_____ ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ __ ТЕХНИКА

УДК 537.621.3+621.317.421

РАСШИРЕНИЕ ВОЗМОЖНОСТЕЙ МАГНИТОМЕТРА С ПОЛЮСАМИ-ПОЛУСФЕРАМИ

© 2023 г. А. А. Сандуляк^а, Д. А. Сандуляк^{а,*}, М. Н. Полисмакова^а,

В. А. Ершова^{*a*}, А. В. Сандуляк^{*a*}

^аМИРЭА — Российский технологический университет Россия, 107076, Москва, ул. Стромынка, 20 *e-mail: d.sandulyak@mail.ru Поступила в редакцию 24.09.2022 г. После доработки 05.11.2022 г. Принята к публикации 17.12.2022 г.

Описан модернизированный магнитометр, работающий на пондеромоторном принципе, в котором специально используемые полюса сферической формы создают неоднородное магнитное поле с зонами с практически постоянными значениями магнитного градиента (MG) и/или магнитного силового фактора (MFF) в окрестностях экстремумов координатных зависимостей MG и MFF. Зоны MG_{const} и MFF_{const}, фиксируемые в магнитометре ограничителями в виде управляемых маркеров (лазерных), имеют индивидуальные значения координат их условных центров x_{extr} и протяженностей Δx с допускаемой погрешностью изменения данных MG и MFF в пределах таких зон. Показано, что при разных взаимных расстояниях между полюсами-полусферами диаметром *D* зона MFF_{const} в сравнении с зоной MG_{const} располагается (по x_{extr}/D) на треть ближе к межцентровой линии полюсов-полусфер и является настолько же менее протяженной (по $\Delta x/D$).

DOI: 10.31857/S0032816223030102, EDN: ISGMKU

1. ВВЕДЕНИЕ

К выполнению ряда исследований и измерений, связанных с действием неоднородного магнитного поля, нередко предъявляются те или иные требования по его неоднородности. Так, необходимым требованием может быть обеспечение сравнительно постоянного магнитного градиента (MG) такого неоднородного поля. В реально создаваемом неоднородном поле такому требованию, т.е. условию grad $H \cong \text{const}$ или grad $B \cong$ \cong const (по напряженности поля *H* или по индукции $B = \mu_0 H$, где $\mu_0 = 4\pi \cdot 10^{-7}$ Гн/м — магнитная константа), можно подчинить лишь определенную ограниченную зону - назовем ее зоной MG_{const}. Необходимым требованием может быть также обеспечение сравнительно постоянных значений магнитного силового фактора (MFF), представляющего собой произведение HgradHили BgradB. В создаваемом неоднородном поле такому требованию, а именно условию Hgrad $H \cong$ const или Bgrad $B \cong$ const, тоже можно подчинить лишь ограниченную зону – назовем ее зоной MFF_{const}.

Подобные требования оговаривают, например, для магнитометров, которые для определения магнитной восприимчивости χ образцов малого объема *V* используют пондеромоторный принцип Фарадея. Измеряемая ими величина — это пондеромоторная (магнитная) сила F_m , которая действует на изучаемый образец в создаваемом неоднородном магнитном поле. Исходя из известных [1–6] идентичных выражений $F_m = = \mu_0 V \chi H \text{grad} H$ или $F_m = V \chi B \text{grad} B / \mu_0$, вычисляются значения χ :

$$\chi = F_m / (\mu_0 V H \text{ grad } H)$$

$$\mu \pi \mu$$

$$\chi = F_m \mu_0 / (V B \text{ grad } B).$$
(1)

Эти выражения указывают на то, что для повышения достоверности получаемых результатов изучаемый образец (хотя и малого объема, но все же обладающий реальными линейными размерами) следует размещать в той зоне неоднородного поля, где эту неоднородность можно считать практически постоянной. При этом по вопросу (пока дискуссионному) о том, какой из зон неоднородности, а именно MG_{const} или MFF_{const} , отдавать предпочтение при реализации такого вида магнитометрии, мнения пока неоднозначны [7–12].

