ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 2023, № 4, с. 92–96

_____ ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ____ ТЕХНИКА

УДК 537.86

ДВУХЧАСТОТНЫЙ РЕЗОНАТОР ДЛЯ ВОЗБУЖДЕНИЯ СВЕРХТОНКИХ ПЕРЕХОДОВ В АЗОТНО-ВАКАНСИОННОМ ЦЕНТРЕ ОКРАСКИ В АЛМАЗЕ

© 2023 г. В. В. Сошенко^{*a,b,**}, И. С. Кожокару^{*a,b,c,***}, С. В. Большедворский^{*a,b*}, О. Р. Рубинас^{*a,b*}, А. М. Козодаев^{*a,e*}, С. М. Дрофа^{*a,d*}, П. Г. Вилюжанина^{*e*}, Е. А. Примак^{*b,d*}, А. Н. Смолянинов^{*a*}, А. В. Акимов ^{*a,b,c*}

^аСенсор Спин Технолоджис Россия, 121205, Москва, Территория инновационного центра "Сколково" ул. Нобеля, 7, помещение 54 ^bФизический институт им. П.Н. Лебедева РАН Россия, 119991, Москва, Ленинский просп., 53 ^cМеждународный центр квантовых технологий Россия, 121205, Москва, Территория инновационного центра "Сколково", Большой бульвар, 30, стр. 1 ^dМосковский физико-технический институт (национальный исследовательский университет) Россия, 141701, Долгопрудный Московской обл., Институтский пер., 9 ^eНациональный исследовательский ядерный университет "МИФИ", институт ЛаПлаз Россия, 115409, Москва, Каширское ш., 31 *e-mail: soshenko.v@gmail.com **e-mail: ivancojocaruwork@gmail.com

Принята к публикации 09.12.2022 г.

Представлены результаты разработки двухчастотного резонатора для частот 4.95 и 7.1 МГц, соответствующих частотам сверхтонких переходов основного состояния азотно-вакансионного центра окраски в алмазе. Продемонстрирована работоспособность резонатора путем наблюдения осцилляций Раби. Амплитуда переменного магнитного поля составила 1.6 и 1 мГл для частот поля 4.95 и 7.1 МГц соответственно при мощности на входе резонатора 0.3 Вт.

DOI: 10.31857/S0032816223030138, EDN: IUQXAU

введение

Отрицательно заряженные азотно-вакансион-

ные центры окраски в алмазе (NV^- -центры) являются предметом пристального изучения в последние десятилетия. Наличие оптически детектируемого магнитного резонанса делает эти центры окраски привлекательными для сенсоров магнитного и электрического поля [1], температуры [2] и вращения [3], а также для однофотонных источников [4] и квантовой памяти [5].

Такие приложения, как сенсор вращения или квантовая память, требуют эффективного возбуж-

дения сверхтонких переходов в NV^- -центре. В частности, для работы алгоритма измерения скорости вращения, описанного в работе [3], необходимо возбуждение двух сверхтонких переходов в ан-

самбле NV^- -центров на частотах 7.1 и 4.95 МГц (рис. 1). Данные переходы являются магнитно-

дипольными и возбуждаются переменным магнитным полем с ориентацией индукции магнитного поля ортогонально оси симметрии дефекта.

При работе с одиночными NV^- -центрами переменное магнитное поле можно создать при помощи тонкого проводника на поверхности алмаза, например, как в работе [6]. В то же время при ра-

боте с ансамблем NV^- -центров требуется возбуждающая катушка с размерами не менее размера ансамбля. Для эффективной работы она должна быть согласована по импедансу с источником сигнала. В узком диапазоне частот согласование достигается с помощью параллельно включенного конденсатора, образующего с катушкой резонансный контур. Однако это либо ограничивает число возбуждаемых переходов до одного, либо требует уширения резонансного контура, что влечет снижение добротности и, как следствие, эффективности резонатора. Достичь "раздвоения"

Рис. 1. Схема уровней энергии основного состояния NV^- -центра с указанием характерных расщеплений в магнитном поле 10 Гс.

резонанса в контуре можно при помощи вспомогательного резонансного контура, включенного последовательно с конденсатором (рис. 2).

В настоящей работе представлена схема резонатора, согласованного для двух рабочих частот, обеспечивающая эффективное возбуждение двух

сверхтонких переходов в ансамбле NV⁻-центров.

РАСЧЕТ КОМПОНЕНТОВ РЕЗОНАТОРА

Принципиальная схема резонатора изображена на рис. 2, где L_1 — катушка возбуждения, а L_2 и C_2 образуют вспомогательный резонансный кон-

Рис. 2. Принципиальная схема резонатора. СТ – согласующий трансформатор. Номиналы конденсаторов и индуктивностей приведены в тексте статьи.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 4 2023

тур и вместе с емкостью C_1 обеспечивают наличие двух резонансов в резонаторе.

