ЭЛЕКТРОНИКА И РАДИОТЕХНИКА

УЛК 533.9.07

ГЕНЕРАТОР МОЩНЫХ ОБЪЕМНЫХ РАЗРЯДОВ НАНОСЕКУНДНОЙ **ДЛИТЕЛЬНОСТИ**

© 2021 г. С. В. Коротков^{*a*,*}, А. С. Кузнецов^{*b*}, Ю. В. Аристов^{*a*}

^а Физико-технический институт им. А.Ф. Иоффе РАН Россия, 194021, Санкт-Петербург, ул. Политехническая, 26 ^bAO "Acmop"

Россия, 188663, Ленинградская обл., Всеволожский р-н, пос. Кузьмоловский, ул. Заводская, 75

*e-mail: korotkov@mail.ioffe.ru Поступила в редакцию 22.03.2021 г. После доработки 26.03.2021 г. Принята к публикации 29.03.2021 г.

Описан генератор мошных наносекундных импульсов. содержащий высоковольтный блок, выполненный на основе цепи магнитного сжатия и диодного прерывателя тока, и низковольтный транзисторный блок, который обеспечивает высокоэффективную коммутацию энергии в высоковольтный блок. Приведены результаты использования генератора в экспериментальной плазменной установке, разработанной для исследования возможности синтеза кремния из смеси H₂ и SiF₄.

DOI: 10.31857/S0032816221050050

В статье представлены результаты исследований генератора мощных импульсов высокого напряжения, разработанного для создания наносекундных разрядов в плазмохимических устройствах.

Электрическая схема генератора приведена на рис. 1. Наносекундные импульсы выходного напряжения формируются с помощью высоковольтного блока (ВБ), который содержит повышающий трансформатор Тр и прерыватель тока в виде блока последовательно соединенных дрейфовых диодов с резким восстановлением (DSRD drift step recovery diodes) [1, 2 и др.]. Для коммутации энергии в первичную обмотку Тр используется описанный в [3] низковольтный транзисторный блок (НБ), который при значительном изменении импеданса цепей блока ВБ обеспечивает высокую стабильность напряжения зарядки накопительного конденсатора С и высокую эффективность рекуперации энергии, отраженной от блока ВБ. В блоке DSRD используются описанные в [4] кремниевые диоды с диаметром структур 20 мм, имеющие рабочее напряжение 1 кВ. Они позволяют обрывать ток с амплитудой до 600 А за время ~3 нс. Эффективная работа используемых диодов достигается с помощью цепей магнитного сжатия L_1 , C_1 и L_2 , C_2 , которые обеспечивают протекание через структуры DSRD спаренных импульсов прямого и обратного тока с длительностью не более 300 нс и 150 нс. При протекании прямого тока в структурах DSRD накапливаются электроны и дырки, которые затем выносятся быстро нарастающим обратным током. Когда в диодных структурах не остается накопленного заряда, проводимость DSRD резко уменьшается, и происходит коммутация тока в коаксиальный кабель (*KK*), а затем в нагрузку Z. В результате в нагрузке выделяется энергия, накопленная в индуктивности L₂. Заданная выходная энергия (~100 мДж) обеспечивается при достаточно большой индуктивности L_2 (~0.8 мкГн). При такой индуктивности требуемая для эффективного выключения блока DSRD высокая скорость нарастания обратного тока достигается при зарядке конденсатора C_2 до напряжения ~12 кВ.

Генератор работает следующим образом. В исходном состоянии конденсатор C_0 заряжен от сети ~220 В, через обмотки w, протекает постоянный ток ~1 А, который переводит сердечники трансформатора Тр и дросселей L₁, L₂ в рабочее состояние. После включения транзисторов Т₁, Т₂ через индуктивность L и датчик тока (ДT) протекает ток разряда C_0 . В момент, когда этот ток достигает заданной величины, датчик тока ДТ формирует сигнал, по которому осуществляется выключение T_1, T_2 . В результате происходит коммутация тока из индуктивности L в конденсатор C и его зарядка до рабочего напряжения (1 кВ). Величина этого напряжения определяется только энергией, запасенной в индуктивности L, и не зависит от величины сетевого напряжения и от процессов, про-

Рис. 1. Электрическая схема генератора. *BБ* – высоковольтный блок, *HБ* – низковольтный блок, *ДТ* – датчик тока, DSRD – блок дрейфовых диодов с резким восстановлением, *KK* – коаксиальный кабель; T_1 – IRGPS60B120KDP (2 параллельно); D_1 – KBPC3506, D_2 , D_3 – 80APF12, D_4 – 80APF12 (2 параллельно); DSRD – диаметр структур 20 мм (20 последовательно); T_P – сплав 2HCP 64 × 40 × 50 мм, w_1 = 1, w_2 = 15; L_1 – феррит Ерсоs 63 × 38 × 25 мм, w = 25, w_r = 1; L_2 – феррит Epcos 41.8 × 26.2 × 12.5 мм, w = 10, w_r = 1; *KK* – PK75-7-15 (3 м).