Надо сказать, что применительно к действующим и предлагаемым магнитометрам объем аргументированных данных о наличии зон MG_{const} или MFF_{const} , их местоположении и размерах, к

Рис. 1. Магнитометр магнитного поля с зонами постоянной неоднородности: **a** – вариант использования полюсов-полусфер (b = 13 мм, D = 100 мм, $I\omega = 12000 \text{ A}$, где I – величина тока в обмотке с числом витков ω); **б** – пример координатной характеристики индукции – извилистой; **в** – соответствующая экстремальная характеристика MG; **г** – соответствующая экстремальная характеристика MFF; зоны MG_{const} и MFF_{const} затемнены.

сожалению, крайне невелик. Эти вопросы настолько не проработаны, что важные для пользователя сведения (типа паспортных) о координатных характеристиках MG и MFF, по которым можно было бы судить о самих зонах MG_{const} и/или MFF_{const}, отсутствуют.

Задача создания такого неоднородного поля, в котором бы обеспечивалось наличие необходимых зон MG_{const} и/или MFF_{const} (с обоснованием их идентификации), оригинально решена в работах [13, 14] посредством использования в магнитометре полюсных наконечников сферической формы (элементы такой формы находят применение и в других задачах намагничивания [15]). Вместе с тем этот результативный подход к созданию зон MG_{const} и MFF_{const} (рабочих зон) пока недостаточно подкреплен конкретными научнотехническими решениями. Так, актуальный вопрос обоснования протяженности зон MG_{const} и MFF_{const} рассмотрен лишь частично – для зоны MG_{const} - и то пока применительно лишь к одному диаметру полюсов-полусфер [16], в то время как пользователю важны более информативные, расширенные сведения о протяженности рабочих зон. К тому же отсутствуют предложения по крайне необходимым ограничителям рабочих зон магнитометра, причем предпочтительно бесконтактным и оперативно переустанавливаемым в зависимости от изменяемых от опыта к опыту таких параметров, как расстояние между полюсными наконечниками и их диаметр.

Рассмотрение этих вопросов и выработка соответствующих рекомендаций (опробованных в модернизированном магнитометре для расширения его функциональных возможностей) составили цель данной работы.

2. КОМПЛЕКТАЦИЯ МАГНИТОМЕТРА С ПОЛЮСАМИ-ПОЛУСФЕРАМИ И МОБИЛЬНЫМИ БЕСКОНТАКТНЫМИ ОГРАНИЧИТЕЛЯМИ РАБОЧЕЙ ЗОНЫ

Предложенное в работах [13, 14] решение об использовании в электромагнитной системе магнитометра полюсных наконечников сферической формы имеет принципиальное значение. Так, координатная характеристика индукции В (или напряженности H), получаемая по показанному на рис. 1а направлению х между расположенными на расстоянии b друг от друга полюсами-полусферами магнитометра (эту характеристику фактически несложно получить, пошагово перемещая датчик Холла тесламетра с помощью координатного столика [13, 14]), является извилистой линией (рис. 1б). Наличие на ней примечательного перегиба подтверждают многочисленные экспериментальные зависимости B от x, полученные в работах [13, 14, 17] с использованием полюсов-полусфер с диаметрами D = 100 мм и 135 мм.

Такой тренд координатной характеристики *В* обусловливает (по математической логике) экс-

Рис. 2. Фотография модернизированного магнитометра и его рабочей зоны (для проведения в ней научных исследований и практических измерений). *1* – намагничиваемые обмотки; *2* – магнитопровод с полюсными наконечникамиполусферами; *3*, *4* – нижний и верхний бесконтактные ограничители в виде световых маркеров; *5* – неферромагнитный отражатель; *6* и 7 – нижний и верхний лазерные модули; *8* – неферромагнитная рамная конструкция; *9* – плата управления.

тремальный вид координатных характеристик MG (рис. 1в), а также MFF (рис. 1г) [13] и тем самым наличие в окрестности соответствующих экстремумов как зоны сравнительно постоянного магнитного градиента, т.е. MG_{const}, так и зоны сравнительно постоянного магнитного силового фактора, т.е. MFF_{const}.

