov@mail.ioffe.ru Поступила в редакцию 19.03.2020 г.

После доработки 02.04.2020 г. Принята к публикации 03.04.2020 г.

Представлены результаты экспериментальных исследований оптимизированных динисторов с ударной ионизацией (SID – shock-ionized dynistors) при коммутации мощных импульсов тока с наносекундной длительностью. Показано, что эффективность процесса переключения SID может быть повышена при введении в его четырехслойную структуру равномерно распределенных равновеликих диодных секций, суммарная площадь которых существенно меньше общей площади полупроводниковой структуры динистора. Приведены результаты сравнительных исследований оптимизированных SID, имеющих разную площадь структур и разное предельно допустимое напряжение в стационарном состоянии. Даны объяснения полученным результатам.

DOI: 10.31857/S0032816220050171

Высокая эффективность современных лазерных, электромагнитных и электроразрядных технологий достигается в результате использования мощных электрических импульсов с наносекундной длительностью. Малые потери энергии при их формировании могут обеспечить только коммутаторы с субнаносекундным временем переключения в хорошо проводящее состояние. При этом наиболее перспективными являются полупроводниковые коммутаторы, обладающие большим сроком службы и малым разбросом моментов срабатывания.

В этой связи большой интерес представляют работы [1-7 и др.] по исследованию различных четырехслойных кремниевых полупроводниковых приборов, которые включаются за время <1 нс при приложении наносекундного импульса высокого напряжения. Такой способ переключения был впервые описан в [8]. Для его реализации необходимо, чтобы запускающее напряжение нарастало со скоростью >1 кВ/нс. В этих условиях длительность запускающего воздействия оказывается меньше времени развития стационарного пробоя полупроводникового прибора и напряженность электрического поля в его структуре может нарасти до величины, достаточной для инициирования процесса ударной ионизации кремния.

Ударная ионизация определяет быструю генерацию электронно-дырочной плазмы и субнаносекундное время переключения в хорошо проводящее состояние. Быстрое переключение в состояние с высокой проводимостью обеспечивает полупроводниковым приборам с ударной ионизацией уникальные возможности при коммутации мощных наносекундных импульсов тока.

В [9] представлены результаты пилотных исследований модифицированных динисторов с ударной ионизацией. Отличительной особенностью разработанных SID (shock-ionized dynistors) является то, что в  $p^+$ - и  $n^+$ -эмиттеры их  $p^+$ - $n-p-n^+$ -структур были введены малогабаритные участки с проводимостью  $n^+$ - и  $p^+$ -типа (шунты). Они исключали возможность блокирования обратного напряжения, что позволило предельно уменьшить толщину слаболегированного *n*-слоя, определяющего основные коммутационные потери энергии.

В данной работе приведены результаты оптимизации конструкции SID, выполненные с целью повышения эффективности процесса их переключения.

Основным отличием оптимизированных SID является то, что  $n^+$ - и  $p^+$ -шунты анодного и катодного эмиттеров имеют одинаковые размеры и располагаются соосно (оппозитно относительно друг друга). В результате структура SID разбивается на тиристорные 1 и диодные 2 секции (рис. 1). Они имеют общий высоковольтный p-n-переход и обеспечивают возможность приложения к динистору силового напряжения с прямой полярно-



Рис. 1. Конструкция оптимизированного SID.

стью ("плюс" — на аноде). Охранные кольца 3, 4 препятствуют переносу электронно-дырочной плазмы к краевой поверхности 5 в процессе коммутации силового тока и устраняют возможность ее деградации.

Когда к SID приложено стационарное прямое напряжение  $U_0$ , в базовых *n*- и *p*-слоях создается свободная от носителей тока область пространственного заряда (о.п.з.), ширина которой определяет собственную емкость тиристорных и диодных секций в стационарном состоянии. Напряженность поля достигает максимума на *n*-*p*-переходе. Параметры базовых слоев задаются таким образом, что при предельно допустимом  $U_0$  границы о.п.з. не достигают эмиттеров, и напряженность поля в о.п.з. не превышает напряженность стационарного пробоя.

