_____ ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ _____ ТЕХНИКА

УДК 53.082.56

ГЕНЕРАТОР СУПЕРКОНТИНУУМА С НАКАЧКОЙ ИМПУЛЬСАМИ ФЕМТОСЕКУНДНОГО ЛАЗЕРА НА ХРОМ-ФОРСТЕРИТЕ В ПРОЗРАЧНЫХ КОНДЕНСИРОВАННЫХ СРЕДАХ

© 2020 г. И. В. Крюков^{а,b,*}, Н. Х. Петров^а, М. В. Алфимов^а

^аЦентр фотохимии РАН Федерального научно-исследовательского центра "Кристаллография и фотоника" РАН Россия, 119421, Москва, ул. Новаторов, 7А-1

^bФедеральный исследовательский центр химической физики им. Н.Н. Семенова РАН

Россия, 119991, Йосква, ул. Косыгина, 4-1

*e-mail: igor.v.kryukov@gmail.com Поступила в редакцию 17.03.2020 г. После доработки 27.04.2020 г. Принята к публикации 29.04.2020 г.

Описана установка для генерации суперконтинуума в кристаллах Al_2O_3 и CaF_2 при помощи фемтосекундного лазера на кристалле хром-форстерита (Cr:F). Определены спектры суперконтинуума с накачкой на четырех длинах волн: 310, 413, 620 и 1240 нм. В видимой области получен непрерывный спектр суперконтинуума от 324 до 1000 нм, что позволяет исследовать различные образцы с использованием системы pump-probe ("накачка—зондирование"). В ультрафиолетовой области спектра на кристалле CaF_2 получена наименьшая длина волны суперконтинуума 225 нм при накачке импульсами на длине волны 310 нм.

DOI: 10.31857/S0032816220050316

введение

При фокусировке высокоинтенсивного фемтосекундного импульса в прозрачной среде генерируется белый свет от ультрафиолетового до инфракрасного – так называемый широкополосный суперконтинуум. Генерация суперконтинуума наблюдалась в разнообразных прозрачных материалах, включая газы, жидкости и твердые тела. Первыми описали явление уширения спектра Альфано и Шапиро в 1970 г. [1]. Они использовали мощный пикосекундный лазер с длиной волны 530 нм и длительностью импульса 5 пс. Генерацию континуума исследовали в боросиликатном стекле БК-7 и зарегистрировали уширение спектра с 400 до 700 нм. Первый фемтосекундный суперконтинуум наблюдали в 1983 г. Fork и его соавторы [2]. Они сообщили о гигантском уширении спектра от глубокого ультрафиолета, 190 нм, до ближнего инфракрасного, 1600 нм, при фокусировке мощных фемтосекундных импульсов.

Генерация ультракоротких импульсов с высокой частотой повторения, которые полностью перестраиваются в ультрафиолетовом, видимом и ближнем инфракрасном (NIR) диапазонах, по-прежнему является важной задачей. Генерация континуума используется в нестационарной спектроскопии – методе pump-probe ("накачка–зондирование") [3, 4]. Широко применяется генерация континуума в оптическом параметрическом усилителе света [5] и в системе неколлинеарного оптического параметрического усилителя (NOPA) [6].

Физическая картина генерации суперконтинуума в прозрачных конденсированных средах может быть пояснена в рамках фемтосекундной филаментации. Фемтосекундная филаментация формируется в результате взаимодействия между керровской самофокусировкой, фазовой самомодуляцией и дефокусирующей лазерной плазмой, что приводит к появлению динамической структуры с интенсивным ядром, которая способна распространяться на расстояния, гораздо большие, чем типичная дифракционная длина, сохраняя при этом узкий размер пучка без помощи какого-либо внешнего направляющего механизма. Наиболее очевидным проявлением формирования филамента является генерация сверхширокополосного, пространственно и временно когерентного излучения с низкой угловой расходимостью, т.е. генерация суперконтинуума.