В качестве ограничителей этих зон обычно применяются механические средства (упоры), что затрудняет выполнение экспериментов, так как они загромождают межполюсное пространство и снижают оперативность измерений, особенно при вынужденном изменении параметров *b* и *D* в магнитометре.

На рис. 2 показан модернизированный магнитометр, используемый для проведения научных исследований и практических измерений. Преимущество модернизированного магнитометра состоит в том, что, помимо обычно используемых основных элементов магнитометра, таких как намагничиваемая обмотка 1 магнитопровода с полюсными наконечниками 2 (здесь полусферами диаметром D, удаленными друг от друга на устанавливаемое для проведения исследований и измерений расстояние b), он укомплектован ограничителями 3, 4 (указывающими на границы рабочей зоны), которые являются бесконтактными и исключают применение дополнительных механических средств.

Ограничители 3 и 4 (см. рис. 2) представляют собой два световых маркера (в виде узких полос) на неферромагнитном отражателе 5. Те или иные положения этих световых маркеров-ограничителей оперативно устанавливаются посредством целевого перемещения источников света (в частности, лазерных модулей 6 и 7, закрепленных на неферромагнитной рамной конструкции 8). Управление перемещением (независимым друг от друга) лазерных модулей 6 и 7 обеспечивается типовой платой управления 9 (с возможностью соответствующего программирования при помощи персонального компьютера). Она выполняет команду по установке световых маркеров-ограничителей 3 и 4 (в зависимости от изменяемых от опыта к опыту параметров b и D) при помощи, например, шагового двигателя и ременной передачи.

3. ПОЛОЖЕНИЕ ЗОН (ЦЕНТРОВ) MG_{const} И MFF_{const} В МАГНИТОМЕТРЕ

Одна из многочисленных, сходных между собой по виду [13], опытных зависимостей В от х показана на рис. 16. При характерном извилистом тренде такой зависимости ее производная $\partial B/\partial x$ приобретает ожидаемый вид - с экстремумом (см. рис. 1в). При этом здесь фактически $\partial B/\partial x \cong$ $\cong dB/dx \cong \operatorname{grad} B$ с учетом того, что по направлениям у и z (см. рис. 1a), исходящим из любой точки на оси *x*, вблизи оси $\partial B/\partial y \rightarrow 0$ и $\partial B/\partial z \rightarrow 0$ [18]. Значит, зона в окрестности экстремума получаемой (см. рис. 1в) координатной характеристики магнитного градиента (MG) - это зона практически постоянного градиента [13], т.е. зона MG_{const} (или, что то же, зона $(\operatorname{grad} B)_{\operatorname{const}})$ с легко идентифицируемой (как визуально, так и по результатам обработки данных в программе) координатой этого экстремума $x = x_{extr}$. Ее можно находить также по расчетной формуле из работы [19], если полином четвертой степени, приемлемый для аппроксимации данных индукции B (линия на рис. 16), аналитически исследовать на экстремум.

Для иллюстрируемого частного случая координата экстремума характеристики MG (условного центра зоны MG_{const}) $x_{extr} \cong 16$ мм (рис. 1в), и,

Рис. 3. Зависимости относительной координаты x_{extr}/D центра зоны $MG_{\text{const}}(1)$ и центра зоны $MFF_{\text{const}}(2)$ от относительного расстояния b/D между полюсами-полусферами.

что важно, эта величина практически не зависит от $I\omega$ (где I — величина тока в обмотке с числом витков ω) по меньшей мере в диапазоне $I\omega$ = = 3000–22500 A [16, 19]. Аналогично определяются значения x_{extr} при других межполюсных расстояниях b [19] (для диапазона b = 3.5–15.3 мм) и при тех же значениях $I\omega$ (тоже не влияющих на x_{extr}). Исходя из подтвержденного в работе [17] подобия трендов родственных координатных зависимостей (B, MG и MFF) для полюсов-полусфер разного диаметра D, предпочтительно оперировать относительными, как более универсальными и обобщающими, величинами: x_{extr}/D и b/D. Соответствующая зависимость показана на рис. 3 (линия I).

