_ ФИЗИЧЕСКИЕ ПРИБОРЫ ДЛЯ ЭКОЛОГИИ, ____ МЕДИЦИНЫ, БИОЛОГИИ

УДК 681.121.842+621.039.84

ОПТИМИЗАЦИЯ БЕССЕПАРАЦИОННОГО ТРЕХФАЗНОГО РАСХОДОМЕРА НЕФТЬ-ВОДА-ГАЗ ГОРИЗОНТАЛЬНОЙ ОРИЕНТАЦИИ С ДВУХИЗОТОПНЫМ ГАММА-ПЛОТНОМЕРОМ

© 2023 г. А. Ю. Филиппов^{*a*,*}, Ю. П. Филиппов^{*b*,**}, А. М. Коврижных^{*b*}

^аНаучно-исследовательский университет "Московский энергетический институт" Россия, 111250, Москва, ул. Красноказарменная, 14 ^bОбъединенный институт ядерных исследований Россия, 141980, Дубна Московской обл., ул. Жолио-Кюри, 6 *e-mail: forsc2231@gmail.com **e-mail: fyp@dubna.ru

Поступила в редакцию 02.11.2022 г. После доработки 26.12.2022 г. Принята к публикации 28.12.2022 г.

Вероятно, впервые представлена информация о характеристиках бессепарационных трехфазных расходомеров нефть-вода-газ горизонтальной ориентации, связанная с оптимизацией конструкции по результатам экспериментальных исследований одноизотопных и двухизотопных у-плотномеров и комбинированного конического сужающего устройства (СУ), состоящего из двух последовательно установленных конусов различных размеров. Эксперименты проводились как на смесях "реальная нефть—газ—соленая вода" на стенде фирмы TUV SUD NEL, г. Глазго, так и на модельных потоках "эксол-газ-пресная вода" на эталоне многофазных потоков ГЭТ195-2011 во ВНИИР, г. Казань, для типичных расходомеров с номинальным диаметром DN 100. Показано, что у-плотномер целесообразно устанавливать в сечении с промежуточным диаметром D = 70 мм, в качестве измерительного СУ использовать конус 70/50 мм, а конус 100/70 мм применять для предварительного ускорения потока с целью уменьшения разнообразия режимов течения двухфазных и трехфазных потоков в измерительном СУ и в проточной части у-плотномера. Это позволяет существенно улучшить характеристики макета расходомера. Проведено сравнение некоторых полученных характеристик с характеристиками известного вертикального аналога Vx Schlumberger и представлены варианты конструкций усовершенствованного горизонтального трехфазного расходомера, позволяющих также увеличить срок его службы и повысить рабочее давление.

DOI: 10.31857/S0032816223030047, EDN: IRIZAW

ВВЕДЕНИЕ

Принцип работы компактных бессепарационных трехфазных расходомеров (БТР) на основе сужающего устройства (СУ) и у-плотномера, работающего с ү-источниками двух различных энергий, представлен, например, в работах [1-4]. Определение компонентного состава и расхода основано на четырех уравнениях с четырьмя неизвестными: $\phi = A_g / (A_g + A_l) -$ истинное объемное газосодержание, где A – площадь сечения, индексы g и l относятся к газу и жидкости; $w = (\rho - \rho)$ $(-\rho_o)/(\rho_w - \rho_o)$ – обводненность нефти, где ρ – средняя плотность смеси, зависящая от φ и *w*, а индексы о и w относятся к нефти и воде; $\alpha = (1 - w - w)$ $(-\phi)$ – нефтесодержание; Q – суммарный объемный расход трехфазного потока. Расходы компонент находятся посредством величин Ф и w, определяемых через константы поглощения ү-квантов для составляющих потока на двух различных энергиях и интенсивности I излучений, прошедших через многофазную среду, а величины Q могут находиться по соотношению Бернулли для сужающего устройства с учетом потерь на трение:

$$Q = \xi k(\text{Re})(\Delta P/\rho)^{1/2}$$
(1)

где ξ — геометрический параметр СУ; k(Re) — фактор трения [5, 6], зависящий от числа Рейнольдса Re; ΔP — перепад давления на сужающем устройстве.

Анализируя работу расходомеров, основанных на рассматриваемом принципе, можно напомнить, что входящий в соотношение (1) геометрический параметр ξ определяется как

$$\xi = A_1 A_2 [2/(A_1^2 - A_2^2)]^{1/2}, \qquad (2)$$

где A_1 и A_2 – соответственно большее и меньшее сечения конического СУ. В свою очередь, свойство параметра ξ таково, что при постоянном минимальном сечении А2 с уменьшением вдвое максимального сечения A_1 величина ξ увеличивается несущественно, всего примерно в 1.12 раза, что следует из преобразованного соотношения (2): $\xi = A_2 [2/(1 - A_2^2/A_1^2)]^{1/2}$. То есть при A_2 = const изменение параметра ξ для пары СУ с большими сечениями ($A_1 = 2A_2$ и $A_1 = 4A_2$) при одинаковых расходах О может сопровождаться изменением перепада давления ΔP для таких СУ примерно в 1.2 раза с учетом различия факторов трения k(Re)сравниваемых СУ [6, 7], например: $\Delta P_{98/70} \approx 2 \ \kappa \Pi a$, $\Delta P_{70/50} \approx 8.5$ κΠa, $\Delta P_{98/50} \approx 10.5$ κΠa, $10.5/8.5 \approx 1.2$ при $Q_w = 32 \text{ м}^3/\text{ч}$ и $\beta = 0$. В идеализированном случае, когда погрешностями определения величин k, ξ и ρ в выражении (1) можно пренебречь, отмеченное изменение ΔP может привести к довольно несущественному изменению относительной ошибки нахождения суммарного расхода $\delta Q/Q \approx$ $\approx (1/2)(\delta \Delta P / \Delta P).$

Вместе с тем разнообразие режимов течения и расчетных моделей, зависящих от Q, φ и w, будет значительно шире для СУ с отношением диаметров $D_1/D_2 = 2$, чем для СУ с отношением диаметров, например, $D_1/D_2 = 2^{1/2}$. В связи с этим для СУ с меньшим геометрическим параметром ξ значительно проще найти подходящее расчетное соотношение для расхода Q с минимальной относительной погрешностью $\delta Q/Q$, что показано в [7] для двухфазных потоков вода—газ, а также в [8] для любых модельных трехфазных потоков эксол—вода—газ и их предельных случаев (эксол D100 – имитатор нефти [6–8]). И этот факт может иметь существенное значение при выборе конструктивного решения расходомера.