Переключение SID осуществляется путем приложения быстро нарастающего запускающего напряжения  $U_y$ , которое формируется при пропускании через его структуру достаточно мощного тока управления  $I_y$ . Этот ток обеспечивает быструю зарядку собственных емкостей тиристорных и диодных секций. В результате напряжение в о.п.з. резко нарастает, и ее границы расширяются. Включение SID происходит в момент, когда в области о.п.з. с сильным электрическим полем появляются "затравочные" носители, которые инициируют процесс ударной ионизации.

Результаты экспериментов [9] позволяют предположить, что "затравочными" носителями могут быть электроны и дырки, которые в процессе нарастания запускающего напряжения инжектируются из эмиттеров тиристорных секций в базовые слои. Если амплитуда  $U_y$  достаточно велика, то границы о.п.з. вплотную придвигаются к эмиттерам, что создает возможность инжектированным носителям достигнуть о.п.з. за очень короткое время.

Попавшие в о.п.з. носители ускоряются электрическим полем к p-n-переходу и в процессе нарастания  $U_y$  переносятся в ту часть о.п.з., где на-



**Рис. 2.** Схема испытательного стенда.  $T_1$  ( $T_2$ ) – сборки транзисторов IRGPS60B120KDP [2 (3) параллельно, 2 (2) последовательно]; D – VMI K100UF,  $D_1$ ,  $D_2$  – HER 508 [2 последовательно]; д.д.р.в. – диаметр структур 16 мм [12 последовательно];  $L_0$  – сердечник феррит 1000 HM, 8 колец 10 × 6 × 2, w = 1.

пряженность поля достаточна для ударной ионизации. Ударная ионизация обеспечивает очень быстрое заполнение тиристорных секций SID электронно-дырочной плазмой. В результате они переключаются в состояние с высокой проводимостью, величина которой определяется плотностью образованной плазмы.

Нами было исследовано влияние диодных секций на процесс переключения SID. Для проведения сравнительных исследований были изготовлены динисторы с базовой конструкцией (SID<sub>0</sub>) и оптимизированные динисторы (SID<sub>1</sub>). Структуры динисторов имели диаметр 20 мм и были изготовлены из пластин кремния с удельным сопротивлением 80 Ом  $\cdot$  см и толщиной 380 мкм по стандартной диффузионной технологии.

Диффузионные профили были выполнены так, что динисторы могли в стационарном состоянии блокировать напряжение ~2.2 кВ. В SID<sub>0</sub> шунты  $n^+$ и  $p^+$  имели диаметр ~250 мкм, расстояние между центрами шунтов  $n^+$  составляло 0.8 мм, а между центрами шунтов  $p^+ - 1.2$  мм. В SID<sub>1</sub> шунты  $n^+$  и  $p^+$ имели диаметр ~300 мкм и располагались оппозитно по осям, расположенным на расстоянии 0.8 мм друг от друга.

На рис. 2 приведена электрическая схема стенда, на котором проводились сравнительные исследования SID. Стенд содержит силовую цепь  $C_0-L_0$ , генератор наносекундных запускающих импульсов  $\Gamma$  и диод D, который разделяет силовую цепь и генератор  $\Gamma$ до момента включения SID.

В исходном состоянии конденсатор  $C_0$  заряжен до силового напряжения  $U_0$ . Это напряжение приложено к SID и диоду *D*. При включении генератора  $\Gamma$  через SID протекает ток управления  $I_y$ , осуществляющий зарядку его собственной емкости. В результате напряжение на SID быстро нарастает до момента его переключения. В процессе





**Рис. 3.** Осциллограммы напряжения на SID<sub>0</sub> (1), SID<sub>1</sub> (2) и силового тока (3, 4) при токе управления 150 A (**a**) и 250 A (**b**). Масштаб по вертикали: напряжения -400 В/деление, тока -400 А/деление; по горизонтали -20 нс/деление.

нарастания запускающего напряжения дроссель  $L_0$  имеет большую индуктивность и препятствует ответвлению тока  $I_y$  в конденсатор  $C_0$ . Через несколько наносекунд после включения SID сердечник дросселя  $L_0$  насыщается, его индуктивность становится очень малой и практически не препятствует разряду  $C_0$ . При этом в SID коммутируется силовой ток I.

