ЭЛЕКТРОНИКА И РАДИОТЕХНИКА

УДК 621.314

СРАВНИТЕЛЬНОЕ ИССЛЕДОВАНИЕ КОММУТАТОРОВ МОЩНЫХ НАНОСЕКУНДНЫХ ИМПУЛЬСОВ НА ОСНОВЕ ПОСЛЕДОВАТЕЛЬНО СОЕДИНЕННЫХ БЛОКОВ ДИНИСТОРОВ С УДАРНОЙ ИОНИЗАЦИЕЙ

© 2023 г. С. В. Коротков^{*a*,*}, Ю. В. Аристов^{*a*}, А. Л. Жмодиков^{*a*}, Д. А. Коротков^{*a*}

^аФизико-технический институт им. А.Ф. Иоффе РАН Россия, 194021, Санкт-Петербург, ул. Политехническая, 26 *e-mail: korotkov@mail.ioffe.ru Поступила в редакцию 11.03.2023 г. После доработки 24.03.2023 г. Принята к публикации 25.03.2023 г.

Описаны два типа коммутаторов мощных импульсов тока с рабочим напряжением 24 кВ, выполненных на основе блоков последовательно соединенных динисторов с ударной ионизацией. Рассмотрены процессы переключения этих коммутаторов, приведены результаты их сравнительного исследования. Показана возможность эффективной коммутации наносекундных импульсов тока с амплитудой 6 кА и скоростью нарастания 150 А/нс. Определены перспективы увеличения коммутируемой мощности.

DOI: 10.31857/S0032816223040146, EDN: RBFCKV

Потери энергии в коммутаторах мощных импульсов с субмикросекундным фронтом существенно зависят от времени их переключения в состояние с высокой проводимостью. Поэтому большой интерес представляют описанные в работах [1-4] четырехслойные кремниевые структуры, которые имеют субнаносекундное время включения благодаря использованию предложенного в работе [5] способа запуска наносекундным импульсом высокого напряжения. При такой длительности запускающего воздействия лавинный пробой развиться не успевает, и напряженность поля в базовых областях полупроводниковой структуры нарастает до величины, достаточной для инициирования процесса ударной ионизации кремния. Этот процесс обеспечивает очень высокую скорость увеличения проводимости кремниевой структуры, которая в настоящее время недоступна для альтернативных полупроводниковых ключей.

В работе [6] показаны высокие коммутационные возможности полупроводникового ключа с рабочим напряжением 12 кВ, который выполнен в виде блока последовательно соединенных динисторов с ударной ионизацией (SID – Shock-Ionized Dynistors), описанных в работах [7–9]. Недостатком такого ключа является большая амплитуда выходного напряжения цепи управления (~27 кВ), которая обеспечивает переключение всех динисторных структур. Этот недостаток затрудняет разработку SID-ключей с более высоким рабочим напряжением, но может быть устранен при использовании нескольких последовательно соединенных блоков SID с автономными цепями управления.

На рис. 1 приведена схема опытного генератора, содержащего SID-ключ с рабочим напряжением 24 кВ, состоящий из блоков SID₁, SID₂, которые включаются эстафетно. Блок SID₁ включается цепью управления ЦУ, а блок SID₂ – в результате разряда конденсатора C_3 , обусловленного включением блока SID₁. В исходном состоянии конденсатор C_3 заряжен до напряжения зарядки U_0 накопительного конденсатора C_0 , к блокам SID_1 , SID_2 приложено напряжение, которое определяется количеством используемых в этих блоках динисторных структур, конденсатор C заряжен до напряжения, приложенного к блоку SID_1 . Цепь управления содержит ключ K, конденсатор C_1 , заряженный до небольшого напряжения U_1 , звено магнитного сжатия $C_2 - Tp$ и блок дрейфовых диодов с резким восстановлением (DSRD -Drift Step-Recovery Diodes), впервые описанных в работе [10]. Цепь С-D и резистор R исключают возможность приложения к ЦУ высокого напряжения U_0 .

Переключение блоков SID_1 , SID_2 осуществляется следующим образом.