Что касается сечения, где целесообразно установить γ -плотномер, то здесь необходимо учитывать два фактора. С одной стороны, уменьшение сечения приводит к повышению массовой скорости многофазного потока $m = Q\rho/A$ в сечении площадью A, уменьшению разнообразия режимов течения и соответствующей гомогенизации потока при заданных пределах расходов жидкости Q_i , что может иметь положительное влияние на стабильность показаний $I\gamma$ -плотномера, которые в той или иной степени могут зависеть от Q_i . С другой стороны, уменьшение сечения, где установлен γ -плотномер, может приводить к увеличению статической погрешности измерения сигнала в соответствии с соотношением

$$\delta w = \pm \frac{1}{D(\mu_{\rm o} - \mu_w)\sqrt{tN^*}},\tag{3}$$

где D – внутренний диаметр трубы; μ_o , μ_w – линейные коэффициенты поглощения для нефти и воды соответственно в смеси нефть—вода, например; t — время измерения; N^* — количество фотонов в единицу времени на входе в γ -детектор.

Соотношение (3) получено для квазистационарных потоков с расслоенным или кольцевым режимами течения [4] при условии, что погрешность определяется лишь статистической ошибкой. Из соотношения (3) видно, что ошибка δw обратно пропорциональна внутреннему диаметру расходомера D и корню квадратному из интенсивности источника и времени счета, и при необходимости уменьшение диаметра можно скомпенсировать повышением активности γ -источника при фиксированном времени измерения.

В широко известном бессепарационном расходомере DN 100 рассматриваемого типа вертикальной ориентации [2, 9] его ¹³³Ва- γ -плотномер установлен на меньшем диаметре (D = 50 мм) СУ, а СУ выполнено с отношением диаметров $D_1/D_2 = 2$ или $A_1/A_2 = 4$.

Что касается рассматриваемых здесь вариантов горизонтальных расходомеров DN 100 (БТР-100) с у-источниками, то первый макет был комбинацией конического СУ (98/70 мм) [10] ($A_1/A_2 \approx 2$) и арендованного у фирмы TUV SUD NEL [11] ¹³⁷Сs-у-плотномера, установленного на горизонтальной трубе с внутренним диаметром 4 дюйма (101.6 мм). Конфигурация другого макета бессепарационного трехфазного расходомера DN 100, подготовленного для испытаний с модельными многофазными потоками на стенде ВНИИР ГЭТ195-2011 [12], была обусловлена предварительными испытаниями подобных систем на трехфазном полигоне нефть-газ-соленая вода фирмы TUV SUD NEL. Для адекватности сравнения результатов испытаний на модельных и реальных средах было целесообразно сохранить геометрию канала расходомеров, давление и диапазон исследованных расходов компонент. В связи с этим двухизотопный ү-плотномер на основе источников ²⁴¹Am и ¹³⁷Cs [8, 13] был установлен на горизонтальной трубе с внутренним диаметром 98 мм (DN 100 ± 2 мм), что учитывает рекомендацию соотношения (3), а СУ выполнено комбинированным со ступенчатым дросселированием потока в двух последовательно установленных конических СУ с отношением диаметров $D_1/D_i =$ = 98/70 мм и $D_i/D_2 = 70/50$ мм [7], где D_i – промежуточный диаметр. Диапазон минимальных и максимальных расходов жидкости Q₁ такого расходомера был рассчитан на величины от 20 до 60 м³/ч. Как видно, ориентация рассматриваемого расходомера была горизонтальной, а не вертикальной, которая не всегда удобна для практики и создает нежелательное дополнительное гидравлическое сопротивление при монтаже из-за поворота потока в монтажных трубах на 360°.

Рис 1. Схема использованного комбинированного конического сужающего устройства (в последней модификации оно выполнено с углом выходного конуса 15°).

Цель работы состояла в обосновании выбора в БТР-100 одного из диаметров: D_1 , D_i или D_2 – для расположения двухизотопного γ -плотномера на основе источников ²⁴¹Am и ¹³⁷Cs и в оценке погрешностей измерения расхода жидкости Q_l , обводненности w и расходного объемного газосодержания В с учетом отмеченных выше особенностей работы как обоих каналов излучения, так и конических сужающих устройств, основываясь на анализе полученных экспериментальных данных и на результатах, связанных с методами определения расходов компонент посредством СУ [6-8]. Погрешности величин Q_l , *w* и β служат основными составляющими при нахождении неопределенности массового расхода нефти в многофазных потоках в соответствии с методикой, представленной в [14].

ЭКСПЕРИМЕНТАЛЬНОЕ ОБОРУДОВАНИЕ

Сужающее устройство с последовательным дросселированием многофазного потока показано на рис. 1 [7, 8]. В соответствии с рисунком у-плотномер в принципе может размещаться на одном из трех диаметров, что в свою очередь может приводить к разным результатам при определении компонентного состава исследуемого потока и его расхода. Сужающее устройство, схема которого показана на рис. 1, служит частью бессепарационного расходомера, показанного на рис. 2, заимствованном из [15]. Другой частью расходомера служил ү-плотномер с двумя источниками ²⁴¹Ат и ¹³⁷Сs с активностями 450 и 5 мКи соответственно. Гамма-детектор был выполнен для этой серии экспериментов на основе сцинтиллятора Nal, который впоследствии был заменен на более совершенный кристалл из германата висмута BGO с температурной стабилизацией положения пиков поглощения [13]. Гамма-источники располагались в одном стандартном корпусе БГИ-50П со свинцовой защитой и коллиматором и облучали поток через специальные "окна" по диаметру

горизонтальной трубы из нержавеющей стали 12XH18T с внутренним диаметром 98 мм. Время одного измерения сигналов было установлено равным 1 с, а число измерений — около 300. Фотографию двухизотопного γ-плотномера во время испытаний можно найти в [13]. Блоки γ-плотномера и СУ соединялись стандартными воротниковыми фланцами 1-100-16 ГОСТ 12821.