Начальная стадия формирования филамента определяется керровской нелинейностью. Рассмотрим фемтосекундный пучок, распространяющийся в среде с кубичной (керровской) нелинейностью, в этом случае показатель преломления будет зависеть от интенсивности как:

$$n=n_0+n_2I,$$

где I — интенсивность пучка, n_0 — линейный показатель преломления, n_2 — нелинейный показатель преломления, связанный с оптической восприимчивостью материала кривой третьего порядка (кубической), положительный в области прозрачности диэлектрических сред.

Индуцированное изменение показателя преломления пропорционально локальной интенсивности и, таким образом, выше в центре пучка и ниже по краям. Поэтому диэлектрическая среда действует как линза, которая фокусирует луч. Для цилиндрически симметричного гауссова пучка порог самофокусировки определяется мощностью пучка [7]:

$$P_{cr} = 3.72\lambda^2 / (8\pi n_0 n_2),$$

где λ — длина волны лазера; P_{cr} — критическая мощность самофокусировки, при которой эффект самофокусировки точно уравновешивает дифракционное распространение луча. Если мощность пучка превышает P_{cr} то гауссов пучок будет самофокусироваться на расстоянии [7]

$$Z_{sf} = \frac{0.367k\alpha^2}{\{[(P/P_{cr})^{1/2} - 0.852]^2 - 0.0219\}^{1/2}}$$

где Z_{sf} – нелинейный фокус; α – радиус пучка по уровню e^{-1} от интенсивности; $k = 2\pi/\lambda$ – волновое число.

Рассмотрим процесс, который непосредственно отвечает за спектральное уширение импульса. При распространении сверхкороткого импульса гауссовой формы с частотой ω_0 в диэлектрике его интенсивность как функцию времени можно представить в виде

$$I(t) = I_0 \exp(-t^2/t_p^2),$$

где I_0 — максимальная интенсивность, а t_p — длительность импульса.

Вследствие эффекта Керра во время распространения импульса коэффициент преломления в каждой точке среды будет функцией интенсивности в этой точке:

$$n(I) = n_0 + n_2 I(t).$$

Далее рассмотрим случай $n_2 > 0$, соответствующий самофокусировке. В каждой точке вещества интенсивность вначале будет нарастать, а затем спадать. Это приведет к модуляции показателя преломления во времени:

$$\frac{dn(I)}{dt} = -\frac{2t}{t_p^2} n_2 I_0 \exp(-t^2/t_p^2).$$

Изменяющийся во времени показатель преломления вносит нелинейное изменение в фазу импульса:

$$\varphi_{nl}(t) = -\frac{\omega_0}{c} n_2 I(t) z,$$

где ω_0 — несущая частота, а *z* — расстояние, пройденное импульсом.

Тогда изменение частоты определяется выражением

$$\delta \omega(t) = \frac{d}{dt} \varphi_{nl}(t).$$

Зависимость мгновенной частоты от времени имеет вид

$$\omega(t) = \omega_0 + \delta \omega(t).$$

Изменение частоты приводит к спектральному уширению импульса. Для гауссова лазерного импульса с длительностью t_p изменение мгновенной частоты определяется выражением [8]:

$$\delta\omega(t) = 2\frac{\omega_0}{ct_p^2} n_2 I_0 \exp(-t^2/t_p^2) tz.$$

Эффект называется фазовой самомодуляцией и приводит к уширению спектра за счет индуцирования отрицательного сдвига мгновенной частоты на восходящем фронте импульса и положительного сдвига мгновенной частоты на спаде импульса. Другими словами, импульс приобретает частотную модуляцию, которая создает спектральные компоненты красного смещения на фронте импульса и синего смещения — на хвосте импульса.

Однако пучок не может фокусироваться до бесконечности: постоянное сжатие пучка в нелинейном фокусе сдерживается многофотонным поглощением и ионизацией, что приводит к потере энергии и генерации плазмы свободных электронов, которая далее поглощает и расфокусирует пучок. Комбинированное действие этих эффектов ограничивает интенсивность до определенного уровня.

