= <mark>ЛАБОРАТОРНАЯ</mark> = ТЕХНИКА =

УДК 538.9

КРИОГЕННАЯ ОЧИСТКА ГЕЛИЯ И ЕГО ИСПОЛЬЗОВАНИЕ ДЛЯ ПОДГОТОВКИ ПОЛЯРИЗАЦИОННЫХ ЯЧЕЕК И ПРОВЕДЕНИЯ НЕОПТИЧЕСКОЙ ПОЛЯРИЗАЦИИ ЯДЕР ³Не

© 2021 г. А. С. Макарченко^{*a*}, В. В. Кузьмин^{*a*,*}, К. Р. Сафиуллин^{*a*}, Д. В. Кан^{*a*}, М. С. Тагиров^{*a*,*b*}

^а Казанский федеральный университет, Институт физики Россия, Республика Татарстан, 420008, Казань, ул. Кремлевская, 18 ^b Академия наук Республики Татарстан, Россия, 420111, Казань, ул. Баумана, 20 *e-mail: slava625@yandex.ru Поступила в редакцию 28.04.2021 г. После доработки 13.05.2021 г. Принята к публикации 17.05.2021 г.

Описано применение криогенной методики очистки изотопов гелия и их смесей от сопутствующих примесей, пригодной для использования при поляризации ³He методом PAMP (Polarization of Atoms in a Magnetized Plasma). Очистка основана на длительной выдержке газа в трубке, помещенной в транспортный дюар, при температуре жидкого гелия. Наблюдаемый эмиссионный оптический спектр плазмы гелия и оценка ядерной поляризации (примерно 1%) ³He, полученной при комнатной температуре, свидетельствуют об эффективности описанной процедуры для очистки гелия и поляризационных ячеек.

DOI: 10.31857/S0032816221050232

Значительного повышения чувствительности методов ядерного магнитного резонанса (я.м.р.) можно добиться путем увеличения поляризации ядерных спинов. Гиперполяризация благородных газов, таких как ³Не и ¹²⁹Хе, позволяет получать степень поляризации ядерных спинов, на много порядков превышающую термодинамически равновесную. Это дает возможность использовать благородные газы в качестве зонда для исследования различных пористых структур при комнатной температуре и низких концентрациях газов [1, 2], а также для проведения магнитно-резонансной томографии легких [3, 4]. Среди методов поляризации ³Не наибольшее применение нашли два оптических метода [5]. Первый метод состоит в лазерной накачке электронно-ядерных подуровней метастабильных атомов, возникающих в плазме, с последующим обменом ядерной намагниченностью при соударениях атомов ³He, нахоляшихся в основном и метастабильных состояниях (метод MEOP – metastability exchange optical pumping). Второй метод основан на оптической накачке электронных уровней примесных атомов, например Rb, с последующей передачей поляризации ядрам ³Не (метод SEOP – spin exchange optical pumping). Данные методы позволяют получать поляризацию ядерных спинов ³Не вплоть до 90%, однако требуют применения дорогих и сложных в настройке и эксплуатации оптических систем и лазерного оборудования.

В 2018 г. европейскими учеными [6] было обнаружено, что относительно высокая степень поляризации газа ³Не при давлениях порядка нескольких миллибар может быть получена более простым и недорогим способом, получившим название PAMP (polarization of atoms in a magnetized plasma). Способ основан на создании плазмы в газе ³Не при давлении 1–15 мбар в постоянном магнитном поле. На данный момент это позволяет получать поляризацию до 9% в стеклянных ячейках размером 1-2 см. Данный метод обеспечивает меньшую по сравнению с оптическими методами достижимую поляризацию, однако его потенциал, максимально возможные уровни поляризации и физика процесса изучены лишь частично. При этом полученная величина сигнал/шум сигналов я.м.р. является достаточной для применения этого метода поляризации в магнитометрии и для исследования пористых сред методами я.м.р. ³Не.