По данным B и gradB можно получить произведения BgradB, т.е. значения магнитного силового фактора (MFF) и его соответствующую координатную (по x) характеристику. Используя, например, данные рис. 16, 1в, легко убедиться, что получаемая зависимость параметра BgradB от х тоже имеет экстремальный вид (рис. 1г). Это свидетельствует и о наличии зоны MFF_{const} (или, что то же, зоны (BgradB)_{const}) с идентифицируемой (как визуально, так и по результатам обработки данных в программе) координатой этого экстремума $x = x_{\text{extr}}$. Для иллюстрируемой на рис. 1г частной зависимости, т.е. при межполюсном расстоянии b = 13 мм, а также и при значениях b в диапазоне 3.5-15.3 мм, координата экстремума x_{extr} (условного центра зоны MFF_{const}) практически не зависит от Іω [19] (в оговоренном диапазоне $I\omega$). Получаемые значения x_{extr} при разных b[19], как и ранее, целесообразно представлять в более универсальном обобщающем виде: x_{extr}/D от b/D, как это показано на рис. 3 (линия 2).

Заметим, что обе зависимости от b/D относительных координат x_{extr}/D центров зон MG_{const} и MFF_{const} (рис. 3, линии *1* и *2*), будучи изображенными в логарифмических координатах, в выбранном диапазоне b/D = 0.035 - 0.153 хорошо квазилинеаризуются, а значит, могут быть описаны функционально идентичными выражениями степенного вида:

$$\frac{x_{\text{extr}}}{D} = A_G \left(\frac{b}{D}\right)^{0.5}; \quad \frac{x_{\text{extr}}}{D} = A_F \left(\frac{b}{D}\right)^{0.5}, \quad (2)$$

где показатель степени при аргументе b/D в обоих случаях равен 0.5, а значения коэффициентов $A_G = 0.44 - 0.45$ для зоны MG_{const} (формула слева) и $A_F = 0.33 - 0.34$ для зоны MFF_{const} (формула справа).

Ввиду того что выражения (2) различаются только значениями коэффициентов A_G и A_F , по меньшей мере в диапазоне b/D = 0.035-0.153 вза-имная дислокация условных центров зон MG_{const} и MFF_{const} остается практически неизменной: отношение координат x_{extr}/D этих центров (как отношение $A_G \ltimes A_F$) составляет в среднем 1.33.

4. ПРОТЯЖЕННОСТИ ЗОН MG_{const} И MFF_{const} В МАГНИТОМЕТРЕ

Протяженности зон MG_{const} и MFF_{const} в окрестности экстремума магнитного градиента (MG) и экстремума магнитного силового фактора (MFF) можно оценивать, задавая то или иное ограничиваемое (условно нормативное) отклонение значений grad *B* и *B*grad *B* от их определенных контрольных значений. Такая оценка, но лишь для зон MG_{const} , оговаривалась ранее в работе [13], но в количественном виде приведена в работе [16] на примере зависимостей, подобных показанной на рис. 1в.