Взаимодействие фемтосекундного излучения со средой определяется керровской нелинейностью и нелинейностью лазерной плазмы, возникающей при фотоионизации в сильном световом поле филамента. Нелинейное приращение Δn_k показателя преломления n_0 , вызванное керровской нелинейностью, положительно и пропорционально интенсивности поля *I*:

$$\Delta n_k = n_2 I_k$$

где *n*₂ — коэффициент кубической нелинейности среды.

С другой стороны, приращение Δn_p показателя преломления в плазме отрицательно, и в простейшем случае выражение для него имеет вид

$$\Delta n_p = -\omega_p^2/(2\omega^2),$$

Рис. 1. Генератор суперконтинуума. $C\mathcal{A}$ – светоделитель; Φ_1 , Φ_2 – нейтральные фильтры с переменной оптической плотностью; \mathcal{A}_1 , \mathcal{A}_2 – линзы с фокусным расстоянием 80 (\mathcal{A}_1) и 60 мм (\mathcal{A}_2); K – кристалл CaF₂ или Al₂O₃.

где $\omega_p = (4\pi e^2 N_e/m_e)^{1/2}$ — плазменная частота; *e*, m_e и N_e — соответственно заряд, масса и концентрация электронов; ω — частота светового поля.

В конденсированных средах генерация лазерной плазмы происходит в результате перехода электронов в зону проводимости под действием лазерного излучения и лавинной ионизации, при которой концентрация электронов в плазме нарастает во времени по экспоненциальному закону.

В импульсе, пиковая мощность которого превышает критическую мощность самофокусировки, интенсивность нарастает с приближением к нелинейному фокусу. При увеличении мощности до порога фотоионизации образуется лазерная плазма, дефокусировка в которой ограничивает дальнейший рост интенсивности в нелинейном фокусе. Динамический баланс керровской самофокусировки и плазменной дефокусировки приводит к стабильности параметров в протяженном филаменте фемтосекундного импульса [9].

В данной работе описан генератор суперконтинуума с накачкой импульсами фемтосекундного лазера на кристалле хром-форстерита в прозрачных конденсированных средах. Были измерены спектры континуума на четырех длинах волн накачки: 310, 413, 620 и 1240 нм. В качестве конденсированных сред использовались кристаллы Al_2O_3 и CaF₂. Генератор суперконтинуума был разработан для системы ритр-ргове, созданной на хром-форстерите [3]. (Авторам не известны работы по генерации суперконтинуума в кристаллах Al_2O_3 и CaF₂ с накачкой излучением лазера на хром-форстерите.)

ОПИСАНИЕ УСТАНОВКИ

В качестве усилителя использовался фемтосекундный регенеративный усилитель на кристалле хром-форстерита (Cr:F), который состоит из генератора фемтосекундных импульсов, лазера накачки и регенеративного усилителя фемтосекундных импульсов. Задающий лазер генерирует импульсы длительностью 95 фс, средней мощностью 500 мВт, частотой повторения 85 МГц. В качестве накачки используется импульсный Nd:YAG-лазер (модель LQ629-100 фирмы Солар ЛС). Энергия в импульсе 10 Дж, частота повторения 100 Гц. Центральная длина волны усиленного фемтосекундного импульса составляет 1240 нм, ширина спектра на полувысоте 17 нм. Энергия в импульсе 440 мкДж, диаметр пучка на выходе из усилителя 8 мм. Излучение на выходе из усилителя горизонтально поляризовано.

Задающий лазер генерирует фемтосекундные импульсы с шириной спектра на полувысоте 22 нм и длительностью 95 фс. После усиления ширина спектра на полувысоте уменьшается до 17 нм. Длительность усиленного импульса, измеренная с помощью коррелятора, составляет 134 фс.