Эксперименты с БТР-100, показанным на рис. 2, проводились на многофазном эталоне ВНИИР ГЭТ195-2011 [12], который работал при температуре около 20°С на имитаторе нефти — эксоле D100 плотностью около 815.5 кг/м³, пресной водопроводной воде при объемных расходах жидкости Q_l от 24 до 56 м³/ч и воздухе при давлении 5 бар и расходных объемных газосодержаниях $\beta = Q_g/(Q_g + Q_l)$ от 0 до 72% [6–8]. Исследуемые потоки поступали в расходомер слева через γ -плотномер (см. рис. 2).

Как отмечалось, эксперименты на смесях североморской нефти, соленой воды и сжатого до давления 5 бар газообразного азота проводились на стенде фирмы TUV SUD NEL [11] при стабилизированной температуре 40°С, объемных расходах жидкости Q_l от 16 до 48 м³/ч и расходных объемных газосодержаниях β от 0 до 84%. В качестве источника ¹³⁷Сs γ -плотномера, установленного на трубе с внутренним диаметром 101.6 мм, использовался серийный прибор Tracerco Gammatrol с активностью около 10 мКи (0.37 ГБк) и фиксированным фирмой временем измерения сигнала 0.1 с, а число измерений менялось от 500 до 2500.

В этой работе использовался пакет экспериментальных данных [16], применявшийся в работах [6–8, 17, 18].

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Результаты для горизонтальных двухфазных жидкостных потоков нефть-соленая вода, полученные на полигоне TUV SUD NEL с ¹³⁷Cs-γ-плот-

Рис. 2. Макет трехфазного расходомера DN 100 во время испытаний на стенде ГЭТ195-2011: у-плотномер с блоком БГИ-50П (слева), сдвоенное СУ с датчиками давления и перепада давления и блок электроники во взрывобезопасном корпусе.

номером, представлены на рис. 3 для объемных расходов $Q_l = Q_0 + Q_w$ от 16 до 48 м³/ч. Все приведенные здесь и ниже сигнальные характеристики ү-плотномера усреднялись за указанные интервалы измерений [6, 7, 18]. Ненулевое положение данных по величине w объясняется остаточной обводненностью нефти, $w \approx 1.2\%$. Для представленных результатов характерно расслоение экспериментальных точек, которое зависит от Q_{l} . Так, обобщающая кубическая парабола (черная сплошная линия) для относительно низких расходов, $Q_l = 20 \text{ м}^3/\text{ч}$ ((16 + 24)/2), проходит заметно ниже кривой (штриховая линия) для сравнительно высоких расходов, $Q_l = 40$ и 48 м³/ч, в диапазоне обводненностей w от 0 до ~58% ($\delta I_{\rm max} \approx 120~{\rm cps}$ (cps – отсчет в секунду) при $w \approx 20\%$). Причем штриховая линия приближается к линейной зависимости, что свидетельствует о гомогенизации потоков, а точки для $Q_l = = 32 \text{ м}^3/\text{ч}$ ведут себя нестабильно, тяготея то к штриховой линии при $w \le 20\%$, то к сплошной линии при 30 < w < 50%. Что касается диапазона w от 58 до 100%, то положение отмеченных линий здесь меняется местами, но с заметно меньшей разницей – $\delta I_{\text{max}} \approx 60$ срs. Обратим внимание, что диапазон слева от точки *w* ≈ 58% соответствует обратной эмульсии (вода в нефти), а справа от нее – прямой (нефть в воде). Следует отметить, что, например, сигналу γ -плотномера I =

= 14600 срѕ могут соответствовать два значения: $w \approx 22\%$ и $\approx 30\%$ — на сплошной и штриховой линиях (см. рис. 3), а величине $w \approx 22\%$ могли бы соответствовать два сигнала γ -плотномера: $I \approx 14600$ срѕ и $I \approx 14720 \text{ сps} - \text{на этих же кривых. В частности, для}$ обратных эмульсий расслоение данных *I(w)* можно объяснить скольжением $s = V_0/V_w$ более легкой нефти относительно тяжелой соленой воды с уменьшением величины *s* по мере увеличения скорости потока V и его гомогенизации, что сопровождается увеличением сечения, занятого нефтью, и соответствующим повышением сигнала *I γ*-плотномера (зарегистрированное прошедшее излучение). Обращает на себя внимание тот факт, что дальнейшее увеличение расхода Q_l более 40 м³/ч практически не влияет на показания у-плотномера, что может объясняться установившимся гомогенизированным режимом течения потоков нефть-вода при $Q_l \ge 40 \text{ м}^3/4$. Кроме того, если провести обобщающую кривую через точки, соответствующие 40 и 48 м³/ч в диапазоне 0 < w < 50%(красная линия), то абсолютное отклонение от нее Δw не превышает в основном величины $\pm 1\%$. что можно считать очень хорошим показателем при измерении обводненности w, учитывая довольно короткое время одного измерения, 0.1 с, которое в принципе можно увеличить на порядок с ожидаемым улучшением работы ү-плотномера.

Рис. 3. Зависимости интенсивностей *I* (cps – отсчет в секунду) прошедшего излучения от обводненности *w* для ¹³⁷Cs- γ -плотномера и потоков нефть—соленая вода для объемных расходов $Q_l = Q_0 + Q_w$ от 16 до 48 м³/ч по результатам испытаний на полигоне фирмы TUV SUD NEL.

Таким образом, повышение расхода Q_l потока нефть—соленая вода вдвое (с 20 до 40 м³/ч), что равносильно такому же росту массовой скорости двухфазной смеси $m = Q\rho/A$, способствует гомогенизации горизонтальных двухфазных жидкостных потоков со стабилизацией экспериментальных точек I(w) около соответствующей обобщающей кривой с относительно небольшими отклонениями от нее.