Показателем в таких оценках, как принято в работе [16], удобно брать сначала относительное отличие текущих значений интересующего нас параметра (здесь и далее – по модулю), т.е. gradB или BgradB, от его значения в экстремуме, т.е. $(\operatorname{grad} B)_{\operatorname{extr}}$ или $(B\operatorname{grad} B)_{\operatorname{extr}}$. Величины $(\operatorname{grad} B)_{\operatorname{extr}}$ и $(Bgrad B)_{extr}$ фиксированы и потому пока приемлемы в качестве контрольных. Для зоны MG_{const} такой показатель $E = [(\operatorname{grad} B)_{\operatorname{extr}} - \operatorname{grad} B]/(\operatorname{grad} B)_{\operatorname{extr}},$ а для зоны MFF_{const} – $E = [(B\operatorname{grad} B)_{\operatorname{extr}} - E]$ - BgradB]/(BgradB)_{extr}. Используя характеристики MG и MFF (как на рис. 1в, 1г), стартуя от экстремумов, считывают контрольные данные $(\operatorname{grad} B)_{\operatorname{extr}}$ и $(B \operatorname{grad} B)_{\operatorname{extr}}$ и, далее, текущие данные grad B и BgradB при пошаговом смещении. Поскольку как для зоны MG_{const} , так и для зоны MFF_{const} их смежные полузоны (до экстремума и после него) не строго симметричны, смещаться следует в левую от экстремума полузону. На рис. 1в, 1г направление смещения показано стрелкой внизу, величина смещения (от координаты экстремума x_{extr}) обозначена как x_{-} . Выбор именно такого направления смещения (влево) оправдан ввиду более крутых (чем вправо) трендов характеристик

Рис. 4. Значения показателей E и ε , характеризующих отклонения текущих данных MG (**a**) и MFF (**б**) от их контрольных (для зон MG_{const} и MFF_{const}) значений, для различных значений *I* ω . Установлены по данным рис. 1в, 1г при пошаговом смещении x_{-} от экстремумов MG и MFF, а также при выборе (нормативно ограничиваемом) протяженности $\Delta x \approx 2x_{-}$ зон MG_{const} и MFF_{const}.

grad*B* и *B*grad*B*. Тогда при условном смещении вправо (рис. 1в, 1г), где тренды характеристик grad*B* и *B*grad*B* менее крутые (величина смещения обозначена как x_+), при $x_+ = x_-$ результат оценки протяженности $\Delta x \cong 2x_-$ той или иной зоны вполне удовлетворяет устанавливаемым ограничениям.

Количественная оценка протяженности Δx одной из зон, а именно зоны MG_{const} , демонстрируется на том же примере экстремальной зависимости grad *B* от *x* на рис. 1в. Стартуя от ее экстремума (рис. 1в), в котором grad *B* = (grad *B*)_{extr}, при увеличении x_{-} считывают текущие данные grad *B* и определяют возрастающие значения показателя *E* (рис. 4а). В частности, этот рост (одинаковый для разных *I* ω) достигает значения *E* $\cong 10\%$ при $x_{-} = 5.4$ мм и соответственно $\Delta x \cong 2x_{-} \cong 10.8$ мм (рис. 4a, дополнительная ось абсцисс Δx).

Теперь, когда по такому значению E установлена протяженность полузоны x_{-} (рис. 4a), можно, используя данные рис. 1в, зафиксировать значение градиента на ее границе, т.е. (grad $B)_Z$, и найти среднее для полузоны (и зоны в целом) значение градиента: $\langle \text{grad } B \rangle = [(\text{grad } B)_Z + (\text{grad } B)_{\text{extr}}]/2$. Тогда отклонения текущих значений gradB наиболее объективно оценивать по отношению к $\langle \text{grad } B \rangle$ как к фактически контрольному значению. Тем самым можно перейти от первоначального показателя Е, благодаря которому все же удается предварительно судить о протяженности зоны MG_{const}, к более объективному показателю $\varepsilon = (\langle \operatorname{grad} B \rangle -\operatorname{grad} B$ / $\langle \operatorname{grad} B \rangle \cong E/2$. Значит, указанная зона протяженностью $\Delta x \cong 2x_{-} \cong 10.8$ мм ($\Delta x/D =$ = 0.108) в окрестности экстремума с координатой $x_{\text{extr}} = 16$ мм ($x_{\text{extr}}/D = 0.16$), согласно рис. 4а (дополнительная ось ординат ε), соответствует зоне MG_{const} при фактическом условии $\varepsilon \cong 5\%$, так как отражает допустимое отклонение текущих значений grad *B* именно от среднего значения $\langle \text{grad } B \rangle$.

