- ФИЗИЧЕСКИЕ ПРИБОРЫ ДЛЯ ЭКОЛОГИИ, ____ МЕДИЦИНЫ, БИОЛОГИИ

УДК 524.1-352

НАПРАВЛЕННЫЙ ДЕТЕКТОР НЕЙТРОНОВ УМЕРЕННЫХ ЭНЕРГИЙ

© 2021 г. Е. А. Михалко^{*a*,*}, Е. А. Маурчев^{*a*}, Ю. В. Балабин^{*a*}, А. В. Германенко^{*a*}

^а Полярный геофизический институт Россия, 184209, Апатиты, Академгородок, 26а *e-mail: mikhalko@pgia.ru Поступила в редакцию 17.11.2020 г. После доработки 03.12.2020 г. Принята к публикации 07.12.2020 г.

Для совместного использования со стандартными детекторами на станции космических лучей г. Апатиты разработан и установлен нейтронный спектрометр с тремя каналами по энергиям и углом приема частиц, составляющим 15°. Такая конфигурация устройства позволяет изучать степень анизотропии потока частиц. Характеристики детектора (функция отклика и угол приема частиц), а также геометрические размеры были получены численным моделированием при помощи пакета программ GEANT4. В ходе работы устройства была собрана база данных наблюдений и получены предварительные результаты.

DOI: 10.31857/S0032816221030228

ВВЕДЕНИЕ

В результате взаимодействия космических лучей с атомами воздуха образуется большое количество различных частиц [1–3]. Если первичная частица имеет достаточно высокую энергию ($E > 1 \Gamma$ эВ), то она производит целый каскад вторичных частиц, которые в процессе распространения в атмосфере испытывают неупругие соударения с ядрами атомов воздуха, в результате чего рождаются каскадные и испарительные нейтроны. Последние рассеиваются и поглощаются атмосферой и постепенно теряют энергию до тепловых значений (доли электронвольт).

Созданная в Полярном геофизическом институте комплексная система мониторинга позволяет регистрировать такие нейтроны в широком диапазоне энергий. Так, стандартный нейтронный монитор типа CHM-18-NM-64 предназначен для регистрации нейтронов с энергиями E >> 50 МэВ, а бессвинцовая секция нейтронного монитора имеет максимальную эффективность в диапазоне от тепловых и до умеренных энергий $(0.025 \le E \le 106 \Rightarrow B)$. Для исследования анизотропии потока нейтронов умеренных энергий был разработан направленный детектор нейтронов (н.д.н.). 20 апреля 2015 г. на станции космических лучей в дополнение к имеющемуся оборудованию был установлен и введен в эксплуатацию н.д.н. Проектирование детектора, а также расчет его чувствительности и энергетического диапазона осуществлялись с помощью численного моделирования с использованием программного па-

Рис. 1. Конфигурация н.д.н., полученная в результате моделирования при помощи пакета программ GEANT4. *1* – слой парафина; *2* – поглотитель, служащий защитным барьером от попадания тепловых нейтронов, движущихся со стороны парафинового замедлителя; *3* – верхний счетчик; *4* – треки влетающих нейтронов.

Таблица 1	. (Описание	материалов	, исполы	зуемых	при	создании	геометрии	модели	н.д.	.н
-----------	-----	----------	------------	----------	--------	-----	----------	-----------	--------	------	----

Материал (часть детектора, выполненная из этого материала)	Состав материала (процентное соотношение массы элемента)	Плотность, кг/м ³
Полиэтилен (промежуточные замедляющие пластины)	$(C_2H_4)_n$	950
Парафин (вещество основного замедлителя)	$C_{18}H_{38}$	900
Бура (поглотитель тепловых нейтронов)	Na ₂ B ₄ O ₇ · 10H ₂ O В (18.5% ¹⁰ В, 81.5% ¹¹ В (Потапов, 1961))	1700
Сталь (оболочка счетчиков)	Fe (98%), C (2%)	7850
Изотоп гелия (активное вещество счетчиков)	³ He (100%)	0.134

кета GEANT4 [4].

ПРОЕКТИРОВАНИЕ И МОДЕЛИРОВАНИЕ УСТАНОВКИ

Общая конструкция прибора определялась основным его назначением — обеспечить направленный прием детектируемых частиц. При моделировании н.д.н. были определены его окончательные конструктивные параметры (рис. 1).