Задача расчета резонатора сводится к поиску значений C_1 , C_2 и L_2 при известной индуктивности L_1 и резонансных частотах ω_1 , ω_2 . Для упрощения выражений используются циклические частоты. Вначале рассмотрим импеданс резонатора без согласующего трансформатора:

$$Z = \frac{iL_1\omega(1 - (C_1 + C_2)L_2\omega^2)}{1 - (C_2L_2 + C_1(L_1 + L_2))\omega^2 + C_1C_2L_1L_2\omega^4}.$$
 (1)

Резонансные частоты соответствуют полюсам импеданса Z_L . Приравнивая знаменатель к нулю на частотах ω_1 , ω_2 , получаем систему из двух уравнений для трех неизвестных: C_1 , L_2 , C_2 . Значения L_2 , C_2 находятся при выборе C_1 в качестве параметра:

$$L_{2} = \frac{(1 - C_{1}L_{1}\omega_{1}^{2})(C_{1}L_{1}\omega_{2}^{2} - 1)}{C_{1}^{2}L_{1}\omega_{1}^{2}\omega_{2}^{2}},$$
 (2)

$$C_2 = \frac{C_1}{(1 - C_1 L_1 \omega_1^2)(C_1 L_1 \omega_2^2 - 1)}.$$
 (3)

Из неотрицательности значений L_2 , C_2 следует, что емкость C_1 должна находиться в диапазоне $(L_1^{-1}\omega_2^{-2}; L_1^{-1}\omega_1^{-2})$ при $\omega_1 < \omega_2$.

Рис. 3. Значения C_2 и L_2 для номиналов емкости C_1 в диапазоне от 1.05 до 1.4 нФ при условии, что резонансные частоты равны 4.95 и 7.1 МГц. Черная точка соответствует выбранному в работе значению $C_1 = 1.36$ нФ.

ЭКСПЕРИМЕНТАЛЬНЫЙ ОБРАЗЕЦ РЕЗОНАТОРА

Катушка L_1 содержит 16 витков провода диаметром 0.1 мм, намотанных в 4 слоя на краю сапфирового усеченного конуса диаметром 1.5 мм. Сапфировый цилиндр используется для охлаждения катушки. Для определения индуктивности катушки L_1 параллельно ей подключали конденсатор емкостью C = 1000 пФ и измеряли резонансную частоту f_{res} полученного колебательного контура при помощи векторного анализатора цепей. Индуктивность возбуждающей катушки определена по формуле

$$L_1 = \left(\frac{1}{2\pi f_{res}\sqrt{C}}\right)^2 = 563 \text{ H}\Gamma\text{H}.$$
 (4)

Резонатор должен быть согласован для частот $\omega_1 = 2\pi \cdot 4.96 \text{ МГц}, \omega_2 = 2\pi \cdot 7.1 \text{ МГц}. Для значе$ $ний емкости <math>C_1$ в диапазоне от 1.05 до 1.4 нФ, используя выражения (2), (3), мы получили пары значений C_2 , L_2 . Параметрический график показан на рис. 3.

Исходя из данных решений была выбрана конфигурация: $C_1 = 1.36 \text{ н}\Phi$, $C_2 = 10.0 \text{ н}\Phi$ и $L_2 = 68 \text{ н}\Gamma\text{н}$ (отмечена точкой на рис. 3) — на основании следующих соображений:

1) емкость C_2 не должна быть очень большой, так как это будет приводить к большой запасенной энергии во вспомогательном контуре;

2) необходимые емкости C_1 и C_2 можно подобрать из имеющихся номиналов конденсаторов.

Рис. 4. Внешний вид резонатора: **а** – расположенная внутри квазигельмгольцевского резонатора для воз-

буждения магнитных переходов в NV^- -центре катушка L_1 , катушка намотана на сапфировый конус с диаметром 1.5 мм в месте, где находятся витки; **б** – вынесенная от катушки L_1 часть резонатора, состоящая из катушки L_2 и конденсаторов C_1 , C_2 , катушка и резонатор соединены коаксиальным кабелем (не показано на рисунке).

С учетом выбранных значений был собран резонатор (рис. 4). Катушка L_2 содержит 4 плотно расположенных витка радиусом 2 мм медного провода диаметром 0.3 мм и имеет некоторый запас по индуктивности.