Условие для оценки протяженности Δx зоны MG_{const} можно варьировать, например ужесточить, ограничивая отклонения grad *B* по отношению к (grad *B*) значением $\varepsilon \cong 3\%$ или, что то же, значением $E \cong 6\%$ по отношению к (grad *B*)_{extr}. То-

Рис. 5. Зависимости относительной протяженности $\Delta x/D$ зоны MG_{const} (1) и зоны MFF_{const} (2) от относительного расстояния b/D между полюсами-полусферами при условии отклонения текущих данных MG и MFF от их усредненных (для зон MG_{const} и MFF_{const}) значений не более чем на 5%.

гда, по данным рис. 4а и рис. 1в, при изменившихся значениях (grad B)_Z и (grad B) и уменьшившемся до $x_{-} = 4.25$ мм смещении зона MG_{const} сузится до $\Delta x \cong 2x_{-} \cong 8.5$ мм ($\Delta x/D = 0.085$).

Реализация описанного подхода к зависимостям, подобным представленной на рис. 1в, но получаемым при других межполюсных расстояниях *b* [19], приводит к зависимостям относительной протяженности $\Delta x/D$ зон MG_{const} от *b/D*. Одна из них показана на рис. 5 (линия *I*) при условии, что в пределах зоны MG_{const} текущие значения grad *B* отличаются от усредненных значений (grad *B*) на величину, в частности, не более чем на $\varepsilon \simeq 5\%$.

Количественная же оценка (ранее не проводившаяся) протяженности Δx другой зоны, а именно зоны MFF_{const}, сходна с описанной выше оценкой. Так, используя пример экстремальной зависимости *B*grad*B* от *x* на рис. 1г и стартуя от экстремума, в котором *B*grad*B* = (*B*grad*B*)_{extr}, при увеличении *x*_считывают текущие данные *B*grad*B* и определяют возрастающие значения показателя *E* (рис. 46). Этот рост (одинаковый для разных *I* ω) достигает, в частности, *E* \cong 10% при *x*_ = 4.05 мм. Следовательно, здесь $\Delta x \cong 2x_{-} \cong$ 8.1 мм (рис. 46, дополнительная ось абсцисс Δx), т.е. здесь Δx меньше, чем значение Δx для аналогичной по *E* зоны MG_{const} (рис. 4а).

Когда, исходя из такого значения показателя E, установлена протяженность x_{-} полузоны (рис. 46), можно, используя данные рис. 1г, зафиксировать значение силового фактора на границе этой полузоны, т.е. (*B*grad *B*)_Z, и найти среднее для полузоны (и зоны MFF_{const} в целом) значение силового фактора: $\langle B \operatorname{grad} B \rangle = [(B \operatorname{grad} B)_Z + (B \operatorname{grad} B)_{\operatorname{extr}}]/2$. Тогда отклонения текущих значений *B*grad *B* следует оценивать по отношению уже к $\langle B \operatorname{grad} B \rangle$ как к фактически контрольному значению и перейти от показателя E (который сыграл свою роль первоначального количественного критерия протяженности зоны MFF_{const}) к более объективному показателю $\varepsilon = [\langle B \operatorname{grad} B \rangle - B \operatorname{grad} B] / \langle B \operatorname{grad} B \rangle \cong E/2$. Следовательно, при такой трактовке, судя по данным на рис. 1г и рис. 4б (дополнительная ось ординат ε), указанная протяженность $\Delta x \cong 2x_{-} \cong 8.1$ мм ($\Delta x/D = 0.081$) зоны MFF_{const} оценивается с фактической погрешностью до $\varepsilon \cong 5\%$.

Если изменения BgradB по отношению к $\langle B \text{ grad } B \rangle$ в пределах искомой зоны MFF_{const} ограничить более жестким условием, например $\varepsilon \cong 3\%$, или, что то же, условием $E \cong 6\%$ по отношению к $(B\text{grad}B)_{\text{extr}}$, то протяженность Δx такой зоны уменьшится. Так, если мы используем данные рис. 46 и рис. 1г, то при изменившихся значениях $(B\text{grad}B)_Z$ и $\langle B \text{ grad } B \rangle$ получаем $x_- = 3.23$ мм, а соответствующая (уменьшенная) протяженность зоны MFF_{const} имеет следующее значение: $\Delta x \cong$ $\cong 2x_- \cong 6.46$ мм (и $\Delta x/D = 0.065$).