Рассмотрим теперь поведение двухфазных потоков с газом с тем же ¹³⁷Сs- γ -плотномером. С качественной точки зрения картина в этом случае выглядит примерно такой же, как для жидкостных двухфазных потоков, т.е. наблюдается расслоение точек $I(\beta)$ из-за роста скольжения *s* легкой фракции – газа – по мере снижения расхода двухфазного потока Q: $\varphi = [1 + s(1 - \beta)/\beta]^{-1}$ [6]. Анализ экспериментальных данных для потоков как нефть-газ, так и вода-газ показал, что на графике $I(\beta)$ точки, соответствующие расходам $Q_i = 16$ и 24 м³/ч, располагаются преимущественно ниже (на величины δI от 40 до 120 срз) точек для расходов 32 и 40 м³/ч с некоторой хаотичностью.

При этом удвоение величины Q_1 с 16 до 32 м³/ч приволит к значительному снижению хаотичности, причем максимальное отклонение экспериментальных точек от аппроксимирующих кривых не превышает в основном сравнительно малого для этих случаев значения $\delta\beta_{max} \approx \pm 2\%$, а дальнейшее увеличение Q_l до 40 м³/ч практически не меняет их положения. Это иллюстрирует рис. 4, на котором точки для расходов 16 и 24 м³/ч не показаны, чтобы не загромождать поле графика. Можно отметить, что для трехфазного потока нефть-вода-газ при w = 50% аппроксимирующая кривая располагается между кривыми для двухфазных потоков нефть-газ и соленая вода-газ вплоть до значений $\beta \approx 70\%$ примерно с таким же преимущественным максимальным отклонением $\Delta\beta_{max} \approx$ $\approx \pm 2\%$, как и для потоков нефть-газ и вода-газ.

Таким образом, для потоков жидкость—газ увеличение расхода жидкости Q_l вдвое (с 16 до 32 м³/ч), что равносильно такому же повышению массовой скорости двухфазного потока $m = Q\rho/A$, способствует гомогенизации горизонтальных

Рис. 4. Зависимости интенсивностей *I* прошедшего излучения от объемного газосодержания β для ¹³⁷Cs- γ -плотномера и потоков нефть-газ, соленая вода-газ и смесей нефть-вода-газ при *w* = 50% по результатам испытаний на полигоне фирмы TUV SUD NEL.

двухфазных и трехфазных потоков с газом и стабилизации экспериментальных точек *I*(β) около соответствующих обобщающих кривых с относительно небольшими отклонениями от них.

Что касается работы у-плотномера с источником ²⁴¹Ат и сцинтиллятором NaI. то некоторые характерные результаты представлены на рис. 5 для горизонтальных трехфазных потоков эксолвода-газ. Согласно рис. 5, точки I(β), соответствующие относительно большим расходам (40-56 м³/ч) располагаются преимущественно выше точек для сравнительно низких расходов, $Q_1 = 24 \text{ м}^3/\text{ч}$. Это также объясняется увеличением гомогенизации трехфазного потока эксол-водагаз при $w \approx 50\%$ по мере роста величины Q_l , что сопровождается ростом истинного объемного газосодержания ф и соответствующим повышением сигнала І ү-плотномера. Похожим образом ведут себя сигналы ²⁴¹Ат-канала для двухфазных потоков вода-газ [18], которые получены на стенде ГЭТ195-2011. Положение отдельных точек на рис. 5, например, с координатами w = 2.5% и I = 3906 срѕ при Q = 56 м³/ч, а также w = 25.8% и

I = 5598 срѕ при $Q = 48 \text{ м}^3$ /ч объясняется отсутствием температурной стабилизации пика поглощения в экспериментах с кристаллом NaI [13], когда показания могут снижаться с увеличением температуры потока и γ -детектора. Следует отметить, что относительные погрешности измерения интенсивностей $\delta I/I$ (±отклонение от средней величины) для модифицированного спектрометрического детектора с кристаллом BGO [13] примерно одинаковы для обоих изотопов и составляют около ±0.17% для воздуха, ±0.23% для эксола D100 и ±0.32% для воды при интервале измерения 60 с.

Таким образом, можно сделать промежуточный вывод о похожести поведения сигналов I(w)и $I(\beta)$ горизонтальных γ -плотномеров для обоих источников γ -квантов с различными смесями жидкостей разных плотностей и потоков жидкость-газ по мере роста объемного расхода Q_l и повышения степени гомогенизации исследованных горизонтальных потоков. При этом представляется достаточным увеличение величины Q_l вдвое от минимального значения, задаваемого

Рис. 5. Зависимости интенсивностей *I* прошедшего излучения от расходного объемного газосодержания β для ²⁴¹Amγ-плотномера с кристаллом NaI и потоков эксол—вода—газ по результатам испытаний на стенде ГЭТ195-2011. *P* = 5 бар, *w* ≈ 50%.

стендом. Это равносильно такому же удвоению массовой скорости потока *m*, которое можно обеспечить перенесением измерений сигналов $I(w, \beta)$ из сечения диаметром ~100 мм в промежуточное сечение $D_i = 70$ мм ($(D_1/D_i)^2 \approx 1.43^2 \approx 2$).

ОПТИМИЗАЦИЯ КОНСТРУКЦИИ ТРЕХФАЗНОГО РАСХОДОМЕРА

С учетом представленного выше вывода конструкцию макета трехфазного расходомера нефть—вода—газ горизонтальной ориентации [13, 17], в котором двухизотопный γ -плотномер просвечивал поток через внутренний диаметр 98 мм, целесообразно изменить так, как это показано на рис. 6. В этой конструкции γ -плотномер (позиции 2, 10) в одном из вариантов взрывобезопасного исполнения перемещен из отдельного блока с внутренним диаметром 98 мм, как было в конструкции макета (см. рис. 2), в сечение СУ с промежуточным внутренним диаметром $D_i = 70$ мм. Это позволило обеспечить отмеченное выше удвоение массовой скорости многофазных потоков, которое сопровождается стабилизацией данных *I*(*w*) при относительно небольшом проигрыше в статической погрешности измерения сигнала в соответствии с соотношением (3). При этом металлоемкость конструкции крепления у-плотномера заметно снижается по сравнению с вариантом, показанным на рис. 2. Механическую основу усовершенствованного расходомера составляют: комбинированное СУ 5 с последовательным дросселированием потока и рама 7 для монтажа взрывобезопасных датчиков давления 4 и перепада давления 6 Сапфир22-МПС, а также блока электроники 8 во взрывобезопасном исполнении. Блок электроники 8 выполнен на основе стандартного промышленного компьютера с платами для измерения сигналов всех датчиков и платы цифроаналогового преобразователя для передачи данных в систему управления [5, 13, 19]. Блок 8 размещен перед СУ так же, как показано на рис. 2. Современная электронная база позволяет заметно уменьшить массогабаритные характеристики блока электроники по сравнению с вариантом макета на рис. 2, что, однако, не принципиально