Настройка резонатора осуществлялась изменением как расстояния между витками катушки L_2 , так и номиналов используемых конденсаторов. Емкость C_1 влияет на сумму резонансных частот. Увеличение C_2 с одновременным уменьшением L_2 при выполнении равенства $L_2C_2 \approx$ const влияет на разность резонансных частот. В результате были выбраны емкости C_1 , C_2 , набранные из керамических конденсаторов с диэлектриком NP0 в типоразмере 1210 с допуском номиналов $\pm 5\%$. Полученные значения равны $C_1^{exp} = 4.7 + 4.7 + 1 + 0.22 = 10.62 \ \text{нФ}, \ C_2^{exp} = 1 + 0.22 + 0.047 = 1.267 \ \text{нФ}.$

Созданный резонатор на резонансных частотах имел импеданс 120 и 280 Ом, согласно показаниям векторного анализатора цепей, что дает среднее значение $Z_{\text{mean}} = 200$ Ом. Это потребовало подключения резонатора к усилителю с выход-

Рис. 5. Зависимость возвратных потерь резонатора от частоты.

ным импедансом $Z_0 = 50$ Ом через согласующий трансформатор с коэффициентом трансформации $K = N_1/N_2 = \sqrt{Z_0/Z_{mean}} = 1/2$, где N_1 , N_2 – число витков в первичной и вторичной обмотках соответственно. Согласующий трансформатор изготовлен в виде трифилярной обмотки из десяти витков на ферритовом кольце Toroids (5967000201) от Fair-Rite. Внешний и внутренний диаметры, а также толщина кольца составляют соответственно 9.5, 4.75 и 3.3 мм. В качестве первичной обмотки использован один из проводников трифилярной обмотки, вторичная обмотка получена последовательным соединением двух оставшихся проводов.

Спектр возвратных потерь собранного резонатора получен с помощью векторного анализатора и представлен на рис. 5. Полученный спектр хорошо аппроксимируется моделью, в которой возвратные потери рассчитаны по формуле

$$\Gamma = \frac{Z - K^2 Z_0}{Z + K^2 Z_0}.$$
 (5)

Импеданс резонатора Z рассчитан по формуле (1) при подстановке в формулу значений L_1 , L_2 , C_1^{fit} , C_2^{fit} , где к индуктивностям путем замены L_i на $L_i^{fit} \left(1 + \frac{R_i}{i\omega L_i^{fit}}\right)$ добавлено активное сопротивле-

ние соответствующих катушек R_1 , R_2 . При помощи нелинейного метода наименьших квадратов были найдены значения параметров аппроксима-

ции:
$$R_1 = 1.1$$
 Ом, $R_2 = 0.07$ Ом, $L_1^{\prime\prime\prime} = L_1$, $C_1^{\prime\prime\prime\prime} = C_1$, $L_2^{fit} = 0.75L_2$, $C_2^{fit} = 0.83C_2$.

Вместо параллельного *LC*-контура можно использовать последовательный контур, состоящий из $L_1, C_1, L_2 || C_2$. При этом для расчета номиналов L_2, C_2 могут быть использованы формулы (2), (3), а импеданс контура будет близок к сопротивлению катушки R_1 . По результатам расчета с учетом сопротивления катушек импеданс последовательного контура на частотах ω_1, ω_2 составил 2.9 и 3.2 Ом соответственно. В этом случае согласование потребует трансформатора с большим коэффициентом трансформации. Поэтому за основу был взят параллельный резонансный контур.

НАБЛЮДЕНИЕ ОСЦИЛЛЯЦИЙ РАБИ

Для оценки эффективности полученного резонансного контура были зарегистрированы осцилляции Раби населенности на сверхтонких подуровнях. Для этого использовалась установка, описанная в работе [7], населенности измерялись по интенсивности флюоресценции ансамбля

 NV^{-} -центров методом оптически детектируемого магнитного резонанса. Мощность сигнала на входе двухрезонансной антенны оценивалась путем измерения значения пик-пик сигнала на входе антенны при помощи осциллографа при извест-

ном импедансе источника. Ансамбль NV^- -центров находился в магнитном поле 1 мТл, выровненном вдоль одной из кристаллографических осей. Катушка L_1 ориентирована так, чтобы магнитное поле было ортогонально выбранной оси.

Для частоты 7.1 МГц наблюдались осцилляции Раби между сверхтонкими подуровнями: $|m_s = -1$, $m_I = 0$ $\rightarrow |m_s = -1, m_I = -1$. Частоту Раби можно рассчитать по формуле

$$\Omega_{7.1} = 2\pi \frac{\gamma_n B_x |\alpha_{-1}|}{\sqrt{2}},\tag{6}$$

где $\gamma_n = 307 \,\text{М}\Gamma\mu/\text{T}\pi$ — гиромагнитное отношение ядерного спина азота; B_x — амплитуда переменного магнитного поля; $\alpha_{-1} = -9$ — коэффициент, связанный со сверхтонким взаимодействием в NV^- -центре [8].