Описанный подход к оценке протяженности Δx зоны MFF_{const} нетрудно реализовать и по другим (подобным приведенным на рис. 1г) зависимостям, полученным в работах [17, 19] при различных *b*. На рис. 5 (линия 2) показан пример зависимости $\Delta x/D$ от b/D при не столь жестком условии: текущие значения *B*grad*B* отличаются от усредненных $\langle B \operatorname{grad} B \rangle$ не более чем на $\varepsilon \cong 5\%$.

Заметим, что в оговоренном диапазоне относительного расстояния b/D между полюсами-полусферами диаметром D данные по относительной протяженности $\Delta x/D$ зон MG_{const} и MFF_{const} (частично показаны на рис. 5) в логарифмических координатах неплохо квазилинеаризуются. Значит, функционально они аппроксимируются зависимостями степенного вида:

$$\frac{\Delta x}{D} = T_G \left(\frac{b}{D}\right)^{0.4}; \frac{\Delta x}{D} = T_F \left(\frac{b}{D}\right)^{0.4}; \tag{3}$$

где показатель степени при аргументе b/D в обоих случаях равен 0.4, а значения коэффициентов T_G для зоны MG_{const} (формула слева) равны 0.24–0.25 и 0.19–0.2 при ограничениях $\epsilon \cong 5\%$ и $\epsilon \cong 3\%$ соответственно, а значения коэффициентов T_F для зоны MFF_{const} (формула справа) – 0.18–0.19 и 0.14–0.15 при таких же ограничениях соответственно.

Эти выражения, различающиеся только значениями коэффициентов T_G и T_F , свидетельствуют о том, что по меньшей мере в оговоренном диапазоне b/D взаимное отношение размеров (протяженностей) зон MG_{const} и MFF_{const} остается практически неизменным — в среднем 1.33 (отношение T_G к T_F). Эта величина соответствует и установленной выше величине взаимной дислокации центров зон MG_{const} и MFF_{const} . Следовательно, зона MFF_{const} в сравнении с зоной MG_{const} располагается (по параметру x_{extr}/D) практически на треть ближе к межцентровой линии полюсов-полусфер и является настолько же менее протяженной (по параметру $\Delta x/D$).

5. ЗАКЛЮЧЕНИЕ

В магнитометре, работающем на пондеромоторном принципе определения магнитной проницаемости малообъемных образцов (или на магнитно-реологическом принципе определения магнитной восприимчивости отдельных частиц [16]). целесообразно использовать полюсные наконечники сферической формы. В этом случае создается неоднородное магнитное поле, в котором имеются зоны с практически постоянными значениями магнитного градиента (MG) и/или магнитного силового фактора (MFF). Получаемые экстремальные по виду координатные зависимости MG и MFF указывают на зоны в окрестности их экстремумов как зоны практически подопускаемой погрешности, стоянных (при например, 5% или 3%) значений MG и MFF (т.е. зоны MG_{const} и MFF_{const}) с координатами их условных центров x_{extr} и данными их допускаемой протяженности Δx (они фиксируются в модернизированном магнитометре управляемыми ограничителями – лазерными маркерами). Зависимости x_{extr}/D от b/D для зон MG_{const} и MFF_{const} (D и *b* – диаметр полюсов-полусфер и расстояние между ними) взаимно сходны функционально: расчетное выражение с показателем степени 0.5. Зависимости $\Delta x/D$ от b/D для этих зон тоже взаимно сходны: функциональное расчетное выражение с показателем степени 0.4. При этом значения x_{extr}/D и $\Delta x/D$ для зон MFF_{const} практически в 1.33 раза меньше, чем для зон MG_{const}.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке Минобрнауки РФ в рамках госзадания в сфере науки (проект № 0706-2020-0024).