Рис. 6. Конструкция усовершенствованного бессепарационного трехфазного расходомера нефть—вода—газ горизонтальной ориентации. 1 — соединительный фланец; 2 — двухизотопный γ -источник; 3 — платиновые датчики температуры потока T_f и корпуса T_b ; 4 — датчик давления; 5 — сужающее устройство 70/50 мм; 6 — датчик перепада давления; 7 — крепежная рама; 8 — взрывобезопасный корпус электроники; 9 — разъемы датчиков, γ -детектора, питание 24 В и Ethernet; 10 — спектрометрический γ -детектор.

в рамках поставленной цели. Углы обоих входных конусов СУ составляют 30° , как было в предыдущем варианте (см. рис. 1), а угол выходного конуса уменьшен с 30° до 15° .

Измерение перепада давления для определения объемного расхода осуществляется с помощью горизонтального СУ 70/50 мм (5). Преимущество данного СУ состоит в экспериментально обоснованном использовании предложенного в [8] метода обработки сигнала датчика перепада давления через это СУ с довольно хорошей относительной погрешностью: $\delta Q/Q = \pm 3\% - для$ примерно 90% экспериментальных точек из 208 комбинаций компонент и расходов и $\delta Q/Q = \pm 2\%$ для 74% точек в идеализированном случае, кода погрешностями величин *w* и β можно пренебречь (значения *w* и β брались равными показаниям стенда). Особенность этого метода состоит в том, что обобщающее выражение для объемного расхода жидкости $Q_l = Q_w + + Q_{ex}$, представлено в нетрадиционном виде (4):

$$Q_1 = \Delta P^{f_1} f_2(w, \beta). \tag{4}$$

Здесь функция $f_2(w, \beta)$ учитывает геометрический параметр ξ для СУ 70/50 мм и среднюю плотность р потока, которая зависит от его компонентного состава, а показатель степени $f_1(w, \beta)$ учитывает не только влияние (или отсутствие) кризиса гидравлического сопротивления в СУ на перепад давления ΔP в нем [6–8], в частности, для потоков вода-газ, но и повышенное влияние фактора трения для более вязких смесей эксол-газ [8], что определяется компонентным составом и структурой потока, а также другими неучтенными факторами.

Вид функций $f_1(w, \beta)$ и $f_2(w, \beta)$ по результатам испытаний на стенде ГЭТ195-2011 представлен в [8] в виде 3D-фигур для трехфазных потоков и их предельных случаев. Отметим, что эта часть общего алгоритма обработки сигналов трехфазного расходомера нефть—вода—газ представляется наиболее сложной. Абсолютные погрешности определения величин w и β , влияющие, помимо отмеченной выше ошибки СУ, на возможные отклонения расходов компонент многофазного потока, могут оцениваться в основном как $\Delta w \approx \pm 1\%$ (см. рис. 3) и $\Delta \beta \approx \pm 2\%$ (см. рис. 4), что вполне оптимистично для практического применения трехфазного расходомера и будет прокомментировано в следующем разделе.

Что касается алгоритма обработки сигналов для СУ с большим отношением диаметров, $D_1/D_2 = 2$, как это сделано в аналоге [2, 9], то такой алгоритм

представляется более сложным из-за широкого разнообразия режимов течения, что отмечено во введении. Как показано в [6, 7], в частности для потоков вода—газ, при изменении Q_l от 24 до 48 м³/ч режимы течения меняются от волнового в широком сечении 100 мм до снарядного или прерывистого в промежуточном сечении 70 мм и до дисперсно-кольцевого в узком сечении 50 мм. При этом усредненное скольжение s_{av} может изменяться в СУ 98/70 мм от 3.25 до 1.5, а в СУ 70/50 мм — в диапазоне 1.5—1. В связи с этим для СУ 70/50 мм можно использовать только одну модель режимов течения потоков вода—газ — квазигомогенную, когда $\varphi = 0.8\beta$ [7].

Что касается некоторого ухудшения статической погрешности измерения величин δw и $\delta \beta$, то эти характеристики γ -плотномера можно улучшить повышением активности γ -источника. Так, измерения, проведенные в Институте физикотехнических проблем, г. Дубна, показали, что замена γ -источника ¹³⁷Cs активностью 5 мКи на аналогичный источник с активностью 5 мКи на аналогичный источник с активностью 17 мКи приводит к увеличению сигнала *I* на атмосферном воздухе более чем в 8 раз: с 15500 срs [13] до примерно 130000 срs – с учетом фона без насыщения сигнала используемого сцинтиллятора BGO при соответствующей корректировке расстояния между γ -источником и γ -детектором.

Предложенная конструкция позволяет заметно улучшить не только обсуждаемые метрологические характеристики расходомера, но и его массогабаритные показатели по сравнению с макетом, представленным на рис. 2. Оценки показали, что общая длина блоков СУ и γ-плотномера сократилась с 1510 (см. рис. 2) до 790 мм (при тех же высоте и ширине), а масса уменьшилась со 145 до примерно 109 кг. В свою очередь предельное расчетное давление увеличилось с 50 до 70 бар при схожей конструкции "окон" для γ-квантов источника ²⁴¹Ат на меньшем диаметре СУ.