Полученная частота Раби $\Omega_{7.1} = 2\pi \cdot 18.8$ кГц (рис. 6) соответствует амплитуде переменного поля 1 мГл.

При частоте Раби больше 6 кГц переменное поле на частоте 4.95 МГц одновременно возбуждает два перехода $|m_S = 0, m_I = 0\rangle \rightarrow |m_S = 0, m_I = \pm 1\rangle$. Учитывая одновременное возбуждение двух переходов в лямбда-системе, получаем, что частота Раби определяется формулой

$$\Omega_{4.95} = 2\pi \frac{\sqrt{2\gamma_n B_x |\alpha_0|}}{\sqrt{2}},\tag{7}$$

Рис. 6. Осцилляции Раби, измеренные на переходе $|m_S = -1, m_I = 0\rangle \rightarrow |m_S = -1, m_I = -1\rangle$ на частоте 7.1 МГц.

где $\alpha_0 = 16$ — коэффициент, связанный со сверхтонким взаимодействием в NV^- -центре [8]. Из частоты полученных осцилляций Раби $\Omega_{4.95} =$ $= 2\pi \cdot 77.2$ кГц (рис. 7) найдена амплитуда переменного поля 1.6 мТл.

Осцилляции Раби были получены при напряжении пик-пик на выходе согласующего трансформатора 23 В, что при импедансе контура 200 Ом соответствует мощности 330 мВт.

выводы

Разработана схема двухчастотного резонатора, работающего на частотах 4.95 и 7.1 МГц, которая позволяет эффективно манипулировать ядерным спином центра окраски азот-вакансия, реализовывать последовательности, предназначенные для поляризации ядерного спина, гироскопии на ядерном спине и квантовой памяти на ядерном спине. Были измерены частоты Раби и получены следующие значения: $\Omega_{4.95} = 77.2$ кГц и $\Omega_{7.1} = 18.8$ кГц.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа была поддержана Российским фондом фундаментальных исследований, грант № 21-42-04407.

ИНФОРМАЦИЯ О ВКЛАДЕ АВТОРОВ

В.В. Сошенко и И.С. Кожокару внесли одинаковый вклад в работу.

Рис. 7. Осцилляции Раби, измеренные на переходе $|m_S=0, m_I=0\rangle \rightarrow |m_S=0, m_I=\pm1\rangle$ на частоте 4.95 МГц.

СПИСОК ЛИТЕРАТУРЫ

- Schirhagl R., Chang K., Loretz M., Degen C.L. // Annu. Rev. Phys. Chem. 2014. V. 65. P. 83 https://doi.org/10.1146/annurev-physchem-040513-103659
- Acosta V.M., Bauch E., Ledbetter M.P., Waxman A., Bouchard L.-S., Budker D. // Phys. Rev. Let. 2010. V. 104. P. 070801. https://doi.org/10.1103/PhysRevLett.104.070801
- Soshenko V.V., Bolshedvorskii S.V., Rubinas O., Sorokin V.N., Smolyaninov A.N., Vorobyov V.V., Akimov A.V. // Phys. Rev. Let. 2021. V. 126. P. 197702. https://doi.org/10.1103/PhysRevLett.126.197702
- Vorobyov V.V., Soshenko V.V., Bolshedvorskii S.V., Javadzade J., Lebedev N., Smolyaninov A.N., Sorokin V.N., Akimov A.V. // The European Physical Journal D. 2016. V. 70. Article number 269. https://doi.org/10.1140/epjd/e2016-70099-3
- 5. *Hirose M., Cappellaro P. //* Nature. 2016. V. 532. P. 77. https://doi.org/10.1038/nature17404
- Sangtawesin S., McLellan C.A., Myers B.A., Bleszynski Jayich A.C., Awschalom D.D., Petta J.R. // New J. Phys. 2016. V. 18. P. 083016. https://doi.org/10.1088/1367-2630/18/8/083016
- Soshenko V.V., Vorobyov V.V., Bolshedvorskii S.V., Rubinas O., Cojocaru I., Kudlatsky B., Zeleneev A.I., Sorokin V.N., Smolyaninov A.N., Akimov A.V. // Phys. Rev. B. 2020.
 V. 102. P. 125133. https://doi.org/10.1103/PhysRevB.102.125133
- Chen M., Hirose M., Cappellaro P. // Phys. Rev. B. 2015. V. 92. P. 020101(R). https://doi.org/10.1103/PhysRevB.92.020101

Интенсивность флюоресценции, о.е.