На данный момент считается, что метод РАМР связан с образованием метастабильных атомов ³Не в плазме, а значит, его эффективность, по

аналогии с МЕОР, зависит от времени их жизни в плазме ³Не. Наличие примесей в газе существенно снижает время жизни атомов ³Не в метастабильных состояниях [5] (стоит отметить, что под примесями подразумеваются любые находящиеся в газе молекулы или атомы, кроме изотопов гелия). По этой причине для эффективности процесса поляризации методом РАМР, вероятно, требуется спектроскопическая чистота гелия в плазме (концентрация примесей порядка 1 ррт и менее). Требования к чистоте поляризационных ячеек также являются высокими, поскольку необходимо поддержание постоянной чистоты плазмы ³Не. Для выполнения этих требований поляризационные ячейки подвергаются тшательной промывке, глубокому вакуумированию, отжигу при температурах 400-500°С и многократ-

ной очистке плазмой гелия, возбуждаемой радиочастотным (р.ч.) полем большой мощности [7]. В данной работе описана экспериментальная

установка для криогенной очистки газов ³Не и ⁴Не, позволяющая проводить изучение возможностей метода РАМР. С помощью данной установки нами была проведена очистка поляризационных ячеек и успешно наблюдены первые сигналы я.м.р. поляризованного ³Не методом РАМР. В дальнейшем планируется исследование возможностей метода РАМР и поиск оптимальных условий для получения максимальной степени поляризации ³Не.

На первых этапах развития метода МЕОР в начале 1960-х гг. чистка ячеек плазмой ⁴Не осуществлялась, как правило, с помощью коммерчески доступного спектроскопически чистого ⁴Не с содержанием примесей менее 1 ррт. Очистка газа ³Не осуществлялась либо фильтрованием примесей при диффузии ³Не сквозь мембраны из кварцевого стекла при высокой температуре [8], либо криоочисткой при пропускании ³Не через криоловушку с активированным углем при температуре жидкого азота [9], либо очисткой в потоковом режиме через криоловушку без угля, помещенную в жидкий гелий [7]. Несмотря на успешное получение высокой поляризации методом МЕОР в упомянутых работах, очистка с помощью азотной ловушки, тем не менее, является неудовлетворительной [8], очистка с помощью фильтрации диффузией является технологически сложной, а чистка на потоке через гелиевую ловушку не всегда дает необходимую степень чистоты газа. На сегодняшний день для очистки изотопов гелия в методе МЕОР используют коммерческие геттеры [5], являющиеся достаточно дорогими устройствами. Криогенная очистка с помощью жидкого гелия при температуре 4.2 К может быть более доступным и экономичным способом очистки изотопов гелия в лабораториях, работающих с низкими температурами и имеющих доступ к хладагентам.

В рамках данной работы было решено проводить очистку изотопов гелия не в режиме потока, как в работе [7], а при длительной (несколько часов) выдержке газа в U-образной трубке, помещенной в транспортный дюар с жидким гелием. Используемый газ имел начальный состав. соответствующий технической марке гелия Б, в случае ³He содержание ⁴He составляло менее 0.01%. При температуре жидкого гелия все газы, кроме водорода и гелия, конденсируются в твердую фазу с ничтожно малым давлением насыщенных паров [10]. Водород, возможно, содержащийся в небольшом количестве в подаваемом неочищенном гелии, адсорбируется при 4.2 К и образует на холодной поверхности твердую пленку, однако продолжительность данного процесса определяется лиффузией газа и может составлять от нескольких часов до нескольких суток [11]. По этой причине в собранной нами системе подвергающийся очистке гелий медленно поступает в U-образную трубку (рис. 1) и выдерживается в ней несколько часов до подачи в ячейку.

Была собрана мобильная газовая система, адаптированная под использование с транспортным гелиевым дюаром СТГ-25 или СТГ-40. Данная система может применяться как для чистки стеклянных поляризационных ячеек, так и для заполнения их газом ³Не перед последующей запайкой.

Упрошенная схема системы очистки приведена на рис. 1. В систему входит азотная ловушка 2 для предварительной очистки газа, заполненная активированным углем и размещенная стационарно вблизи хранилища газов. Основным узлом системы очистки является U-образная нержавеющая трубка 4 с внешним диаметром 1/8 дюйма, толщиной стенок 0.4 мм и радиусом изгиба 10 мм. Почти все коммуникации собраны с использованием электрохимически полированных трубок (уровень шероховатости Ra < 0.25 мкм) из нержавеющей стали марки S316L диаметром 1/4 дюйма. Это обеспечивает минимизацию площади поверхности внутри коммуникаций, на которую могут осаждаться атомы или молекулы примесей. Подавляющее большинство соединений выполнено с помощью обжимных фитингов Swagelok, исключающих пайку, а следовательно, внесение дополнительных примесей через флюс и припой.