ЧАСТНЫЕ СЛУЧАИ ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ

Предложенные составляющие элементы усовершенствованного трехфазного расходомера (см. рис. 6) могут использоваться и для решения частных задач диагностики двухфазных потоков. Так, анализ экспериментальных данных, представленных на рис. 3, показывает, что γ -плотномер на основе источника ¹³⁷Сѕ может применяться в качестве измерителя обводненности нефти или влагомера двухфазных потоков нефть—вода во всем диапазоне *w* от 0 до 100%. При этом нет необходимости предусматривать специальные "окна" на диаметре около 70 мм для γ -квантов с относительно низкой энергией, поскольку энергия цезиевого источника сравнительно высока —

около 660 МэВ. Абсолютную погрешность определения обводненности w можно оценить, сравнивая эталонные показания w_{tb} стенда с результатами измерений $w_m(I)$. Величины w_m могут быть найдены, если перестроить зависимости I(w) на рис. З в координатах *w*-*I* и установить вид зависимости $w_m(I)$ для всего диапазона *w* при объемных расходах $Q_l \ge 40 \text{ м}^3/\text{ч}$. Расчеты показали, что в случае использования полинома пятой степени для зависимости w_m(I) абсолютные погрешности $\Delta w = w_{tb} - w_m$ не превышают в основном $\pm 1\%$ для 85% точек от общего числа, равного 20-ти точкам, во всем диапазоне w, две точки отклоняются примерно на $\pm 1.5\%$, а максимальное отклонение составляет -2.7% всего для одной точки. В этом случае у-плотномер может быть конкурентом полнодиапазонного влагомера Phase Dynamics F [20], для которого величины абсолютной погрешности Δw оцениваются как: $\pm 1\%$ для диапазона 20 ≤ *w* ≤ 70% и ±1.5% для 70 ≤ *w* ≤ 100%.

Другим применением компонент нового трехфазного расходомера DN 100 может быть использование комбинации γ -плотномера на основе источника ¹³⁷Cs, установленного в сечении 70 мм, и сдвоенного СУ в качестве двухфазного расходомера нефть—вода для всего диапазона *w*, когда для определения расхода применяется вариант СУ 70/50 мм. В этом случае абсолютные ошибки определения объемного расхода жидкости δQ_l можно получить на основе экспериментальных данных, которые представлены на рис. 7 по результатам испытаний на эталоне ГЭТ195-2011 для смесей эксол—вода в диапазоне *w* от 0 до 100%. Как видно из рис. 7, полученные данные обобща-

ются семейством линейных зависимостей $\Delta P(Q_l^2)$, которые при одинаковых Q_l смещаются в сторону больших величин ΔP из-за значительно большей вязкости эксола по сравнению с водой (более чем в 3 раза [7, 8]). Как и в предыдущем случае, абсолютные погрешности определения объемных расходов жидкости можно оценить, сравнивая эталонные показания Q_{ltb} стенда с результатами расчетов на основе измерений перепадов давления $Q_{lc}(\Delta P)$. Величины Q_{lc} могут быть найдены, если перестроить рис. 7 в координатах $Q_l - \Delta P$, установить вид зависимостей $Q_{lc}(\Delta P)$ при различных *w* и определить величины *Q*_{*lc*} с помощью полученных соотношений. Расчеты показали, что расположение относительных погрешностей $\delta Q_l/Q_l =$ $= (Q_{ltb} - Q_{lc})/Q_{ltb}$ похоже на нормальное распределение: большинство значений, для 20-ти из 25-ти точек (80%), не превышают $\pm 1.0\%$, отклонения для трех точек составляют -1.5%, а максимальные отклонения не превышают 2.5% только для двух точек при минимальных расходах (около $21 \text{ м}^3/\text{ч}$), что вполне ожидаемо для СУ. Это можно оценить как довольно хороший результат. В рас-

Рис. 7. Зависимости перепада давления ΔP от квадрата объемного расхода Q^2 для горизонтального СУ 70/50 мм и смесей эксол—вода на стенде ГЭТ195-2011 при различных обводненностях *w* и давлении P = 5 бар.

смотренном идеализированном случае погрешности определения обводненности Δw были минимальными, поскольку величины w принимались равными заданным значениям эталона ГЭТ195-2011. Реальные величины $\Delta Q_l/Q_l$ могут быть несколько больше, если учесть абсолютные погрешности $\Delta w \approx \pm 1\%$, прокомментированные выше, которые сравнительно низки и соизмеримы с погрешностями задания величин w на стендах ГЭТ195-2011 и TUV SUD NEL. Представленные характеристики более чем вдвое превосходят аналогичные результаты, полученные на полигоне TUV SUD NEL для потоков нефть-соленая вода, в случае, когда ү-плотномер размещен на диаметре $D_1 \approx 100$ мм и использовалось СУ 98/70 мм [21], причем этот вариант расходомера удовлетворял требованиям ГОСТ [22].

Приведенные на рис. 7 результаты позволяют не только оценить погрешности определения расхода $\delta Q_l/Q_l$, но и найти объемные расходы Q_l методом интерполяции при величинах *w*, изменяющихся от 0 до 1, в диапазоне перепадов давления ΔP от 4.5 до 25 кРа по измеренным величинам ΔP и найденным значениям $w(I) - Q_l(w)_{\Delta P = \text{const}}$.

Еще одним случаем практического применения компонент трехфазного расходомера DN 100 может быть использование γ-плотномера и сдвоенного СУ в качестве двухфазного расходомера маловязких потоков вода—газ. Для этого одноизотопный γ -плотномер целесообразно также установить на промежуточном диаметре 70 мм, использовать СУ 70/50 мм для измерения перепада давления, а СУ 98/70 мм применять для предварительного ускорения потока. Как показано в [7], в этом случае, в частности при давлении потока 5 бар, для определения массового расхода жидкости (воды) G_l удобно пользоваться соотношением:

$$G_{l} = (1 - x) \frac{\sqrt{2}A_{l}A_{2}}{\sqrt{A_{l}^{2} - A_{2}^{2}}} \frac{1}{\sqrt{1 + \lambda(\operatorname{Re})\Upsilon\xi^{2}}} \times \sqrt{\Delta P[\rho_{g}C_{l}\beta + \rho_{l}(1 - C_{l}\beta)]},$$
(5)

в котором расходное массовое газосодержание $x = G_g/(G_g + G_l)$ и величина β связаны выражением $x = [1 + (1 - \beta)\rho_l/(\rho_g\beta)]^{-1}$, γ – калибровочный параметр СУ [5, 7], а для определения средней плотности двухфазного потока экспериментально обосновано использование квазигомогенного соотношения $\varphi = C_1\beta$ при $C_1 = 0.8$. При этом максимальные относительные отклонения $\delta G_l/G_l$ не превышают в основном $\pm 2\%$ (без учета вклада неопределенностей, обусловленных γ -плотномером). Это примерно в 2 раза выше прокомментированной выше соответствующей погрешности для потоков нефть—вода, что вполне ожидаемо для двухфазных потоков жидкость—газ, отличающихся колебаниями давления и перепадов давления в СУ и показаний γ -плотномера [6–8]. Что касается

Рис. 8. Зависимость резонансной частоты *f* горизонтального высокочастотного датчика сплошности DN 70 от обводненности потока *w* для различных водонефтяных эмульсий.