Рассмотрим схему генератора суперконтинуума (рис. 1). После усилителя на хром-форстерите установлен блок генераторов гармоник: генераторы второй, третьей и четвертой гармоник. Все эти гармоники применяются в качестве накачки в генераторе континуума. Для выделения нужной длины волны накачки использовались различные оптические зеркала. После оптического делителя *СД* расположен нейтральный фильтр Φ_1 с переменной оптической плотностью. Перемещая этот фильтр, можно плавно менять энергию в пучке излучения накачки. Для генерации континуума фемтосекундными импульсами длительностью ≈ 100 фс необходима энергия в несколько микроджоулей.

Короткофокусной линзой \mathcal{N}_1 с фокусным расстоянием 80 мм излучение гармоник фокусировалось в кристалле (*K*) Al₂O₃ или CaF₂. Интенсивность накачки в перетяжке достигала ~10¹³ Вт/см². Толщина кристаллов CaF₂ и Al₂O₃ составляла 3 мм. В процессе эксперимента кристалл CaF₂ медленно перемещали ортогонально направлению пучка накачки во избежание деградации материала. Излучение континуума собиралось и фокусировалось короткофокусной линзой \mathcal{N}_2 с фокусным расстоянием 60 мм в оптическое волокно диаметром 200 мкм. По оптическому волокну излучение попадало в монохроматор. Использован монохроматор модели M266 (Солар ЛС, Минск) с входной щелью 200 мкм.

Для регистрации сигналов в широком спектральном диапазоне использовалась СМОЅ-ли-

Рис. 2. Оптическая схема генерации четвертой гармоники. $\mathcal{J}_1 - \mathcal{J}_4$ – линзы с фокусным расстоянием 50 (\mathcal{J}_1), 30 (\mathcal{J}_2), 25 (\mathcal{J}_3), 20 см (\mathcal{J}_4); K_1 – кристалл LBO длиной 5 мм; $C\mathcal{J}_1 - C\mathcal{J}_3$ – светоделители; K_2 – кристалл BBO длиной 0.5 мм.

нейка Hamamatsu (1024 пикселя), которая работает в спектральном диапазоне от 200 до 1000 нм.

Рассмотрим оптические схемы генераторов гармоник для фемтосекундного регенеративного усилителя на хром-форстерите (Cr:F). Оптические схемы генераторов второй и третьей гармоник описаны в работе [3].

Генератор четвертой гармоники состоит из генератора второй гармоники и собственно генератора четвертой гармоники (рис. 2). Для генерации второй гармоники используется кристалл LBO (K_1) длиной 5 мм с просветляющим покрытием на длине волны 1240 нм, тип синхронизации – *оое*. Угол $\varphi = 0^\circ$, угол $\theta = 87^\circ$. Выбор кристалла LBO обусловлен наличием некритичного синхронизма на частоте излучения лазера, что позволяет использовать длинный кристалл без потерь в спектре и соответственно без существенного увеличения длительности импульса.

Излучение усилителя фокусировалось в кристалле K_1 длиннофокусной линзой J_1 с фокусным расстоянием 50 см (см. рис. 2). Нелинейный кристалл расположен перед фокальной точкой (не в фокусе). Коэффициент преобразования во вторую гармонику, равный 50%, достигался при интенсивности ~50 ГВт/см² для основной длины волны 1240 нм. Максимальная мощность второй гармоники составляла 220 мВт, что соответствовало энергии в импульсе 220 мкДж.