Генератор  $\Gamma$  построен по схеме, рассмотренной в [10]. Он содержит индуктивный накопитель энергии  $L_2$ , прерыватель тока в виде блока дрейфовых диодов с резким восстановлением (д.д.р.в.) [11] и коммутаторы  $T_1$ ,  $T_2$  в виде блоков IGBT-транзисторов с форсированным запуском [12]. При включении коммутатора  $T_1$  через блок д.д.р.в. в прямом направлении протекает короткий (~400 нс) ток  $I_F$ , являющийся током разряда конденсатора  $C_1$ , предварительно заряженного до напряжения ~2 кВ.

В результате происходит зарядка конденсатора  $C_2$  и накопление электронно-дырочной плазмы в диодных структурах блока д.д.р.в. В момент зарядки  $C_2$  до максимального напряжения включается коммутатор  $T_2$ , и через блок д.д.р.в. в обратном направлении протекает ток  $I_R$ . Он обеспечивает быстрый (~180 нс) вынос накопленной плазмы и очень быстрое (~2 нс) выключение диодов блока д.д.р.в. в момент, когда величина заряда, пропущенного через них при протекании тока  $I_R$ , достигает величины заряда, накопленного при протекании тока  $I_F$ .

Так как в момент разряда  $C_2$  до нуля через диоды блока д.д.р.в. в обратном направлении пропускается такой же заряд, как ранее пропускался в прямом направлении при зарядке  $C_2$  до максимального напряжения, то их выключение происходит в момент полного разряда  $C_2$  при максимальном токе  $I_R$ , протекающем через индуктивность  $L_2$ . В процессе выключения блока д.д.р.в. ток индуктивности  $L_2$  быстро коммутируется в SID и является током управления  $I_{\rm v}$ .

В результате напряжение на SID резко нарастает до величины, при которой в тиристорных секциях его структуры инициируется процесс ударной ионизации. Он формируется при использовании энергии, накопленной в собственных емкостях тиристорных секций к моменту их переключения и энергии индуктивности  $L_2$ , которая передается в SID при протекании тока управления.

Процесс ударной ионизации развивается интенсивно, если ток индуктивности  $L_2$  в течение всего времени переключения SID обеспечивает высокое напряжение на его структуре, определяющее высокую напряженность электрического поля. Для этого энергия, накопленная в индуктивности  $L_2$  к моменту включения SID, должна быть достаточно велика.

Сравнительные исследования  $SID_0$  и  $SID_1$  проводились при силовом напряжении ~2 кВ и разных токах управления.

На рис. 3 приведены осциллограммы падения напряжения на SID<sub>0</sub> (кривые *I*) и SID<sub>1</sub> (кривые *2*) при коммутации практически одинакового силового тока I = 1.9 кА (кривые *3*, *4*). Переключение динисторов осуществлялось током управления 150 A (рис. 3а) и 250 A (рис. 3б). Примерное равенство амплитуд силового тока в экспериментах с SID<sub>0</sub> и SID<sub>1</sub> обеспечивалось путем незначительного изменения напряжения зарядки силового конденсатора. При увеличении тока управления до 350 A падение напряжения на динисторах практически не изменялось.

Осциллограммы на рис. 4 иллюстрируют процесс переключения  $SID_0$  (рис. 4а) и  $SID_1$  (рис. 4б) при токах управления 150 и 250 А (кривые 1 и 2). Как видно из осциллограмм, напряжение на динисторах за время ~2 нс нарастает до уровня ~4 кВ,



**Рис. 4.** Осциллограммы напряжения в процессе переключения SID<sub>0</sub> (**a**) и SID<sub>1</sub> (**б**) при токе управления 150 A (*1*) и 250 A (*2*). Масштаб по вертикали 1 кВ/деление, по горизонтали – 2 нс/деление.

при котором происходит их включение за время <1 нс.