В системе имеется емкостной датчик давления Pfeiffer CMR-263 (14), подключаемый через вакуумное соединение KF-16 с витоновым уплотнителем типа О-ринг. Датчик давления используется для контроля давления в системе при наполнении поляризационной ячейки гелием.

В системе очистки используются два основных типа вентилей производства Swagelok: сильфон-

Рис. 1. Схема системы очистки газа гелия от примесей. *1*, *3*, *5* – вентили Swagelok SS-2H; *2* – азотная ловушка; *4* – U-образная трубка для очистки при гелиевой температуре; *6*, *7*, *10* – вентили Swagelok SS-DSS4; *8* – переход стекло–медь; *9* – поляризационная ячейка; *11* – сильфон; *12* – турбомолекулярный насос; *13*, *14* – вакуумные датчики.

ные SS-2H (стандартной чистоты) и мембранные SS-DSS4 (повышенной чистоты с применением электрохимической полировки, Ra < 0.5 мкм). Сильфонные вентили расположены в тех местах газовой системы, где требуется контроль потока гелия: на входе 3 и выходе 5 U-образной трубки и на выходе 1 стационарной газовой системы.

Предназначенная для поляризационных исследований ячейка 9 припаивается при помощи стеклянного капилляра (пирекс) к переходу 8 стекло-медь с внешним диаметром медной трубки 1/4 дюйма, который герметично подключен к вентилю Swagelok SS-DSS4 (7) системы очистки при помощи обжимного фитинга. Использование перехода стекло-медь предусматривает возможность присоединения абсолютно любых стеклянных ячеек к системе очистки. Мембранный вентиль 6 установлен для обеспечения возможности снятия поляризационной ячейки вместе с вентилем 7.

Предусмотрена возможность глубокой откачки системы турбомолекулярным насосом 12, который подключается к системе очистки при помощи сильфона 11 через вентиль 10. Давление в этом случае контролируется расположенным вблизи входа турбомолекулярного насоса вакуумным датчиком с горячим катодом Pfeiffer IMR-265 (13).

Процедуру чистки и заполнения поляризационной ячейки можно разделить на три условных этапа. На первом этапе вся система (5-11), в том числе витоновые уплотнители на вакуумных соединениях KF-25 и KF-16, подвергаются постоянной и длительной откачке турбомолекулярным насосом до давления 10^{-8} мбар и нагреву до $180-200^{\circ}$ С (кроме датчика давления) с целью удаления остаточных газов со стенок. При этом поляризационная ячейка нагревается до температуры 400° С при помощи электрического нагревателя. Первый этап по времени занимает, как правило, примерно одну неделю.

На втором этапе проводится более глубокая чистка поляризационной ячейки плазмой гелия. Для этого U-образная трубка откачанной системы очистки помещается в транспортный дюар СТГ-25, заполненный жидким гелием. Далее гелий, прошедший предварительную очистку в азотной ловушке, подается в U-образную трубку через вентили 1 и 3 до давления 50–100 мбар. По нашим оценкам, дополнительный расход жидкого гелия в СТГ-25, связанный с размещением в нем U-образной трубки, составляет около 0.5 л в неделю. После 12 ч отстаивания гелия в трубке небольшие порции очищенного газа (1–10 мбар) подаются через вентили 5-7 в поляризационную ячейку. В процессе чистки поляризационной ячейки в ней при подаче радиочастотной (р.ч.) мошности 10-15 Вт создается плазма гелия. Процесс целесообразно продолжать до появления примесных линий в оптическом спектре плазмы (их интенсивность зависит от степени чистоты ячейки на данной стадии чистки). После этого

Рис. 2. Оптический спектр плазмы ³Не, содержащейся под давлением 5 мбар в поляризационной ячейке и прошедшей очистку. Номерами обозначены линии гелия, указанные в табл. 1.

поляризационная ячейка откачивается турбомолекулярным насосом, и в систему подается новая порция очищенного гелия. Чистка плазмой проводится до тех пор, пока линии примесей в плазме гелия в поляризационной ячейке спустя несколько часов горения плазмы станут незаметными на уровне шумов. Длительность этого этапа зависит от объема и площади поверхности ячейки. Для сферических ячеек диаметром 7–10 мм данный этап обычно длится около двух суток.