дополнительного влияния абсолютной погрешности определения газосодержания β на окончательный результат, то она в основном может не превышать величины $\Delta\beta \approx \pm 2\%$, что подтверждается анализом данных, представленных на рис. 4, поэтому дополнительный вклад этой погрешности в общую величину может быть сравнительно невелик. Так, перестроение зависимости $I(\beta)$ на рис. 4 в зависимость $\beta(I)$, подбор соответствующих аппроксимирующих квадратичных полиномов и определение абсолютных погрешностей $\Delta \beta =$ $\beta_m(I) - \beta_{tb}$, где β_m – рассчитанная величина на основе измерений, а β_{tb} – значение, заданное стендом, показали, что для 92% из 47-ми точек погрешность находится в пределах $\Delta\beta = \pm 2\%$, причем для 36-ти точек она составляет ±1.5%, для двух точек $\pm 2.5\%$ и еще для двух $\pm 3\%$.

ПРОДЛЕНИЕ СРОКА СЛУЖБЫ ТРЕХФАЗНОГО РАСХОДОМЕРА ДО ЗАМЕНЫ ГАММА-ИСТОЧНИКА

Срок службы рассмотренного бессепарационного трехфазного расходомера определяется, в частности, регламентом на замену γ-источника ¹³⁷Cs, и срок службы можно было бы продлить, найдя адекватную замену источнику. Анализ литературы показывает, что альтернативой в принципе могут быть емкостный датчик сплошности потока [5, 10] или камертонный плотномер 804 [23], в котором частота колебаний камертона зависит от плотности окружающей его среды.

Что касается емкостного датчика, то эксперименты с водонефтяными эмульсиями показывают, что на смесях нефти и водопроводной воды его сигнальная характеристика f(w) (рис. 8), измеряемая высокочастотным резонансным методом [5, 10], вполне приемлема для практической реализации предлагаемого способа с разумными максимальными отклонениями от обобщающей аппроксимирующей кривой для отдельных точек в диапазоне w около 70%. Однако при замене водопроводной воды на соленую (пластовую) зависимость f(w) становится неоднозначной в зоне обращения эмульсий *w* от 60 до 80%, что иллюстрирует рис. 8. Это обусловлено существенным влиянием солености воды на изменение проводимости и диэлектрических свойств смеси нефть-пластовая вода для прямых и обратных эмульсий, когда меняется носитель двухфазного жидкостного потока.

Что касается плотномера 804 класса 0.5 с камертонным чувствительным элементом, пределами измерений от 0 до 2000 кг/м³, массой около 2 кг и сроком службы не менее 12 лет [23], то предварительные эксперименты на смесях "компрессорное масло—соленая вода (на основе NaCl)" в циркуляционном контуре показали, что такой прибор лишен отмеченных выше недостатков,

Рис. 9. Усовершенствованный бессепарационный трехфазный расходомер нефть—вода—газ без γ -источника ¹³⁷Cs. 1 – фланец; 2 – одноизотопный γ -источник ²⁴¹Am; 3 – платиновые датчики температуры корпуса T_b и потока T_f ; 4 – датчик давления; 5 – камертонный плотномер 804; 6 – датчик перепада давления; 7 – сужающее устройство 70/50 мм; 8 – крепежная рама; 9 – взрывобезопасный корпус электроники; 10 – разъемы датчиков, γ -детектора, питание 24 В и Ethernet; 11 – спектрометрический γ -детектор.

свойственных резонансным датчикам сплошности с высокочастотным выходным сигналом [5, 10].

При замене ¹³⁷Сs-канала у-плотномера на плотномер 804 конструкция расходомера (рис. 6) преобразуется к виду, который представлен на рис. 9. Расходомер имеет тот же корпус 2 для γ-источника и неизменные габаритные размеры, а его срок службы до замены оставшегося у-источника ²⁴¹Ат увеличивается более чем вдвое – с 7 до 15 лет в соответствии с регламентом РФ. При этом плотномер 804 присоединяется по стандартному выходу 4/20 мА к свободному входу платы измерения давления с аналогичным стандартным сигналом. Следует отметить, что чувствительный камертон плотномера 804 размешен в сечении выходного конуса с диаметром 70 мм в соответствии с рекомендациями, приведенными в разделе "Оптимизация конструкции трехфазного расходомера". Оптимальное положение камертона по высоте может быть выбрано экспериментально на многофазном стенде. Для повышения точности измерений в трехфазных потоках можно при необходимости использовать сигналы обоих у-источников и плотномера 804 в качестве избыточного уточняющего сигнала.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 4 2023

Наконец, если необходимо повысить рабочее давление расходомера примерно вдвое, можно использовать комбинацию плотномера 804 и γ-источника ¹³⁷Cs, что не требует специальных "окон" для γ-источника низкой энергии ²⁴¹Am.

выводы

Расположение двухизотопного у-плотномера на промежуточном диаметре $D_i = D_1/2^{1/2}$ горизонтального бессепарационного расходомера нефть-вода-газ DN 100 позволяет для обоих источников ¹³⁷Сѕ и ²⁴¹Ат существенно улучшить сигнальные характеристики $I(\beta, w)$, которые практически не зависят от объемных расходов жидкости Q_i во всем диапазоне работы расходомера от 20 до 60 м³/ч. При этом абсолютные отклонения от аппроксимирующих зависимостей находятся в основном в прелелах $\Delta w = \pm 1\%$ и $\Delta \beta = \pm 2\%$ во всем лиапазоне исследованных величин w и β. Ориентация расходомера может быть горизонтальной, что более удобно для практики и не создает дополнительного гидравлического сопротивления при монтаже, а симметризация многофазного потока за счет вертикальной ориентации, как это сделано в аналоге Vx Schlumberger, не обязательна.