Из осциллограмм на рис. З следует, что при коммутации практически одинаковых импульсов силового тока падение напряжения на  $SID_0$  и  $SID_1$  имеет близкую величину при достаточно большом токе управления (250 А). При токе управления 150 А падение напряжения на  $SID_0$ , выполненных с меньшей суммарной площадью шунтов анодного и катодного эмиттеров и без их осевого совмещения, существенно превышает падение напряжения на  $SID_1$ , что свидетельствует о меньшей интенсивности процесса ударной ионизации в  $SID_0$ .

Полученные результаты могут быть объяснены следующим образом.

В момент инициирования процесса ударной ионизации в тиристорных секциях SID<sub>1</sub> собственные емкости диодных секций его полупроводниковой структуры заряжены до высокого напряжения протекающим через них током управления *I*<sub>v</sub>. В процессе переключения тиристорных секций через них протекает ток I<sub>v</sub> и дополнительный ток I<sub>d</sub>, являющийся током разряда собственных емкостей соседних диодных секций. В результате в тиристорные секции коммутируется дополнительная энергия, которая стимулирует развитие процесса ударной ионизации. Так как в SID<sub>1</sub> диодные секции плотно окружают тиристорные секции, то величина тока *I*<sub>d</sub> может быть соизмерима с величиной тока  $I_{\rm v}$ . При этом ток  $I_{\rm d}$ существенно повышает интенсивность процесса ударной ионизации в тиристорных секциях, особенно в режимах переключения SID при недостаточно большом токе  $I_{\rm v}$ .

В SID<sub>0</sub> суммарная площадь шунтов анодного и катодного эмиттеров меньше, чем в SID<sub>1</sub>, они расположены хаотично и не образуют диодных

секций. В результате интенсивность процесса ударной ионизации в структурах  $SID_0$  определяется, в основном, величиной тока управления  $I_y$ . Если она недостаточна, то проводимость  $SID_0$  после переключения снижается.

Нами были также исследованы коммутационные возможности оптимизированных SID с увеличенным диаметром структур, которые были способны блокировать более высокое стационарное напряжение.

Для проведения экспериментов были изготовлены опытные образцы SID с диаметром структур 24 мм, имеющие предельное стационарное напряжение  $3.5 \text{ кB} (\text{SID}_2)$  и  $2.5 \text{ кB} (\text{SID}_3)$ . Структуры динисторов были изготовлены из пластин кремния с удельным сопротивлением 200 и 90 Ом · см и толщиной 700 и 400 мкм соответственно. Диодные секции в их полупроводниковых структурах имели такие же размеры и такую же плотность, как и в выше рассмотренных SID<sub>1</sub>.

На рис. 5 показаны типичные осциллограммы напряжения на SID<sub>2</sub> (кривые *1*, *2*) и SID<sub>3</sub> (кривые *3*, *4*) в процессе их переключения на стенде рис. 2 при отключенной цепи конденсатора  $C_0$  (без коммутации силового тока). Они получены при токе управления  $I_y = 350$  А и соответствуют разной величине силового напряжения  $U_0$ : соответственно 2 и 3 кВ для SID<sub>2</sub> и 1 и 2 кВ для SID<sub>3</sub>. В этих условиях напряжение переключения SID<sub>2</sub> и SID<sub>3</sub> составляет соответственно 7.3 и 4.3 кВ. Оно примерно в 2 раза превышает величину предельного напряжения, которое SID<sub>2</sub>, SID<sub>3</sub> способны блокировать в стационарном состоянии.

На рис. 6а приведены типичные осциллограммы напряжения на  $SID_2$  в процессе их переключения при токе управления 350, 250 и 150 А (кривые *1*, *2*, *3*). На рис. 6б показаны аналогичные осцилло-



**Рис. 5.** Сравнение напряжений на высоковольтном  $SID_2(1, 2)$  и низковольтном  $SID_3(3, 4)$  при их переключении. Масштаб по вертикали 1 кВ/деление, по горизонтали – 2 нс/деление.

граммы, иллюстрирующие процесс переключения SID<sub>3</sub>.

Из осциллограмм на рис. 66 следует, что при уменьшении тока управления с 350 до 250 А напряжение на SID<sub>3</sub> в момент их включения практически не изменяется, что определяет одинаковые начальные условия для развития процесса ударной ионизации. При  $I_y = 250$  А напряжение включения SID<sub>2</sub> (рис. 6а) становится немного меньше, чем при  $I_y = 350$  А, что обусловливает возможность уменьшения интенсивности процесса ударной ионизации.