Геометрия задавалась в виде параллелепипеда из парафина, в центре верхней поверхности которого выполнена глубокая полость. Поверхность полости покрыта слоем декагидрата тетрабората натрия (бура) толщиной 2.5—3 см. В полости расположены чувствительные объемы, имитирующие работу счетчиков СНМ-18, между которыми помещены полиэтиленовые пластины различной толщины (2, 4 и 8 см). Список используемых при моделировании материалов представлен в табл. 1. Регистрация нейтронов происходила по реакции [5, 6]:

$$n + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 0.764 \text{ M} \Rightarrow B$$
 (1)

при образовании в счетчике ядра трития и протона.

Весь процесс моделирования разделен на 2 части [4], в первой определялась эффективность регистрации н.д.н. в зависимости от количества замедлителя, во второй – тот же параметр в зависимости от угла падения частиц. В первом случае эксперимент проводился в области приемного окна с моноэнергетическими перпендикулярными пучками нейтронов по 1000 частиц, энергия которых распределена в диапазоне 10^1-10^9 эВ (шаг изменяется логарифмически). В зависимости от толщины слоя замедлителя над верхним счетчиком оценивалось общее число событий, зарегистрированных при срабатывании счетчиков для каждого пучка. Таким образом набиралась

Рис. 2. Эффективность регистрации нейтронов: **a** – в зависимости от энергии при различной толщине (цифры у кривых) промежуточного замедлителя при моделировании облучения н.д.н. потоком перпендикулярно падающих частиц; **б** – в зависимости от угла падения частиц (цифры у кривых) при облучении детектора потоком наклонно падающих частиц при дополнительном условии отсутствия верхней замедляющей пластины, угол наклона 0° – нейтроны падают в приемное окошко, 15° и 45° – нейтроны проходят через полиэтиленовый замедлитель и поглотитель из буры.

Рис. 3. Профиль внутренней конструкции н.д.н. 1 – парафин, используемый в качестве замедлителя нейтронов до тепловых энергий; 2 – борсодержащий слой, обеспечивающий защиту от тепловых нейтронов, приходящих из направлений, отличных от диаграммы направленности н.д.н.; 3 – детектирующие элементы.

гистограмма (рис. 2а), представляющая собой эффективность регистрации. Во втором случае движение модельного генератора частиц было организовано так, что его траектория представляла собой отрезок дуги окружности от 0° до 45° относительно центральной точки н.д.н. в плоскости, параллельной торцевой части счетчиков. Таким образом получена эффективность регистрации н.д.н в зависимости от угла прихода частицы, представленная на рис. 2б.

ОПИСАНИЕ УСТАНОВКИ

По результатам моделирования были определены геометрические параметры устройства ($Д \times Ш \times B = 60 \times 36 \times 32$ см) и его конструкция, фронтальная проекция которой представлена на рис. 3. В основе работы н.д.н. лежит свойство детектирующего оборудования преобразовывать поток зарегистрированных нейтронов в электри-

ческие импульсы. В качестве элементов, чувствительных к исследуемым частицам, были использованы гелиевые счетчики СНМ-18 (3) в стальной оболочке, основные технические характеристики которых представлены в табл. 2. Выбор в пользу СНМ-18 был определен, исходя из низкого значения рабочего напряжения питания, которое легко стабилизировать. Счетчики 3 установлены, как показано на рис. 3, в горизонтальном положении друг над другом в один ряд и помещены в короб 1 из парафина толщиной 15 см, который выступает в роли замедлителя нейтронов с энергиями E < 1 МэВ.

В качестве поглотителя тепловых нейтронов, приходящих из направлений, отличных от диаграммы направленности н.д.н., использовалась парафиновая вставка 2 с добавлением тетрабората натрия [7]. Вставка толшиной 2.5–3 см отделяет ряд детекторов от основного слоя замедлителя. Если толщины замедлителя достаточно, чтобы попавший в него нейтрон потерял энергию до тепловых значений, то такой нейтрон эффективно (до 95%) будет захвачен ядром бора и в счетчик не попадет. Если энергия нейтрона столь высока, что он проходит через замедлитель и поглотитель, сохранив часть своей энергии, то такой нейтрон не зарегистрируется в силу нечувствительности счетчиков к нетепловым нейтронам. Таким образом, счетчики будут регистрировать только нейтроны, попавшие в детектор через приемное окно, что обеспечивает направленность приема нейтронного потока. Дополнительно все счетчики отделены друг от друга парафиновыми пластинками толщиной 5 см. Это обеспечивает разделение по энергиям, что, в свою очередь, позволяет использовать н.д.н. и в качестве простого спектрометра. Верхний счетчик имеет наибольшую эффективность регистрации для нейтронов с тепловыми энергиями (до 1 эВ), средний чувствителен к частицам с энергиями в диапазоне 0.025 эB-100 кэB, а нижний - с энергиями от 100 кэB ло ~2 МэВ.