После завершения второго этапа чистки U-образная трубка вынимается из гелиевого дюара и отогревается, оставшийся в ней газ удаляется. Откачка проводится через вентили 1 и 3 форвакуумным насосом и азотную ловушку с активированным углем, чтобы не загрязнять коммуникации, находящиеся справа за вентилем 5 (см. рис. 1).

Третий этап аналогичен второму, но ⁴Не в Uобразной трубке заменяется на ³Не, и многократная чистка поляризационной ячейки не требуется. После заполнения поляризационной ячейки очищенным ³Не до требуемого давления вентиль 7 закрывается и временно демонтируется вместе с ячейкой. При подготовке запаянных поляризационных ячеек стеклянный капилляр заплавляется. Остатки ³Не из U-образной трубки собираются в хранилище ³Не с помощью крионасоса (на рис. 1 не показаны).

Радиочастотный тракт для создания плазмы гелия в ячейке был собран из стандартного лабораторного оборудования, не требующего особых пояснений. Он включал в себя генератор синусоидальных р.ч.-сигналов, р.ч.-усилитель, измеритель коэффициента стоячей волны (КСВ-метр) и колебательный контур. В нашем случае р.ч.-тракт позволял создавать плазму гелия в поляризационной ячейке в диапазоне 20-30 МГц мощностью до 20 Вт. Катушка колебательного контура представляла собой соленоид, состоящий из 4-10 витков и намотанный из медной проволоки диаметром 0.56 мм. Диаметр и длина намотки катушки соответствовали диаметру и размеру участка поляризационной ячейки, который подвергался чистке плазмой. Колебательный контур настраивался на нужную частоту и согласовывался на сопротивление 50 Ом с использованием керамических конденсаторов с нулевым температурным коэффициентом (диэлектрик типа NP0). Небольшое отклонение центральной частоты контура, регистрируемое КСВ-метром в процессе нагрева ячейки и проводов р.ч.-катушки, компенсировалось подстройкой частоты генератора.

Работоспособность собранной системы очистки можно оценить двумя способами: первый путем контроля чистоты газа по эмиссионному спектру его плазмы, второй — наблюдением сигнала я.м.р. ³Не, поляризованного методом РАМР.

В работе контроль чистоты ячеек и газа осуществлялся ручным оптическим спектроскопом Kruss 1501, и после очистки поляризационных ячеек в спектре наблюдались только гелиевые линии. Оптический спектр также был записан спектрометром StellarNet spectrometer со спектральным разрешением 0.5 нм. На рис. 2 приведен оптический спектр гелия под давлением 5 мбар в ячейке с внутренним диаметром 8 мм. Анализ полученного спектра показывает, что все линии соответствуют атомам гелия - они пронумерованы и более подробная информация по ним приведена в табл. 1. Справочные данные о спектральных линиях гелия и их длинах волн были взяты из открытой спектроскопической базы данных Национального института стандартов и технологии (США) [12]. В полученных оптических спектрах не наблюдаются линии, связанные с сопутствующими примесями гелия: водорода, неона, иных благородных газов, а также компонентов воздуха. Это позволяет сделать вывод о работоспособности собранной системы очистки.

Эксперименты по поляризации ³Не методом РАМР и последующие я.м.р.-эксперименты проводились в "теплой дыре" сверхпроводящего магнита в поле 3.66 Тл. Для наблюдения я.м.р.-сигнала был использован импульсный я.м.р.-спектрометр лабораторного изготовления [13]. Колебательный контур для наблюдения сигнала я.м.р. поляризованного ³Не представлял собой катушку из четырех вит-KOB медного провода сечением 2 MM^2 . расположенную вокруг поляризационной ячейки, и подстроечный конденсатор. Длительность и

МАКАРЧЕНКО и др.