При токе управления  $150 \text{ A SID}_2$  и SID<sub>3</sub> включаются при заметно меньшем напряжении. При этом на более высоковольтных SID<sub>2</sub> напряжение включения уменьшается сильнее, чем на SID<sub>3</sub>, что существенно влияет на развитие процесса ударной ионизации в его структуре. Об этом свидетельствует увеличение времени включения SID<sub>2</sub>.

На рис. 7а приведены типичные осциллограммы падения напряжения на SID<sub>2</sub> (кривая *1*) и на SID<sub>3</sub> (кривая *2*), полученные при коммутации импульсов силового тока (кривые *3*, *4*) с амплитудой 2 кА. Переключение динисторов осуществлялось током управления  $I_y = 350$  А при силовом напряжении ~2 кВ. На рис. 76 показаны аналогичные осциллограммы, соответствующие току управления 250 А.

Из осциллограмм на рис. 7а следует, что при  $I_y = 350$  А в процессе коммутации одинаковых импульсов силового тока с длительностью 220 нс SID<sub>2</sub> и SID<sub>3</sub> имеют близкое по величине падение напряжения, несмотря на разную толщину структур и удельное сопротивление исходного кремния. Осциллограммы на рис. 76 свидетельствуют, что при уменьшении тока управления до 250 А падение напряжения на SID<sub>2</sub> становится существенно больше, чем на SID<sub>3</sub>.

При дальнейшем уменьшении тока управления падение напряжения на динисторах возрастало, причем на  $SID_2$  более резко, чем на  $SID_3$ . При  $I_y = 150$  А происходил пробой динисторов типа  $SID_2$ .

При токе управления 350 А было продолжено сравнительное исследование динисторов в режиме коммутации импульсов силового тока с такой же амплитудой (2 кА), но с существенно большей длительностью (100 мкс). Для этого в схеме стенда на рис. 2 были увеличены индуктивность силовой цепи и емкость силового конденсатора  $C_0$ . В этих условиях напряжение на SID<sub>2</sub> в максимуме силового тока было значительно больше, чем на SID<sub>3</sub> (соответственно 5 и 3 В).

Полученные результаты могут быть объяснены при рассмотрении осциллограмм на рис. 5, из которых следует, что напряжение на SID<sub>2</sub> в момент



**Рис. 6.** Осциллограммы напряжения в процессе переключения высоковольтного SID<sub>2</sub> (**a**) и низковольтного SID<sub>3</sub> (**б**) при токе управления 350 A (*1*), 250 A (*2*) и 150 A (*3*). Масштаб по вертикали 1 кВ/деление, по горизонтали – 2 нс/деление.



**Рис. 7.** Осциллограммы силового тока (3, 4) и напряжения на высоковольтном  $SID_2$  (1) и низковольтном  $SID_3$  (2) при токе управления 350 A (**a**) и 250 A (**б**). Масштаб по вертикали: напряжения – 400 В/деление, тока – 400 А/деление; по горизонтали – 40 нс/деление.

его переключения в 1.8 раза больше напряжения в момент включения  $SID_3$ . Так как полупроводниковая структура  $SID_2$  во столько же раз шире, то можно допустить, что включение  $SID_2$  и  $SID_3$  происходит в условиях с близкой напряженностью электрического поля в их структурах. В результате процессы ударной ионизации в  $SID_2$  и  $SID_3$  протекают примерно одинаково, что определяет близкую по величине проводимость после их переключения.

При протекании силового тока модуляция стационарной проводимости базовых слоев  $SID_2$ ,  $SID_3$  осуществляется в результате диффузии электронов и дырок, инжектированных из эмиттеров. Так как скорость диффузии сравнительно мала, то при малой длительности силового тока проводимость динисторов к моменту его окончания возрастает незначительно по сравнению с начальной проводимостью после включения. При большой длительности силового тока падение напряжения на  $SID_2$ ,  $SID_3$  соответствует стационарному значению.