текающих в блоке *BБ* при формировании импульса выходного напряжения.

После окончания процесса зарядки конденсатора *C* включается транзистор T_2 и не отключается до следующего цикла зарядки *C*. В результате осуществляется разряд конденсатора *C* и зарядка конденсатора C_1 . В процессе зарядки C_1 дроссель L_1 имеет большую индуктивность, которая препятствует нарастанию тока через блок DSRD. В момент насыщения сердечника индуктивность дросселя L_1 резко уменьшается и конденсатора C_1 в результате происходит зарядка конденсатора C_2 и через блок DSRD протекает прямой ток с амплитудой ~250 A и длительностью ~260 нс. В процессе зарядки C_2 ток через дроссель L_2 очень мал, так как индуктивность дросселя велика. После насы

Рис. 2. Осциллограмма напряжения *U* на нагрузке с сопротивлением 75 Ом. Масштаб по вертикали 10 кВ/деление; по горизонтали – 4 нс/деление.

щения сердечника дросселя L_2 конденсатор C_2 разряжается по цепи DSRD– L_2 , и в блок DSRD коммутируется быстро нарастающий обратный ток. Блок DSRD выключается через ~80 нс после коммутации обратного тока. В процессе выключения блока DSRD протекающий через индуктивность L_2 выходной ток генератора (~550 A) коммутируется в коаксиальный кабель *KK*, имеющий волновое сопротивление 75 Ом и длину ~3 м. Фронт и амплитуда импульса напряжения на входе кабеля определяются временем выключения блока DSRD и произведением выходного тока на волновое сопротивление кабеля, а амплитуда и форма импульса напряжения на конце кабеля *KK* – параметрами нагрузки *Z*.

При использовании нагрузки в виде резистора с сопротивлением 75 Ом импульс выходного напряжения имел амплитуду ~40 кВ, фронт ~3 нс и длительность ~18 нс. Осциллограмма этого напряжения приведена на рис. 2.

Известным недостатком *LC*-цепей магнитного сжатия является то, что после коммутации выходного тока в конденсаторах остается неиспользованная энергия. В разработанном генераторе эта энергия коммутируется в цепь первичной обмотки трансформатора и обусловливает протекание тока по цепи $D_2-D_3-L-D_4-T_2$. В результате происходит рекуперация энергии в индуктивность *L*. После окончания процесса рекуперации происходит включение транзистора T_1 , и ток через индуктивность *L* нарастает до заданной величины, которая при выключении транзисторов T_1 , T_2 обеспечивает зарядку конденсатора *C* до рабочего напряжения.

Рассмотренный DSRD-генератор был использован в АО "Астор" (Санкт-Петербург, Россия) для исследования возможности газоразрядного синтеза кремния.

В настоящее время поликристаллический и аморфный кремний остаются основными мате-

Рис. 3. Схема опытной установки. 1 – генератор импульсов высокого напряжения; 2 – разрядная камера; 3, 4 – электроды; 5 – накопительная емкость; 6, 7 – регуляторы массового расхода H₂ и SiF₄; 8, 9 – датчики давления; 10, 11 – вентили; 12 – фильтр; 13 – запорный клапан; 14 – вакуумный насос.

риалами для фотоэлектрических систем. Хорошо известен метод осаждения кремния из паровой фазы смеси силанов с водородом на затравкахстержнях (метод Сименса). Альтернативный метод основан на использовании водорода и тетрафторида кремния SiF₄ (SiF₄ + 2H₂ \Rightarrow Si + 4HF). Перспективность этого метода определяется малой стоимостью и взрывобезопасностью SiF₄. Основные трудности при его использовании обусловлены высокой стабильностью молекулярных связей SiF₄. Авторами [5] описана установка, обеспечивающая синтез кремния из смеси водорода и тетрафторида кремния в плазме индукционного высокочастотного (в.ч.) разряда. При входной мощности генератора в.ч.-разрядов ~300 Вт средняя скорость осаждения кремния составляла ~0.2 г/ч. Полученные в результате экспериментов "хлопья" кремния были преобразованы в объемный монокристалл при использовании "миниметода Чохральского" [6], специально разработанного для роста кремния при экстремально низких нагрузках тигля.

