____ ПРИБОРЫ, ИЗГОТОВЛЕННЫЕ <u>-</u> В ЛАБОРАТОРИЯХ <u>-</u>

УДК 533.66.063

ДИСТАНЦИОННЫЙ АНАЛИЗАТОР КРИОГЕННЫХ ПАРОВ И КАПЕЛЬ В ВЫБРОСАХ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА В АТМОСФЕРУ

© 2021 г. А. В. Загнитько, Н. П. Зарецкий, В. И. Алексеев, С. М. Вельмакин, И. Д. Мацуков, С. Е. Сальников, В. В. Пименов, Д. Ю. Федин

Поступила в редакцию 22.10.2020 г. После доработки 15.02.2021 г. Принята к публикации 05.03.2021 г.

DOI: 10.31857/S0032816221040285

Анализатор дистанционного мониторинга криогенных капель и паров в атмосферных выбросах и проливах на грунт или воду сжиженного природного газа (с.п.г.) содержит емкостный детектор I интенсивных криогенных осадков, блок их аспирации II с инфракрасным газоанализатором и многоканальный лазерный анализатор III газокапельных потоков (рис. 1). Создана сеть анализаторов для контроля атмосферы и анализа взрывоопасных истечений с.п.г. при объемной концентрации паров $C \approx 5-15\%$ об. на объектах топливно-энергетического комплекса [1–4].

Емкостный детектор I [3] содержит теплоизолированный накопитель осадков 3, на дне которого горизонтально установлен плоский электрический конденсатор, состоящий из верхнего сетчатого 1 и нижнего сплошного 2 из фольгированного стеклотекстолита электродов, подключенных к электронному блоку 5 для питания и передачи цифрового сигнала (см. рис. 1). Размер электродов 1 и 2 варьируется от 0.2×0.2 до 0.15×0.5 м.

Интенсивность осадков с.п.г. определяется путем их сбора в накопитель 3 и измерения электрической емкости конденсатора в зависимости от объема собранного осадка 4 с быстродействием $\tau < 0.2$ с. При измерении количества осадков V конденсатор калибруется для установления зависимости его емкости $C_0 = 10-500$ пФ от V при фиксированном межэлектродном расстоянии h = 5-10 мм.

Анализ осадков с.п.г. осуществляют в пленочном режиме кипения жидкости, что позволяет уменьшить ошибку измерения [2]. Конденсатор включен в цепь частотозадающего генератора, и его измеряемая емкость является частотозадающим элементом [3].

Аспирационный блок капель и паров II [3, 4] содержит НЕРА-фильтр 6 с измерителем его газодинамического сопротивления, инфракрасный газовый сенсор 7 типа Мірех с цилиндрической электропечью для нагревания анализируемого газа с расходом $Q_1 \le 10^{-4} \, \text{м}^3$ /с при температуре атмосферы ниже 260 К, а также электронный блок 9 для питания и передачи данных на удаленный сервер 11 [4]. В сенсор исследуемая проба подается через окна в его корпусе путем создания вентилятором 8 потока конвективной диффузии, скорость которой существенно превышает скорость переноса газа за счет молекулярной диффузии. Смесь проходит через фильтр 6, поэтому дисперсные примеси с массовой концентрацией до 0.1 кг/м³ не влияют на характеристики инфракрасного газоанализатора. Аспирационный блок фиксируется креплением 10 на блоке I или III. Температура снаружи и внутри аспирационного блока измеряется термопарами хромель-алюмель.

Анализатор III укреплен на швеллере или раме 12 с прямоугольным окном для газокапельного потока и содержит набор параллельных полупроводниковых лазеров 13 с мощностью излучения 5 мВт и длиной волны $\lambda = 0.68$ мкм, набор параллельных фотодиодов 14 для регистрации лазерного излучения, каналы 16 оптического анализа капель длиной L = 0.15-0.3 м, электронный блок 15 для управления лазерами и синхронного детектирования сигналов фотодиодов, их оцифровывания с передачей в сервер 11.