СПИСОК ЛИТЕРАТУРЫ

- Liu Y.-L., Li D.-W, He J., Xie X.-Z, Chen D., Yan E.-K., Ye Y.-J., Yin D.-C. // Rev. Scient. Instrum. 2018. V. 89. P. 105103. https://doi.org/10.1063/1.5016570
- Zeng J., Tong X., Yi F., Chen L. // Minerals. 2019. V. 9 (9). P. 509. https://doi.org/10.3390/min9090509
- Hu K., Sun J., Guo Z., Wang P., Chen Q., Ma M., Gu N. // Advanced Materials. 2015. V. 27. P. 2507. https://doi.org/10.1002/adma.201405757

- 4. *Mariani G., Fabbri M., Negrini F., Ribani P.L.* // Separation and Purification Technology. 2010. V. 72. P. 147. https://doi.org/10.1016/j.seppur.2010.01.017
- 5. *Xue Z., Wang Y., Zheng X., Lu D., Li X.* // Separation and Purification Technology. 2020. V. 237. P. 116375. https://doi.org/10.1016/j.seppur.2019.116375
- Baik S.K., Ha D.W., Ko R.W., Kwon J.M. // Physica C: Superconductivity. 2012. V. 480. P. 111. https://doi.org/10.1016/j.physc.2012.04.036
- Hosu B.G., Jakab K., Bánki P., Toth F.I., Forgacs G. // Rev. Scient. Instrum. 2003. V. 74 (9). P. 41583. https://doi.org/10.1063/1.1599066#
- 8. *Казин П.Е., Кульбакин И.В.* Методы исследования магнитных свойств материалов. М.: МГУ, 2011.
- 9. Cape J.A., Young R.A. // Rev. Scient. Instrum. 1971. V. 42 (7). P. 1061. https://doi.org/10.1063/1.1685279
- Quinn R.K., Knauer R.C. // Rev. Scient. Instrum. 1972. V. 43 (10). P. 1543.
- Petersson L., Ehrenberg A. // Rev. Scient. Instrum. 1985. V. 56 (4). P. 575.
- Marcon P., Ostanina K. // PIERS Proceedings. Malaysia, Kuala Lumpur, March 27–30. 2012. P. 420.
- Сандуляк А.А., Сандуляк А.В., Полисмакова М.Н., Киселев Д.О., Ершова В.А., Сандуляк Д.А. // ПТЭ. 2018. № 1. С. 109. https://doi.org/10.7868/S0032816218010342
- Sandulyak A.A., Sandulyak A.V., Polismakova M., Ershova V., Sandulyak D., Kiselev D. // Applied Physics, System Science and Computers (APSAC 2017). Lecture Notes in Electrical Engineering. V. 428. Springer, 2017.
- Сандуляк А.А., Сандуляк Д.А., Горпиненко Ю.О., Ершова В.А., Сандуляк А.В. // Российский технологический журнал. 2021. Т. 9. № 5. С. 36. https://doi.org/10.32362/2500-316X-2021-9-5-36-44
- Sandulyak A.A., Polismakova M.N., Sandulyak D.A., Sandulyak A.V., Ershova V.A. // Glass and Ceramics. 2021. V. 78 (3). P. 104. https://doi.org/10.1007/s10717-021-00356-2
- Сандуляк А.А., Киселев Д.О., Полисмакова М.Н., Сандуляк А.В., Сандуляк Д.А. // Сборник материалов III Международной научно-практической конференции "Актуальные направления научных исследований: перспективы развития". Челябинск: ЦНС "Интерактив плюс", 2017. С. 137.
- Сандуляк А.А., Киселев Д.О., Сандуляк А.В., Полисмакова М.Н., Сандуляк Д.А. // Приборы. 2017. № 10. С. 4.
- Сандуляк А.А., Сандуляк А.В., Полисмакова М.Н., Киселев Д.О., Сандуляк Д.А. // Российский технологический журнал. 2017. Т. 5. № 2. С. 57. https://doi.org/10.32362/2500-316X-2017-5-2-57-69