Рис. 1. Электрическая схема генератора на основе эстафетно включаемых блоков SID. DSRD – блок диодных структур с диаметром 20 мм; SID₁, SID₂ – блоки динисторных структур с диаметром 24 мм; D – блок диодов K100F (2 последовательно), D_1 – K100F; T_P – трансформатор (сердечник – феррит N87 (EPCOS), 4 кольца размером 29.5 × 19 × 20 мм, $w_1 = 1, w_2 = 3$); L_0 – дроссель (сердечник – феррит 600 HH, 4 кольца размером 31 × 20 × 6 мм, один виток).

После включения ключа *К* через блок DSRD в прямом направлении протекает ток с принципиально малой длительностью (~300 нс), который обеспечивает накопление заряда в диодных структурах и заряжает конденсатор C_2 . В момент окончания процесса зарядки происходит насыщение сердечника трансформатора *Тр*, и индуктивность его вторичной обмотки резко уменьшается. В результате конденсатор C_2 разряжается по цепи DSRD $-w_2$, и через блок DSRD протекает обратный ток, который за принципиально малое время (~120 нс) выводит из DSRD-структур весь накопленный заряд и обеспечивает их выключение. В процессе выключения блока DSRD формируется импульс выходного тока цепи управления. Его амплитуда определяется амплитудой тока, протекающего через обмотку w₂, а длительность фронта – временем выключения блока DSRD (~2.5 нс).

Выходной ток цепи управления протекает через конденсатор C и коммутируется в блок SID₁ и в цепь SID₂ $-L_3-C_3$. Так как при наносекундном фронте импульса коммутируемого тока электрическое сопротивление элементов L_3 , C_3 сравнительно велико, то выходной ток цепи управления протекает в основном через блок SID₁. В результате осуществляется быстрая зарядка собственных емкостей динисторных структур этого блока. Ток, протекающий через цепь $SID_2-L_3-C_3$, разряжает собственные емкости динисторных структур блока SID₂ и обеспечивает увеличение напряжения на конденсаторе C_3 . Когда напряжение на динисторных структурах блока SID₁ нарастает до порогового значения, инициирующего процесс ударной ионизации, они за время <1 нс переключаются в состояние с высокой проводимостью. В результате конденсатор C_3 быстро разряжается по цепи L_3 -SID₂-SID₁, и напряжение на блоке SID₂ резко нарастает. Так как потери энергии в цепи разряда конденсатора C_3 малы, а его емкость много больше собственной емкости блока SID₂, то напряжение на блоке SID₂ может достигнуть величины, существенно превышающей величину напряжения на конденсаторе C_3 в момент включения блока SID₁. Блок SID₂ включается, когда напряжение на нем достигает порогового значения, обеспечивающего инициирование процесса ударной ионизации в структурах динисторов этого блока.

В процессе переключения SID-ключа дроссель L_0 имеет большую индуктивность, которая ограничивает скорость изменения тока в цепи накопительного конденсатора C_0 . Через несколько наносекунд после включения блока SID₂ происходит насыщение сердечника дросселя L_0 , индуктивность дросселя резко уменьшается и ток разряда конденсатора C_0 быстро нарастает. В интервале между моментом включения блока SID₁ и моментом насыщения сердечника дросселя L_0 через диод D и динисторы блока SID₁ протекает выходной ток цепи управления, обеспечивающий высокую проводимость блока SID₁.

На рис. 2 показана осциллограмма тока через SID-ключ, соответствующая напряжению $U_0 = 24$ кВ. Она получена при использовании пилотного SID-ключа, в котором блоки SID₁, SID₂ состояли из одинакового количества динисторных структур (по 6 в каждом блоке). Блок DSRD состоял из 25 диодных структур. Конденсатор C_1 был заряжен до напряжения $U_1 = 1.4$ кВ. Выходной ток цепи управления составлял ~350 А.

Как видно из осциллограммы, ток через SIDключ имеет амплитуду ~6 кА и нарастает со скоростью ~150 А/нс. Малое затухание тока свидетельствует о малом электрическом сопротивлении SID-ключа.

Рис. 2. Осциллограмма тока через SID-ключ.

Исследования показали, что электрическое сопротивление пилотного SID-ключа существенно увеличивается при $U_0 < 20$ кВ. Так как условия запуска блока SID₁ не изменялись, то полученный результат свидетельствует об увеличении потерь энергии в блоке SID₂. Это можно объяснить тем, что при малом напряжении U_0 цепь конденсатора C_3 не обеспечивает эффективного включения блока SID₂, состоящего из шести последовательно соединенных динисторных структур.