Можно получить и более высокий коэффициент преобразования, $\geq 60\%$, но из-за самофокусировки при этом сильно ухудшается поперечное распределение интенсивности второй гармоники. После кристалла излучение на основной частоте и частоте второй гармоники собиралось линзой J_2 с фокусным расстоянием 30 см. Светоделитель $C I_1$ отражал излучение второй гармоники и пропускал излучение основной гармоники, которое блокировалось защитным экраном. Излучение второй гармоники после делителей $C\mathcal{A}_1$ и $C\mathcal{A}_2$ при помощи линзы \mathcal{A}_3 с фокусным расстоянием 25 см фокусировалось в кристалле BBO (K_2) длиной 0.5 мм для генерации четвертой гармоники. Нелинейный кристалл K_2 размещен перед фокальной точкой. Тип синхронизма – *оое*, угол $\theta = 28^\circ$, угол $\varphi = 90^\circ$. После кристалла K_2 излучение второй и четвертой гармоник собиралось линзой \mathcal{A}_4 с фокусным расстоянием 20 см. Светоделитель $C\mathcal{A}_3$ отражал излучение четвертой гармоники и пропускал излучение второй гармоники, которое блокировалось защитным экраном. Поляризация излучения четвертой гармоники – горизонтальная, длина волны 310 нм.

Максимальная мощность четвертой гармоники составляет 40 мВт, что соответствует энергии в импульсе 40 мкДж.

ГЕНЕРАТОР СУПЕРКОНТИНУУМА С НАКАЧКОЙ НА ДЛИНЕ ВОЛНЫ 1240 нм

На рис. За и Зб представлены спектры суперконтинуума в кристаллах CaF_2 и Al_2O_3 соответственно с накачкой на длине волны 1240 нм.

Согласно рисунку, спектр суперконтинуума в антистоксовой области является существенно немонотонным. В видимой части спектра наблюдается пик, смещенный в синюю область спектра. Центральная длина волны антистоксового пика для кристалла Al₂O₃ составила 580 нм, а для кристалла CaF₂ – 600 нм. В экспериментах Saliminia [10] граница коротковолновой области спектра суперконтинуума составила 400 нм. В наших опытах для кристалла CaF₂ граница коротковолновой области спектра суперконтинуума была равна 324 нм. Это связано с тем, что ширина запрещенной зоны у кристалла CaF₂ (10.2 эВ [11]) больше, чем у плавленого кварца (7.5 эВ [11]), а антистоксово уширение спектра суперконтинуума пропорционально отношению ширины запрещенной зоны к энергии фотона *h*ω излучения [12].

Представленные на рис. 3 спектры суперконтинуума очень интересны в практическом применении. Спектр суперконтинуума для кристалла CaF_2 простирается от 324 до 1000 нм. Этот вариант очень удобен для работы в системе pumpprobe, так как дает возможность исследовать образцы в широкой области спектра.

В нашем случае генератор суперконтинуума с использованием в качестве накачки фемтосекундного усилителя на хром-форстерите (Cr:F) имеет преимущество по сравнению генератором суперконтинуума с накачкой фемтосекундным усилителем на титан-сапфире, который в настоящее время наиболее часто используется. Центральная длина волны титан-сапфирового лазера $\lambda = 800$ нм. При накачке титановым лазером кри-

Рис. 3. Спектры суперконтинуума, генерируемого в кристаллах CaF₂ (**a**) и Al₂O₃ (**б**) с накачкой на длине волны 1240 нм.

сталла Al_2O_3 получается спектр суперконтинуума от 400 до 1600 нм, но в области спектра 800 нм присутствует пик накачки шириной от 770 до 830 нм. Для исследования образцов в этой области спектра необходимо обрезать пик накачки специально подобранными фильтрами, что является непростой задачей. В случае использования хромфорстерита, как следует из рис. За, получают широкий непрерывный спектр суперконтинуума от 324 до 1000 нм без присутствия накачки, что позволяет использовать этот спектр без дополнительных фильтров.

ГЕНЕРАТОР СУПЕРКОНТИНУУМА С НАКАЧКОЙ НА ДЛИНЕ ВОЛНЫ 620 И 413 нм

Наиболее популярным кристаллом для генерации континуума, по-видимому, является кристалл Al_2O_3 (сапфир). Этот кристалл часто используется для генерации суперконтинуума с фемтосекундными лазерами на титан-сапфире, поскольку обладает высокой нелинейностью и высоким оптическим порогом пробоя. Это обеспечивает высокое качество затравочного сигнала, что способствует развитию современных фемтосекундных оптических параметрических усилителей [13, 14]. Недаром известная фирма Light Conversion в своем оптическом параметрическом усилителе TOPAS в генераторе континуума использует именно кристалл Al_2O_3 .