Номер	Длина волны, нм	Переход между уровнями	
1	294.5	$1s2s$, ${}^{3}S$, J = 1	$1s5p, {}^{3}P^{\circ}, J = 0, 1, 2$
2	318.8	$1s2s$, ${}^{3}S$, J = 1	$1s4p, {}^{3}P^{\circ}, J = 1, 2$
3	382.0	$1s2p$, ${}^{3}P^{\circ}$, J = 0, 1, 2	$1s6d$, ^{3}D , J = 0, 1, 2
4	388.8	$1s2s$, ${}^{3}S$, J = 1	$1s3p, {}^{3}P^{\circ}, J = 1, 2$
5	396.5	$1s2s$, ${}^{1}S$, $J = 0$	$1s4p, {}^{1}P^{\circ}, J = 1$
6	402.6	$1s2p$, ${}^{3}P^{\circ}$, J = 0, 1, 2	$1s5d$, ^{3}D , J = 1, 2, 3
7	412.0	$1s2p$, ${}^{3}P^{\circ}$, J = 0, 1, 2	$1s5s, {}^{3}S, J = 1$
8	438.8	$1s2p, {}^{1}P^{\circ}, J = 1$	$1s5d, {}^{1}D, J = 2$
9	447.2	$1s2p, {}^{3}P^{\circ}, J = 0, 1$	$1s4d$, ^{3}D , J = 1, 2
10	471.3	$1s2p$, ${}^{3}P^{\circ}$, J = 0, 1, 2	$1s4s, {}^{3}S, J = 1$
11	492.2	$1s2p, {}^{1}P^{\circ}, J = 1$	$1s4d, {}^{1}D, J = 2$
12	501.6	$1s2s$, ${}^{1}S$, $J = 0$	$1s3p$, $^{1}P^{\circ}$, $J = 1$
13	504.8	$1s2p, {}^{1}P^{\circ}, J = 1$	$1s4s, {}^{1}S, J = 0$
14	587.6	$1s2p$, ${}^{3}P^{\circ}$, J = 0, 1, 2	$1s3d$, ^{3}D , J = 1, 2, 3
15	667.8	$1s2p, {}^{1}P^{\circ}, J = 1$	$1s3d, {}^{1}D, J = 2$
16	706.5	$1s2p, {}^{3}P^{\circ}, J = 0, 1, 2$	$1s3s$, ${}^{3}S$, J = 1
17	728.1	$1s2p, {}^{1}P^{\circ}, J = 1$	$1s3s$, ^{1}S , $J = 0$
18	1031.1	$1s2p$, ${}^{3}P^{\circ}$, J = 0, 1, 2	$1s6d$, ^{3}D , J = 1, 2, 3
19	1066.8	$1s3p$, $^{3}P^{\circ}$, J = 0, 1, 2	$1s6s, {}^{3}S, J = 1$
20	1083.0	$1s2s$, ${}^{3}S$, J = 1	$1s2p, {}^{3}P^{\circ}, J = 0, 1, 2$
21	1091.3	$1s3d$, ^{3}D , J = 1, 2, 3	$1s6f, {}^{3}F^{\circ}, J = 1, 2, 3, 4$
22	1099.6	$1s3d$, ^{3}D , J = 1, 2, 3	$1s6p, {}^{3}P^{\circ}, J = 0, 1, 2$

Таблица 1. Информация об отмеченных спектральных линиях гелия на рис. 2

амплитуда ($\pi/2$)-импульса подбиралась в предварительных я.м.р.-экспериментах с помощью реперного образца, представляющего собой стеклянную сферическую ячейку схожего размера, заполненную смесью ³He–O₂ в примерно одинаковой пропорции при общем давлении порядка 2 бар.

На рис. 3 представлен типичный сигнал спада свободной индукции ядер ³Не, поляризованного методом РАМР, полученный при комнатной температуре на частоте 118.8 МГц и длительности возбуждающего (π/2)-импульса 17 мкс. Поляризационная ячейка имела сферическую форму с внутренним диаметром 8 мм и содержала ³Не под давлением 10 мбар. Поляризация ³Не в этом эксперименте составляла примерно 1%, данная величина получена из отношения амплитуд сигналов спада свободной индукции в нулевой момент времени в ячейке с поляризованным ³Не и реперного образца ³He–O₂ (равновесная поляризация в поле 3.66 Тл составляет 0.001%). Стоит отметить, что меньший уровень поляризации, 1%, по сравнению с полученным в работе [6], в первую очередь,

может быть связан с отличающимися индукцией магнитного поля, давлением газа и мощностью создаваемой р.ч.-плазмы, так как оптимальные величины параметров процесса поляризации на данный момент не установлены. Полученный уровень поляризации свидетельствует о применимости предложенного способа очистки в экспериментах по изучению эффекта РАМР.