Лазерный анализатор III [3] предназначен для измерения оптической плотности $D = \lg(I_0/I)$ газокапельных потоков, скорости U и поверхностной концентрации капель $S = \pi \langle d^2 \rangle n$. Здесь I_0 и I – интенсивность лазерного излучения без и в присутствии капель в анализируемом объеме газа, $\langle d^2 \rangle^{0.5}$ – среднеквадратичный диаметр капель со счетной концентрацией n [1]. Согласно теории рассеивания плоской электромагнитной волны, при движении капельного выброса через лазерный анализатор изменение потока ее энергии обусловлено дифракцией на контурах капель и

Рис. 1. Принципиальная схема (а) и фотографии (б) двух типов анализаторов с.п.г.: I – емкостный анализатор осадков, II – аспирационный блок капель и паров, III – лазерный анализатор газокапельных потоков; 1 и 2 – верхний сетчатый и нижний сплошной электроды конденсатора, 3 – накопитель осадков, 4 – осадок с.п.г., 5 – электронный блок конденсатора, 3 – накопитель осадков, 4 – осадок с.п.г., 5 – электронный блок конденсатора, 3 – накопитель осадков, 4 – осадок с.п.г., 5 – электронный блок конденсатора, 6 – НЕРА-фильтр, 7 – инфракрасный газоанализатор с электропечью, 8 – побудитель расхода Q_1 через блок II, 9 – электронный блок для блока II, 10 – крепление блока II, 11 – сервер сбора данных, удаленный от облака с.п.г. на расстояние до 1200 м, 12 – крепление анализатора III, 13 и 14 – наборы из четырех лазеров и фотодиодов соответственно, 15 – электронный блок их управления, 16 – зона оптического анализа капель; V – количество осадков; $T_1 \approx 250$ и $T_2 \approx 170$ K – температура газокапельного потока над электродом 1 через время $t_1 = 2$ с и $t_2 = 9$ с соответственно с момента выпадения с.п.г. с $dV/dt \approx 2$ мм/с (снимки сделаны видеокамерой, 600 кадров/с).

рассеиванием за счет отражения и поглощения [1, 3]. По закону Ламберта—Бугера—Бера ослабление излучения в дисперсных средах можно рассчитать как $I = I_0 \exp(-KLn)$, где K — объемный коэффициент ослабления на оптической длине L, n счетная концентрация капель. Данный закон справедлив при однократном рассеянии света каплями для достаточно большого числа рассеивателей при расстоянии между ними более (4—5)dв приближении, что вклад каждой группы капель диаметром d в плотность D аддитивен [1].

Созданы два варианта конструкции анализатора выбросов и проливов с.п.г. [3, 4]. В первом варианте блок III установлен горизонтально, сбоку над накопителем *3*, число ү оптических каналов варьируется от 1 до 12 в зависимости от требований к расходу анализируемого газокапельного потока: $Q \le (2 \text{ м}^3/\text{с})\gamma$, где $\gamma = 1, 2, ..., 12$, блок II расположен вертикально, сбоку от накопителя *3* (рис. 1а). Во втором варианте конструкции анализатора (см. рис. 1б) блок III с числом каналов $\gamma = 4$ и блок II расположены горизонтально над электрическим конденсатором. При этом блок II закреплен на блоке III. Это позволяет анализировать поверхностную концентрацию *S* и плотность *D* криогенных осадков, а также концентрацию их паров.

Созданная сеть анализаторов, включая систему регистрации и передачи показаний, обслуживающую сеть анализаторов капель и паров с.п.г., предусматривает возможность опроса и обработки данных более 50-ти одновременно работающих блоков с целью измерения распределений концентрации и температуры углеводородных смесей с воздухом объемом от 10³ до 10⁷ м³. Местонахождение анализаторов определяется системой ГЛОНАСС. Собранная информация передается по радиоканалу или витой паре к удаленному на расстояние ≤1200 м серверу *11* с сетевым интерфейсом 100 Мбит Ethernet.

Анализатор устанавливается стационарно или на беспилотном летальном аппарате. В последнем случае время работы анализатора не превышает 100 с, так как летательный аппарат не может длительно находиться в облаке при температуре <250 К. Данные с аэромобильного анализатора с.п.г. записываются на карту памяти и по радиоканалу передаются на сервер 11.