Существенное уменьшение проводимости  $SID_2$  при уменьшении тока управления до 250 А подтверждает, что даже небольшое снижение напряжения в момент их переключения (см. рис. 6а) сильно влияет на развитие процесса ударной ионизации. Разрушение высоковольтных  $SID_2$  при  $I_y = 150$  А свидетельствует о локализации силового тока.

Близкие коммутационные потери энергии в  $SID_2$ ,  $SID_3$ , полученные при достаточно больших токах управления, дают определенные преимущества более высоковольтным  $SID_2$ , так как они могут быть использованы в цепях с более высоким силовым напряжением. Их основным недостатком является необходимость обеспечения более высокой мощности импульсов запуска по сравнению с  $SID_3$ .

Сравнение напряжений на оптимизированных SID с диаметром 20 и 24 мм (рис. 36 и рис. 7а) показывает, что при коммутации близких по величине импульсов силового тока они изменяются фактически обратно пропорционально рабочей площади. Это свидетельствует о достаточно равномерном распределении силового тока. Можно предположить, что полученный результат обусловлен введением в структуры SID равномерно распределенных диодных секций, которые повышают однородность процесса переключения.

Таким образом, проведенные исследования показывают, что встроенные в структуры оптимизированных SID диодные секции позволяют повысить эффективность процесса их переключения. В этой связи создается возможность дальнейшей оптимизации конструкции SID путем изменения размеров и формы диодных секций. Так, например, интересным представляется использование диодных секций с сечением в виде квадратов или равносторонних шестиугольников. При этом тиристорные секции структуры SID будут полностью охвачены диодными секциями, что обеспечит более однородное влияние диодных секций на процесс их переключения.

## СПИСОК ЛИТЕРАТУРЫ

- Efanov V., Kardo-Sysoev A., Tchashnicov I., Yarin P. // Proc. 22nd Int. Power Modulator Symp., Boca Raton, Fl, USA. 1996. P. 22. https://doi.org/10.1109/MODSYM.1996.564440
- 2. Аристов Ю.В., Воронков В.Б., Грехов И.В., Козлов А.К., Коротков С.В., Люблинский А.Г. // ПТЭ. 2007. № 2. С. 87.
- Grekhov I., Korotkov S., Rodin S. // IEEE Trans. Plasma Sci. 2008. V. 36. № 2. Part 1. P. 378. https://doi.org/10.1109/TPS.2008.918661
- Коротков С.В., Аристов Ю.В., Воронков В.Б., Жмодиков А.Л., Коротков Д.А., Люблинский А.Г. // ПТЭ. 2009. № 5. С. 90.

- 5. Коротков С.В., Аристов Ю.В., Воронков В.Б., Коротков Д.А. // ПТЭ. 2014. № 4. С. 67. https://doi.org/10.7868/S0032816214040065
- 6. *Гусев А.И., Любутин С.К., Рукин С.Н., Цыранов С.Н.* // ПТЭ. 2015. № 3. С. 65. https://doi.org/10.7868/S0032816215020184
- 7. *Gusev A., Lyubutin S., Rukin S., Tsyranov S.* // IEEE Trans. Plasma Sci. 2016. V. 44. № 10. Part 1. P. 1888. https://doi.org/10.1109/TPS.2016.2542343
- 8. *Грехов И.В., Кардо-Сысоев А.Ф. //* Письма в ЖТФ. 1979. Т. 5. Вып. 15. С. 950.
- 9. Коротков С.В., Аристов Ю.В., Воронков В.Б. // ПТЭ. 2019. № 2. С. 24. https://doi.org/10.1134/S0032816219010130
- Коротков С.В., Воронков В.Б., Аристов Ю.В. // ПТЭ. 2015. № 4. С. 48. https://doi.org/10.7868/S0032816215040072
- 11. Grekhov I., Efanov V., Kardo-Sysoev A., Shenderey S. // Solid State El. 1985. V. 28. № 6. P. 597.
- 12. Коротков С.В., Аристов Ю.В., Жмодиков А.Л., Козлов А.К., Коротков Д.А. // ПТЭ. 2018. № 1. С. 42. https://doi.org/10.7868/S0032816218010202