Для обеспечения эффективной работы в диапазоне изменения напряжения U_0 от 24 до 12 кВ пилотный SID-ключ был оптимизирован путем уменьшения количества динисторных структур в блоке SID₂. В оптимизированном SID-ключе блок SID₁ содержал 8, а SID₂ – 4 динисторные структуры. Увеличение количества динисторных структур в блоке SID₁ определило необходимость повышения напряжения зарядки конденсатора C_1 (до 1.6 кВ) и увеличения количества диодных структур в блоке DSRD (до 35 шт).

На рис. 3 приведена осциллограмма падения напряжения на оптимизированном SID-ключе, полученная при исследовании процесса его переключения. Амплитуды пиков напряжения определяются величинами напряжений включения блоков SID₁ и SID₂.

Альтернативным способом обеспечения эффективной работы высоковольтного SID-ключа в генераторе с глубоким регулированием напряжения зарядки конденсатора C_0 является использование модульной конструкции: последовательно соединенные блоки SID переключаются автономно при использовании отдельных цепей управления.

На рис. 4 приведена схема модульного SIDключа с рабочим напряжением 24 кВ. Он состоит из двух последовательно соединенных блоков SID₁, SID₂ с рабочим напряжением 12 кВ. Запуск блоков SID₁, SID₂ осуществляется с помощью одинаковых ЦУ на основе блоков DSRD₁ и DSRD₂, аналогичных ЦУ на рис. 1. Трансформаторы *Тр* имеют один хорошо изолированный виток в первичной обмотке. В результате напряжение пробоя между обмотками w_1 и w_2 существенно превышает величину максимального напряжения на SID-ключе.

В схеме на рис. 4 формирование наносекундных импульсов запуска блоков SID₁, SID₂ происходит следующим образом. После включения ключа K конденсатор C_1 , исходно заряженный до напряжения $U_1 = 2.8 \text{ кB}$, разряжается через обмотки w_1 трансформаторов *Тр*. В результате через цепи C_2 -DSRD₁ и DSRD₂- C_2 протекают короткие импульсы тока, которые обеспечивают зарядку конденсаторов C₂ и накопление заряда в диодных структурах блоков DSRD₁, DSRD₂. В момент, когда конденсаторы C2 заряжаются до максимального напряжения, сердечники трансформаторов *Тр* насыщаются и конденсаторы C_2 быстро разряжаются через обмотки w₂ трансформаторов Tp. В результате через блоки DSRD₁, DSRD₂ в обратном направлении протекают быстро нарастающие токи, которые выводят из DSRD-структур накопленный заряд.

Весь накопленный заряд выводится к моменту, когда конденсаторы C_2 полностью разряжают-

Рис. 3. Осциллограмма напряжения на оптимизированном SID-ключе.

Рис. 4. Электрическая схема генератора на основе модульного SID-ключа. $DSRD_1$, $DSRD_2 - 25$ диодных структур с диаметром 20 мм; SID_1 , $SID_2 - 12$ динисторных структур с диаметром 24 мм; D - 6лок диодов K100F (2 последовательно), $D_1 - K100F$; Tp – трансформатор (сердечник – феррит N87 (EPCOS), 4 кольца размером 29.5 × 19 × 20 мм, $w_1 = 1$, $w_2 = 3$); $L_0 -$ дроссель (сердечник – феррит 600 HH, 4 кольца размером 31 × 20 × 6 мм, один виток).

ся и токи через обмотки w_2 достигают максимального значения (~300 A). В этот момент DSRDструктуры выключаются, и токи обмоток w_2 коммутируются в цепи SID₁–*C* и *C*–SID₂. Эти токи обеспечивают быструю зарядку собственных емкостей динисторных структур блоков SID₁, SID₂ до напряжения включения. Благодаря использованию общего ключа *K* создаются практически одинаковые условия формирования импульсов запуска блоков SID₁, SID₂. На рис. 5 приведена типичная осциллограмма напряжения на SID-ключе, иллюстрирующая процесс его включения при напряжении $U_0 = 24$ кВ. Ступенчатая форма напряжения показывает, что включение блоков SID₁ и SID₂ происходит не одновременно. После включения опережающего блока SID цепь управления отстающего блока SID обеспечивает его включение с небольшой задержкой, которая определяется технологическим

Рис. 5. Осциллограмма напряжения на модульном SID-ключе.