Сеть диагностических блоков I-III была развернута для проведения крупномасштабных экспериментов в полевых условиях по распылению и проливу с.п.г. Турбулентные выбросы создавались импульсным пневматическим распылением с.п.г. массой до 10⁴ кг из 18-ти сопел с образованием высокоскоростных струй длиной до 50-60 м в атмосфере при числах Рейнольдса $\text{Re} = Ud\rho/\eta \approx$ $\approx 10 - 10^3$, аэродинамическим дроблением струй и капель при числах Вебера We = $\rho (U - U_0)^2 d/\sigma \approx 5 -$ 10³ [1, 2] и парообразованием кипящих капель с формированием облаков из смеси воздуха, аэрозолей воды, криогенных капель и паров с.п.г. объемом до $10^5 - 10^7$ м³. Здесь р и η – плотность и динамическая вязкость воздуха соответственно; U_0 – скорость воздуха; $\sigma = 15.5 \cdot 10^{-3}$ Н/м – коэффициент поверхностного натяжения с.п.г. при температуре 110 К; $d \approx 0.0001 - 0.03$ м – диаметр капель и жидких фрагментов с.п.г.; $U \le 60 \text{ м/c}$ скорость капель. При больших числах Вебера криогенные струи неустойчивы и распадаются. Теплообмен между ними и атмосферой определяется температурой и скоростью ветра, а также размером облака с.п.г. [1-4].

В экспериментах по разливу с.п.г. массой до 10^4 кг за 2–3 с на бетон или воду с площадью бассейнов ~200 м² скорость испарения кипящей жидкости определялась режимом теплообмена между жидкостью и подстилающей поверхностью, а также между с.п.г. и атмосферным воздухом. Теплообмен между кипящей жидкостью и грунтом/водой зависел от температурного напора между средами [2].

На рис. 2 приведены одновременно измеренные в облаке объемом до $5 \cdot 10^5$ м³ значения концентрации *С* паров и оптической плотности *D* в зависимости от времени распыления с регазификацией с.п.г. массой 10^4 кг в течение 25 с. Измерения проводились в центре облака на высоте 1.5 м при начальной температуре воздуха 280 К и скорости ветра менее 6–8 м/с. Анализ данных на рис. 2 показал, что образуются и существуют длительное время пожаровзрывоопасные смеси воздуха и паров с.п.г. с концентрацией *С* ≈ 5–15% об. Это

Рис. 2. Зависимости концентрации *C* паров (*1*) и оптической плотности *D* облака (*2*) от времени *t* распыления с.п.г. в атмосферу. Время измерения синхронизировано с временем выброса с.п.г. в виде 18-ти струй с образованием облака углеводородов в атмосфере диаметром более 100 м и объемом до $5 \cdot 10^5$ м³. Состав с.п.г.: 94.4 метан, 3.96 этан, 1.24 пропан, 0.3 бутан и 0.1% об. другие примеси. Сопла для распыления с.п.г. расположены эквидистантно по кругу диаметром 90 м.

согласуется с данными остальных 15-ти блоков аспирации II, расположенных по объему облака на высоте от 1.5 до 40 м. В процессе испарения и возрастания концентрации паров с.п.г. температура воздуха в центре облака снижалась до 155–160 К, однако внутри инфракрасных газоанализаторов оставалась на уровне $\approx 275-280$ К. В облаке наблюдалась конденсация паров воды и образование капель и частиц льда в виде белого тумана с плотностью D < 1.5 при оптической длине каналов анализатора L = 0.27 м и с поверхностной концентрацией капель $S < 50 \text{ м}^2/\text{м}^3$. Начальная относительная влажность атмосферного воздуха составляла 35–40% при 280 К.