На рис. 4а, 4б представлены спектры суперконтинуума, полученные соответственно на кристаллах CaF_2 и Al_2O_3 с накачкой на длине волны 620 нм. Для кристалла CaF_2 получен наиболее широкий спектр суперконтинуума — от 282 до 1000 нм, для Al_2O_3 ширина спектра суперконтинуума охватывает диапазон длин волн от 380 до 1000 нм

На рис. 4в, 4г представлены спектры суперконтинуума, полученные соответственно на кристаллах CaF_2 и Al_2O_3 с накачкой на длине волны 413 нм. Ширина спектра суперконтинуума для кристалла CaF_2 охватывает диапазон длин волн 248–745 нм, а для кристалла $Al_2O_3 - 310-565$ нм.

С практической точки зрения, при применении генераторов суперконтинуума с накачками на длинах волн 620 и 413 нм в системах ритрргове необходимо использовать специально подобранные оптические фильтры, отрезающие спектральную область, где присутствует накачка.

ГЕНЕРАТОР СУПЕРКОНТИНУУМА С НАКАЧКОЙ НА ДЛИНЕ ВОЛНЫ 310 нм

Для фемтосекундной спектроскопии нестационарного поглощения в видимом спектральном диапазоне необходим источник белого света (континуума) для зондирования динамики изменения поглощения в широком спектральном диапазоне. Наибольший интерес представляет возможность генерации континуума ближнего у.ф.-диапазона, поскольку большое количество органических соединений имеет поглощение в этой области спектра.

Фториды щелочных металлов являются перспективными материалами для генерации суперконтинуума. Особое место среди них занимает кристалл LiF, обладающий наиболее широкими областью прозрачности и запрещенной зоной (11.8 эВ) [11]. Именно в этом материале при фемтосекундной филаментации наблюдается наиболее значительное уширение спектров суперконтинуума в у.ф.-диапазон. Особенностью кристалла LiF является то, что под действием мощного лазерного излучения в нем образуются центры окраски, вызывающие изменение показателя преломления в области от у.ф.- до среднего и.к.-диапазона и появление полос поглощения.

В работе [15] было исследовано влияние центров окраски на спектральные характеристики КРЮКОВ и др.

Рис. 4. Спектры суперконтинуума, генерируемого в кристаллах CaF_2 (**a**, **b**) и Al_2O_3 (**б**, **r**) с накачкой на длине волны 620 нм (**a**, **б**) и 413 нм (**b**, **г**).

суперконтинуума. Экспериментально показано, что при длительном облучении кристалла LiF и возникновении центров окраски появляется полоса поглощения с центром на длине волны 250 нм, что уменьшает ширину спектра суперконтинуума.

Кристаллы LiF и CaF₂ являются рекордсменами по генерации суперконтинуума в у.ф.-области

Рис. 5. Спектр суперконтинуума, генерируемый в кристалле CaF_2 с накачкой на длине волны 310 нм.

спектра, с ними получены самые короткие длины волн.

В работе [15] проводилось сравнение ширины спектра суперконтинуума, генерируемого в кристаллах LiF и CaF₂ с накачкой на длине волны 775 нм. В у.ф.-области спектра в кристалле CaF₂ наименьшая длина волны суперконтинуума составила 287 нм, а в кристалле LiF – 270 нм, что на 17 нм меньше, чем в CaF₂.

Нами была исследована генерация суперконтинуума в кристалле CaF_2 с накачкой на длине волны 310 нм, получен спектр суперконтинуума от 225 до 480 нм (рис. 5). Наименьшая длина волны спектра континуума составила 225 нм.