Нами была исследована возможность синтеза кремния из газовой смеси H_2 и SiF₄ в низкотемпературной плазме, создаваемой объемными разрядами наносекундной длительности. Схема опытной плазменной установки представлена на рис. 3.

Генератор 1 создавал разряды в камере 2 с объемом ~2 см³. Электроды 3, 4 были изготовлены из чистого кремния и располагались на расстоянии ~2.5 см друг от друга. Через отверстия в электродах в камеру 2 подавались водород и высокочистый тетрафторид кремния (содержание примесей <0.001%). Объемное соотношение H_2 :SiF₄ составляло 4.6–6.6. В камере 2 поддерживалось

Рис. 4. Осциллограммы разрядного тока *I* и напряжения на разрядной камере *U*. Масштаб по вертикали: тока – 100 А/деление, напряжения – 10 кВ/деление; по горизонтали – 10 нс/деление.

давление ~100 Торр. Расход газовой смеси составлял ~300 норм. см³/мин.

В процессе экспериментов частота объемных разрядов регулировалась в диапазоне 0.5-1.5 кГц. Полученный кремний частично ссыпался в накопительный бак 5, а частично оседал на стенки камеры 2.

На рис. 4 приведены характерные осциллограммы разрядного тока *I* и напряжения *U* на разрядной камере. Как видно из осциллограмм, амплитуда и фронт импульса напряжения на раз-

Рис. 5. Зависимость производительности осажденного кремния от входной мощности генератора.

Рис. 6. Внешний вид разрядной камеры.

рядной камере составляют ~50 кВ и ~3 нс. Разрядный ток имеет амплитуду ~300 А и длительность ~40 нс.

На рис. 5 приведена зависимость производительности осаждения кремния от входной мощности генератора объемных разрядов.

На рис. 6 показан внешний вид разрядной камеры при частоте следования разрядов 1.5 кГц.

Таким образом, результаты наших пилотных исследований показывают возможность синтеза кремния из смеси H_2 и SiF₄ в плазме наносекундного объемного разряда. При одинаковой входной мощности 300 Вт описанная технология получения неравновесной плазмы с использованием объемных разрядов обеспечивает примерно в 3 раза большую производительность осаждения кремния по сравнению с технологией [5], основанной на использовании индукционного в.ч.-разряда.

Производительность рассмотренной плазменной установки может быть повышена при увеличении выходной энергии и средней мощности генератора импульсов высокого напряжения. Выходная энергия может быть увеличена в несколько раз при использовании высоковольтного блока с более высоким рабочим напряжением. Средняя мощность генератора может быть существенно увеличена при увеличении частоты следования выходных импульсов. При эффективном охлаждении элементы схемы генератора способны работать на частоте несколько десятков килогерц.

СПИСОК ЛИТЕРАТУРЫ

- 1. Грехов И.В., Ефанов В.М., Кардо-Сысоев А.Ф., Шендерей С.В. // Письма в ЖТФ. 1983. Т. 9. № 7. С. 435.
- Grekhov I.V., Efanov V.M., Kardo-Susoev A.F., Shenderey S.V. // Solid State Electronics. 1985. V. 28. № 4. P. 597.
- Коротков С.В., Аристов Ю.В., Жмодиков А.Л., Коротков Д.А. // ПТЭ. 2021. № 3. С. 50. https://doi.org/10.7868/S0032816215040072
- Коротков С.В., Воронков В.Б., Аристов Ю.В. // ПТЭ. 2015. № 4. С. 48.
- Sennikov P., Pryakhin D., Abrosimov N., Andreev B., Drozdov Yu., Drozdov M., Kuznetsov A., Murel A., Pohl H.-J., Riemann H., Shashkin V. // Cryst. Res. Technol. 2010. V. 45. № 9. P. 899. https://doi.org/10.1002/crat.201000090
- Abrosimov N.V., Riemann H., Schröder W., Pohl H.-J., Kaliteevski A.K., Godisov O.N., Korolyov V.A., Zhilnikov A.Ju. // Cryst. Res. Technol. 2003. V. 38. P. 54. https://doi.org/10.1002/crat.200310079