Установлено, что концентрация и температура углеводородно-воздушных смесей флуктуируют во времени и распределены неоднородно как по высоте (до 30-40 м), так и по длине (до 100-150 м) облаков. Получены данные о кинетике изменения температуры в интервале 280-150 К и концентрации паров С в диапазоне 0.5 – 30% об. внутри облаков объемом до 10⁶ м³ с передачей данных с интервалом 1 мс на сервер 11. В процессе измерения осадков блоками I, распределенными радиально на плошади суглинистого грунта, наблюдалось неоднородное и флуктуирующее во времени и по площади облака выпадение криогенных осадков. С понижением температуры и увеличением концентрации паров с.п.г. интенсивность осадков возрастала. При этом их суммарная масса не превышала 6-8% от массы выброса с.п.г. Измеренная на расстоянии 1200 м диэлектрическая

159

проницаемость неполярного с.п.г. составляла $\varepsilon \approx 1.7$, что согласуется с литературными данными [1, 2].

Основные технические характеристики. Блоки I–III устойчивы к воздействию магнитного поля с напряженностью до 200 А/м и промышленной частотой от 50 до 1000 Гц. Их конструкция выдерживает избыточное давление во фронте ударной волны до 10⁵ Па и напор воздуха до 400 м/с. Диапазоны измерения оптической плотности $D \approx 0.03-3.5$ и удельной поверхности капель $S = 9.2D/L \approx 1-300 \text{ м}^2/\text{м}^3$ при их объемной концентрации менее 0.1% об. [3]; интервал анализируемой температуры T = 100-330 К с быстродействием $\tau \le 0.15$ с; детектируемая интенсивность осадков dV/dt = 2-30 мм/с с ошибкой менее 10% при $T \ge 100$ K [2].

Быстродействие анализатора III составляет 5 мкс и почти в 10⁵ раз превосходит быстродействие блока II. Это позволяет осуществлять экспрессдиагностику распада выбросов с.п.г. в атмосферу за счет кавитации и аэродинамического дробления [1, 2]. Отметим, что быстрое и существенное изменение оптической плотности атмосферы на объектах топливно-энергетического комплекса может быть обусловлено аварийным выбросом с.п.г.

Таким образом, созданные анализаторы техногенных выбросов с.п.г. для объектов топливноэнергетического комплекса обеспечивают возможность быстрого измерения флуктуирующих значений *C*, *D*, *S* и *T*, а также анализа криогенных осадков с $T \ge 100$ К. Проведены их испытания при моделировании крупномасштабных аварий на предприятиях топливно-энергетического комплекса с образованием истечений с.п.г. в атмосферу объемом до $10^5 - 10^7$ м³. Исследована кинетика становления и рассеивания с.п.г. Установлено, что при авариях, связанных с крупномасштабными импульсными выбросами и проливами с.п.г., внутри облаков образуются локальные пожаровзрывоопасные области углеводородно-воздушной смеси объемом от 10³ м³. Длительность их существования зависит от условий распыления или пролива с.п.г., а также от состояния атмосферы и грунта/воды.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена по теме "Разработка физикотехнических основ методов измерения параметров аэрозольных и парогазовых облаков, возникающих при крупномасштабных авариях на объектах ТЭК и создание экспериментальных образцов систем диагностики аэрозольных облаков согласно приказу 2100 от 16.09.2019".

СПИСОК ЛИТЕРАТУРЫ

- 1. Зуев В.Е., Кабанов М.В. Оптика атмосферного аэрозоля. Л.: Гидрометеоиздат, 1987.
- Горев В.А., Овсянников Д.Л. // Пожаровзрывобезопасность. Процессы горения, детонации и взрыва. 2019. Т. 28. № 1. С. 14. doi. С.14. https://doi.org/10.18322/PVB.28.01
- 3. Алексеев В.И., Загнитько А.В., Мацуков И.Д. Патент № 200354 РФ на полезную модель // Бюл. № 29. Опубл. 20.10.2020.
- Заенитько А.В., Зарецкий Н.П., Мацуков И.Д. Патент № 191610 РФ на полезную модель // Бюл. № 23. Опубл. 14.08.2019.

Адрес для справок: Россия, 123182, Москва, площадь Курчатова, 1, НИЦ "Курчатовский институт", e-mail: zagnitko av@nrcki.ru