Таким образом, описанная в данной работе система очистки изотопов гелия и их смесей от сопутствующих примесей применима для проведения поляризации ³Не методом РАМР. Предложенная система позволяет исключить из гелия примеси (до уровня менее 1 ppm): водород, компоненты воздуха, органические соединения и др. Помимо этого, предложенная система успешно применена для очистки поляризационных ячеек плазмой гелия. Продемонстрирована эффективная работа системы очистки при поляризации методом РАМР в поле 3.66 Тл. Методами импульсного я.м.р. определено, что уровень полученной поляризации в сферической ячейке с

Рис. 3. Наблюдаемый я.м.р.-сигнал спада свободной индукции поляризованного методом PAMP газа ³Не после проведения очистки газа и описываемой системы. Сигнал я.м.р. получен с использованием возбуждающего ($\pi/2$)-импульса длительностью 17 мкс при комнатной температуре в ячейке с внутренним диаметром 8 мм, содержащей ³Не под давлением 10 мбар.

внутренним диаметром 8 мм, содержащей ³Не под давлением 10 мбар, составляет 1%.

БЛАГОДАРНОСТИ

Работа поддержана Российским научным фондом (грант № 19-72-10061). Авторы благодарят Т.Р. Сафина за помощь в приготовлении стеклянных ячеек и А.Р. Хадиева за помощь в записи оптических спектров.

СПИСОК ЛИТЕРАТУРЫ

 Wisser D., Hartmann M. // Adv. Mater. Interfaces. 2020. V. 8 Article number 2001266. https://doi.org/10.1002/admi.202001266

- Tastevin G., Nacher P.-J. // J. Chem. Phys. 2005.
 V. 123. № 6. Article number 064506. https://doi.org/10.1063/1.1997130
- van Beek E.J.R., Wild J.M., Kauczor H.-U., Schreiber W., Mugler III J.P., de Lange E.E. // J. Magn. Reson. Imaging. 2004. V. 20. № 4. P. 540. https://doi.org/10.1002/jmri.20154
- Bidinosti C.P., Choukeife J., Tastevin G., Nacher P.-J., Vignaud A. // Magn. Reson. Mater. Phy. 2004. V. 16. № 6. P. 255. https://doi.org/10.1007/s10334-004-0035-v
- Gentile T.R., Nacher P.-J., Saam B., Walker T.G. // Rev. Mod. Phys. 2017. V. 89. № 4. Article number 045004. https://doi.org/10.1103/RevModPhys.89.045004
- Maul A., Blümler P., Nacher P.-J., Otten E., Tastevin G., Heil W. // Phys. Rev. A. 2018. V. 98. № 6. Article number 063405. https://doi.org/10.1103/PhysRevA.98.063405
- Colegrove F.D., Schearer L.D., Walters G.K. // Phys. Rev. 1963. V. 132. № 6. P. 2561. https://doi.org/10.1103/PhysRev.132.2561
- 8. *Timsit R.S., Daniels J.M., Dennig E.I., Kiang A.K.C., May A.D.* // Can. J. Phys. 1971. V. 49. № 5. P. 508. https://doi.org/10.1139/p71-068
- Gamblin R.L., Carver T.R. // Physical. Rev. 1965.
 V. 138. № 4A. P. A946. https://doi.org/10.1103/PhysRev.138.A946
- Малков М.П., Данилов И.Б., Зельдович А.Г., Фрадков А.Б. Справочник по физико-техническим основам глубокого охлаждения. М.: Госэнергоиздат, 1963.
- Leduc M., Crampton S.B., Nacher P.-J., Laloe F. // Nucl. Sci. Appl. Sect. A. 1984. V. 2. № 1. P. 1 https://hal.archives-ouvertes.fr/hal-01383488
- Kramida A., Ralchenko Yu., Reader J., and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.8), [Online]. Available: https://physics.nist.gov/asd [2021, April 20]. National Institute of Standards and Technology. Gaithersburg, MD. https://doi.org/10.18434/T4W30F
- Kuzmin V.V., Bogaychuk A.V., Nekrasov I.K., Safiullin K.R., Salakhov M.H., Alakshin E.M., Klochkov A.V., Tagirov M.S. // Magn. Reson. Solid. 2019. V. 21. № 1. P. 19104. https://doi.org/10.26907/mrsej-19104