разбросом параметров элементов цепей управления.

Амплитуда напряжения на SID-ключе определяется как сумма амплитудных значений напряжения на опережающем блоке SID в момент его включения и напряжения, которое в этот момент приложено к отстающему блоку SID. Она существенно меньше суммы амплитуд напряжений включения блоков SID₁, SID₂, в каждом из которых используется 6 динисторных структур с напряжением включения ~4 кВ.

Сравнительное исследование генераторов, выполненных по схемам на рис. 4 и рис. 1, показало, что при использовании одной и той же цепи $C_0 - L_0$ и одинаковом напряжении U_0 ток разряда конденсатора C_0 был практически одинаковым, что свидетельствует о примерно одинаковых потерях энергии в SID-ключах с автономным и эстафетным переключением блоков SID.

Так как для переключения блоков SID использовалась также фактически одинаковая энергия (~120 мДж), запасаемая в конденсаторах C_1 , C_3 в схеме на рис. 1 и в конденсаторе C_1 в схеме на рис. 4, то можно считать, что рассмотренные высоковольтные SID-ключи имеют примерно одинаковую эффективность. Их основным достоинством является возможность увеличения рабочего напряжения путем подключения дополнительных блоков SID.

В рассмотренных генераторах ключи K были выполнены на основе интегральных импульсных тиристоров с рабочей площадью ~0.5 см², описанных в работе [11]. Импульсы тока измерялись с помощью малогабаритных датчиков тока, разработанных в фирме Pearson Electronics. Осциллограммы напряжения получены с помощью щупа Tektronix P6015A.

СПИСОК ЛИТЕРАТУРЫ

- Efanov V.M., Kardo-Sysoev A.F., Tchashnikov I.G., Yarin P.M. // Proc. of 1996 International Power Modulator Symposium. USA, FL, Boca Raton, 1996. P. 22. https://doi.org/10.1109/MODSYM.1996.564440
- 2. *Grekhov I., Korotkov S., Rodin S.* // IEEE Trans. on Plasma Science. 2008. V. 36. № 2. Part 1. P. 378. https://doi.org/10.1109/TPS.2008.918661
- 3. Коротков С.В., Аристов Ю.В., Воронков В.Б., Жмодиков А.Л., Коротков Д.А., Люблинский А.Г. // ПТЭ. 2009. № 5. С. 90.
- 4. Gusev A.I., Lyubutin S.K., Rukin S.N., Tsyranov S.N. // IEEE Trans. on Plasma Science. 2016. V. 44. № 10. Part 1. P. 1888. https://doi.org/10.1109/TPS.2016.2542343
- 5. *Grekhov I., Kardo-Sysoev A.* // Soviet Technical Physics Letters. 1979. V. 5. № 8. P. 395.
- Коротков С.В., Аристов Ю.В., Коротков Д.А. // ПТЭ. 2022. № 5. С. 70. https://doi.org/10.31857/S003281622205007X
- 7. Коротков С.В., Аристов Ю.В., Воронков В.Б. // ПТЭ. 2019. № 2. С. 24. https://doi.org/10.1134/S0032816219010130
- Коротков С.В., Аристов Ю.В., Жмодиков А.Л., Коротков Д.А. // ПТЭ. 2020. № 5. С. 75. https://doi.org/10.31857/S0032816220050171
- Korotkov S.V., Aristov Yu.V., Korotkov D.A., Zhmodikov A.L. // Rev. of Scie. Instruments. 2020. V. 91. Art. № 084704. https://doi.org/10.1063/5.0015284
- Grekhov I., Efanov V., Kardo-Sysoev A., Shenderey S. // Solid State Electronics. 1985. V. 28. № 6. P. 597. https://doi.org/10.1016/0038-1101(85)90130-3
- Грехов И.В., Жмодиков А.Л., Коротков С.В., Прижимнов С.Г., Фоменко Ю.Л. // ПТЭ. 2016. № 3. С. 32. https://doi.org/10.1134/S0020441216020202

κВ