На рис. 6 представлены объединенные экспериментальные результаты уширения спектров суперконтинуума для кристаллов CaF_2 и Al_2O_3 . Наибольшая величина антистоксова уширения достигнута при длине волны накачки 1240 нм с кристаллом CaF_2 . При этом минимальная длина волны спектра суперконтинуума составила 324 нм. Самая короткая длина волны спектра суперконтинуума 225 нм была достигнута при длине волны накачки 310 нм.

Рис. 6. Спектры суперконтинуума.

ЗАКЛЮЧЕНИЕ

Создан генератор суперконтинуума с накачкой импульсами фемтосекундного лазера на хром-форстерите. Проведено исследование генерации суперконтинуума в различных конденсированных средах для четырех длин волн накачки: 310, 413, 620 и 1240 нм – с целью применения полученных данных в системе pump-probe. Перспективной является генерация суперконтинуума в кристалле CaF₂ с накачкой на длине волны 1240 нм. Ширина генерируемого спектра суперконтинуума составила от 324 до 1000 нм (без присутствия накачки), что позволяет исследовать образцы в широком диапазоне длин волн. Измерения в у.ф.-области спектра показали, что с усилителем на хром-форстерите возможна генерация суперконтинуума в коротковолновой части у.ф.-области спектра. В кристалле CaF₂ получена наименьшая длина волны 225 нм при накачке импульсами на длине волны 310 нм.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Alfano R., Shapiro L.* // Phys. Rev. Lett. 1970. V. 24. P. 584. https://doi.org/10.1103/PhysRevLett.24.584
- Fork R., Shank C., Hirlimann C., Yen R., Tomlinson W. // Opt. Lett. 1983. V. 8. P. 1. https://doi.org/10.1364/OL.8.000001
- 3. Крюков И.В., Петров Н.Х., Иванов А.А., Алфимов М.В. // ПТЭ. 2019. № 4. С. 95. https://doi.org/10.1134/S0032816219040104
- Kovalenko S.A., Ernsting N.P., Ruthmann J. // Chem. Phys. Lett. 1996. V. 258. P. 445. https://doi.org/10.1016/0009-2614(96)00647-1
- Cerullo G., De Silvestria S. // Rev. of Sci. Inst. 2003. V. 74. P. 1. https://doi.org/10.1063/1.1523642
- 6. *Bradler M., Riedle E.* // Opt. Lett. 2014. V. 39. P. 2588. https://doi.org/10.1364/OL.39.002588
- Marburger J.H. // Prog. Quantum Electr. 1975. V. 4. P. 35. https://doi.org/10.1016/0079-6727(75)90003-8
- Dubietis A., Tamošauskas G., Šuminas R., Jukna V., Couairon A. // Lithuanian Jour. of Phys. 2017. V. 57. P. 113. https://doi.org/10.3952/physics.v57i3.3541
- 9. *Кандидов В.П., Шленов С.А., Косарева О.Г. //* Квантовая электрон. 2009. Т. 39. № 3. С. 205.
- Saliminia A., Chin S.L., Vallée R. // Opt. Exp. 2005. V. 13. P. 5731.
- Brodeur A., Chin S.L. // J. Opt. Soc. Am. B. 1999. V. 16. P. 637. https://doi.org/10.1364/JOSAB.16.000637
- 12. Nagura C., Suda A., Kawano H., Obara M., Midorikawa K. // Appl. Opt. 2002. V. 41. P. 3735. https://doi.org/10.1364/AO.41.003735
- Brida D., Manzoni C., Cirmi G., Marangoni M., Bonora S., Villoresi P., De Silvestri S., Cerullo G. // J. Opt. 2010. V. 12. P. 1. https://doi.org/10.1364/OL.33.000741
- 14. Manzoni C., Cerullo G. // J. Opt. 2016. V. 18. P. 1. https://doi.org/10.1088/2040-8978/18/10/103501
- Kohl-Landgraf J., Nimsch J., Wachtveitl J. // Opt. Express. 2013. V. 21. P. 17060. https://doi.org/10.1364/OE.21.017060