На рис. 4 представлена блок-схема н.д.н., показывающая взаимодействие между составными компонентами: питанием, устройством детектирования и системой регистрации. На детекторы подается постоянное напряжение порядка 1400 В. Полученные гелиевым счетчиком импульсы передаются на соответствующий ему усилитель-дис-

Таблица 2. Основные технические характеристики ³Не-детекторов СНМ-18, используемых в составе конструкции н.д.н., предназначенного для исследования анизотропии потока тепловых нейтронов на уровне Земли

Наименование	Диаметр, мм	Длина, мм	Диапазон рабочих температур, °С	Рабочее напряжение, В	Эффективность регистрации, %
CHM 18	32	320	от —50 до +150	1375	70

Рис. 4. Блок-схема направленного детектора нейтронов умеренных энергий.

криминатор (рис. 5), состоящий из трех каскадов на основе операционных усилителей AD825 (AD1- AD_{2}). Эти усилители являются належными и недорогими, и с учетом быстродействия и универсальности они способны поддерживать стабильное усиление при различных нагрузках. Каждый каскад имеет рабочее усиление, равное $K_v = 13$, соответственно суммарный коэффициент составляет порядка 2000 при двухполярном питании ±12 В. Первый и третий каскады представляют собой простые усилители, а второй каскад – инвертирующий усилитель. Сигнал после усиления подается на компаратор LM211 (AD_4), устраняющий лишние шумы ниже 1 В. Параллельно этому сигнал подается на аналоговый выход для его последующей калибровки. Последняя осуществляется за счет изменения общего К_и для каждого усилителя-дискриминатора индивидуально. Коэффициент усиления устанавливается в процессе регулировки делителя напряжения, размещенного перед выходным каскадом. Формирователь импульсов собран на микросхеме K561ЛE5 (DD_1) и настроен на формирование импульсов длительностью 10 мкс (±5%).

ИЗМЕРЕНИЕ АНИЗОТРОПИИ КОСМИЧЕСКИХ ЛУЧЕЙ

Наличие у н.д.н. довольно узкой диаграммы направленности можно проверить измерениями потоков нейтронов при различных углах к горизонту. В течение месяца н.д.н. работал в трех различных позициях по отношению к вертикали: в первую неделю диаграмма была направлена вертикально вверх, во вторую — под углом 45° относительно горизонта, в третью — находилась в горизонтальном положении.

Поток нейтронов у поверхности Земли определяется не только интенсивностью космических лучей, но и локальными условиями [8]. Поскольку имеется только один прибор и проводятся измерения потоков под различными углами в разные моменты времени. необходимо вначале выполнить коррекцию изменения потоков нейтронов в период проведения эксперимента. Данные о вариациях космических лучей были взяты из работы [9]. Однако стандартный нейтронный монитор специально разработан так. чтобы локальные условия (влажность почвы, осадки) оказывали на него малое воздействие. Так как поток тепловых нейтронов у Земли является изотропным, то вариации счета в других каналах н.д.н. определялись по отношению к первому (внешнему) счетчику, для которого изменение положения н.д.н. не влияет на счет. Это обеспечивает измерение потоков энергичных нейтронов по отношению к фоновому потоку тепловых нейтронов. Поскольку полученные величины дают лишь относительные вариации, то отношение второго или третьего каналов к первому в вертикальном положении было принято в качестве базового. Это позволило нагляднее представить наличие анизотропии.

На рис. 6 во втором (угол 45°) и третьем (угол 90°) положениях н.д.н. наблюдается увеличение счета относительно первого счетчика (относительно изотропного потока тепловых нейтронов). При наклонном положении н.д.н. наблюдается увеличение потока частиц с энергией до 100 кэВ на 7.5%, а в горизонтальном — темп счета снова уменьшается. В третьем канале для нейтронов с энергиями от 100 кэВ до ~2 МэВ наблюдается возрастание потока регистрируемых частиц на ~14%. При увеличении угла наклона до 90° поток нейтронов возрастает незначительно.