Для определения расходов компонент трехфазного расходомера целесообразно использовать сужающее устройство с меньшим геометрическим параметром ξ , а сужающее устройство с большей величиной ξ применять для предварительного ускорения многофазного потока с целью снижения разнообразия режимов течения многофазных потоков в сужающем устройстве с меньшим значением ξ . Такая конструкция позволяет использовать соотношение $Q_1 = \Delta P^{f_1} f_2(w,\beta)$ для определения расходов компонент с довольно хорошей точностью: $\delta Q_l/Q_l$ около $\pm 3\%$ для примерно 90% экспериментальных точек любых трехфазных, двухфазных и однофазных потоков.

Использование предложенной конструкции многофазного расходомера (см. рис. 6) позволяет существенно улучшить его массогабаритные характеристики по сравнению макетом [13, 15]: длина сокращается почти вдвое (с 1510 до 790 мм), а масса — примерно на треть (со 145 до 109 кг).

Срок службы предлагаемого трехфазного расходомера до замены высокоэнергетичного γ-источника ¹³⁷Cs в принципе повышается примерно в три раза по сравнению с аналогом Vx Schlumberger на основе источника ¹³³Ba из-за разницы в периодах полураспада.

Отдельные измерительные системы усовершенствованного бессепарационного расходомера могут применяться в качестве полнодиапазонного влагомера нефть—вода в диапазоне *w* от 0 до 100% с абсолютной максимальной погрешностью около $\pm 1.5\%$, двухфазного расходомера нефть—вода с относительной погрешностью определения расхода жидкости в пределах требований лучше, чем это предусмотрено ГОСТ P8.615-2005, а также двухфазного расходомера вода—газ с относительной погрешностью определения расхода $\delta Q_l/Q_l \approx \pm 2\%$ при использовании квазигомогенной модели $\varphi =$ = 0.8 β для нахождения средней плотности потока.

Замена низкоэнергетичного γ-источника на камертонный плотномер 804 позволяет более чем вдвое увеличить срок эксплуатации трехфазного расходомера до регламентной замены высокоэнергетичного γ-источника при неизменных габаритных размерах расходомера и комплектации измерительной электроники.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Babelli I.M.M.* // Proceedings of International Nuclear Conference. Kuala Lumpur, 1997. P. 371.
- 2. Atkinson I., Berard M., Hanssen B.-V., Segeral G. // The 19-th International North Sea Flow Measurement Workshop. Oslo, Norwegian, 1999. P. 154.
- Bukur D.B., Daly J.G., Patel S.A. // Ind. Eng. Chem. Res. 1996. V. 35. P. 70.
- 4. Pan L. PhD. London: Imperial College, 1996.

- Filippov Y.P., Panferov K.S. // International Journal of Multiphase Flow. 2012. V. 41. P. 36. https://doi.org/10.1016/j.ijmultiphaseflow.2011.12.005
- 6. Филиппов Ю.П., Филиппов А.Ю. // Тепловые процессы в технике. 2021. Т. 13. № 3. С. 98. doi 1034759/tpt-2021-13-398-110
- 7. Филиппов А.Ю., Филиппов Ю.П. // Теплоэнергетика. 2022. № 5. С. 18. https://doi.org/10.1134/S0040363622050010
- 8. Филиппов А.Ю., Филиппов Ю.П. // Тепловые процессы в технике. 2022. Т. 14. № 5. С. 225. doi 1034759/tpt-2022-14-5-225-240
- Pinguest B.G., Miller G.J., Moksnes P.O. // The 26-th International North Sea Flow Measurement Workshop. 21-24 October 2008. TUV NEL Publisher. Paper 3.1. P. 1. https://nfogm.no/wp-content/uploads/2019/02/2008-08-The-Influence-of-Liquid-Viscosity-on-Multiphase-Flow-Meters-Pinguet-Schlumberger.pdf
- Коврижных А.М., Панферов К.С., Филиппов Ю.П., Демьянов А.А., Кепещук Т.В., Поярков С.А.// Автоматизация, телемеханизация и связь в нефтяной промышленности. 2007. № 8. С. 3.
- 11. https://www.tuvsud.com/en-gb/industries/chemicaland-process/flow-measurement
- The State Primary Special Standard Unit of Mass Flow of Gas-Liquid Mixtures. https://vniir.org/standards/ get-195-2011
- Свешников Б.Н., Смирнов С.Н., Филиппов А.Ю., Филиппов Ю.П. // Письма в журнал Физика ЭЧАЯ. 2021. Т. 18. № 1(233). С. 58.
- 14. Абрамов Г.С. // Автоматизация, телемеханизация и связь в нефтяной промышленности. 2012. № 1. С. 5.
- 15. *Filippov Y.P., Kakorin I.D.* // Flow Measurement and Instrumentation. 2016. V. 52. P. 163.
- Экспериментальные исследования многофазных бессепарационных расходомеров на полигонах TUV SUD NEL и ГЭТ195-2011: протоколы и файлы. Дубна: ОИЯИ, ЛФВЭ, 2012/13.
- Filippov Yu.P., Kakorin I.D., Kovrizhnykh A.M., Miklayev V.M. // Physics of Particles and Nuclei Letters. 2017. V. 14. № 4. P. 602. https://doi.org/10.1134/S1547477117040082
- Filippov Yu.P., Filippov A.Yu. // Flow Measurement and Instrumentation. 2019. V. 68. P. 101578. doi org/ https://doi.org/10.1016/j.flowmeasinst.2019.101758
- Filippov Y.P., Romanov S.V., Panferov K.S., Sveshnikov B.N. // Proc. of the 22-th International Cryogenic Engineering Conf. (ICEC 22) (Seoul, Korea, 2008) Gyeongnam: KIASC, 2009. P. 419. ISBN 9788995713822
- 20. Влагомеры поточные моделей L и F. Описание типа средства измерений, 56767-14.pdf.
- 21. *Какорин И.Д., Филиппов Ю.П.* // Измерительная техника. 2013. № 11. С. 33.
- 22. ГОСТ Р 8.615-2005. ГСИ. Измерения количества извлекаемых из недр нефти и нефтяного газа. Общие метрологические и технические требования.
- Плотномер 804. piezoelectric.ru/Products/Densitometer804/