Рис. 5. Принципиальная схема используемого в работе трехкаскадного усилителя для н.д.н. $AD_1 - AD_3$ – операционные усилители AD825; AD_4 – компаратор LM211; DD_1 – микросхема K561ЛЕ5; VT_1 – транзистор KT3201Б; D_1 – стабилитрон Д818Е.

Предлагается следующее объяснение аномальному пику во втором канале. Из-за невозможности размещения на улице и для соблюдения постоянного температурного режима н.д.н. был установлен на подоконнике здания станции с очень толстыми стенами (>60 см). При вертикальном положении прибора часть его поля зрения оказалась закрытой верхней частью стены. В этом случае увеличение потока нейтронов умеренных энергий (до 100 кэВ) в наклонном под углом 45° положении н.д.н. может быть связано с тем фактом, что в этом направлении диаграмма приема прибора полностью открыта, тогда как в горизонтальном направлении поток нейтронов умеренных энергий закономерно падает. Увеличение потока нейтронов, по данным третьего канала (энергии от 100 кэВ до ~2 МэВ), в наклонном и горизонтальном положениях вполне объяснимо. Указанный энергетический диапазон приходится на пик "испарительных" нейтронов, которые испускаются ядрами атомов, возбужденных в столкновениях с первичной частицей космических лучей, в произвольном направлении. С попаданием в поле зрения различных плотных объектов поток испарительных нейтронов возрастает [10].

выводы

Для совместного использования со стандартными детекторами на станции космических лучей в г. Апатиты был разработан и создан направленный детектор нейтронов, конфигурация и параметры которого определены при помощи моделирования. Регистрация потока частиц ведется по трем энергетическим каналам, что позволяет прибору работать в качестве спектрометра. На протяжении нескольких лет осуществляется непрерывный мониторинг с помощью н.д.н. В процессе эксплуатации прибор показал надежность и стабильность рабочих параметров. Данные, полученные в ходе измерения анизотропии потоков

Рис. 6. График изменения темпа счета в различных направлениях: \mathbf{a} — от второго счетчика к первому, $\mathbf{\delta}$ — от третьего счетчика к первому.

нейтронов у Земли, не противоречат опубликованным в других источниках информации расчетам и результатам моделирования. Поскольку точных данных об анизотропии потоков нейтронов у Земли и ее зависимости от энергии нейтронов на данный момент нет, использование нескольких одновременно работающих н.д.н., направленных под разными углами, могло бы внести ясность в этот вопрос.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке гранта Российского научного фонда 18-77-10018.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Maurchev E.A., Balabin Yu.V.* // Solar-Terrestrial Physics. 2016. T. 2. № 4. C. 3. https://doi.org/10.12737/24269
- 2. Широков Ю.М., Юдин Н.П. Ядерная физика. (2-е изд.) М.: Наука, 1980.
- Балабин Ю.В., Гвоздевский Б.Б., Германенко А.В., Михалко Е.А., Маурчев Е.А., Шур Л.И. // ПТЭ. 2020. № 6. С. 71. https://doi.org/10.31857/S0032816220060038
- Маурчев Е.А., Балабин Ю.В., Германенко А.В., Михалко Е.А., Гвоздевский Б.Б. // Солнечно-земная физика. 2019. Т. 5. № 3. С. 81. https://doi.org/10.12737/szf-53201908
- Векслер В., Грошев Л., Исаев Б. Ионизационные методы исследования излучений. М.: Гос. изд-во технико-теоретической лит-ры, 1949.
- 6. *Калашникова В.И., Козодаев М.С.* Детекторы элементарных частиц. М.: Наука, 1966.
- Рисованый В.Д., Захаров А.В., Клочков Е.П., Гусева Т.М. Бор в ядерной технике. 2-е, перераб. и доп. Димитровград: ОАО "ГНЦ НИИАР", 2011.
- Дорман Л.И. Экспериментальные и теоретические основы астрофизики космических лучей. М.: Наука, 1975
- 9. https://cosmicray.pgia.ru/nmonitors.html
- Pioch C., Mares V., Vashenyuk E.V., Pioch C., Mares V., Vashenyuk E.V., Balabin Yu.V., Rühm W. // Nucl. Instrum. and Methods in Phys. Res. 2011. V. 626–627. P. 51.

https://doi.org/10.1016/j.nima.2010.10.030