_____ ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ _____ ТЕХНИКА

УДК 535.3

РАСПРЕДЕЛЕННЫЙ АКУСТИЧЕСКИЙ ДАТЧИК С ДАЛЬНОСТЬЮ РАБОТЫ 120 КМ НА БАЗЕ ФАЗОЧУВСТВИТЕЛЬНОГО ИМПУЛЬСНОГО РЕФЛЕКТОМЕТРА И ЭРБИЕВОГО УСИЛИТЕЛЯ С УДАЛЕННОЙ НАКАЧКОЙ¹

© 2023 г. А. С. Дудин^{*a,b,**}, Д. Р. Харасов^{*a*}, Э. А. Фомиряков^{*a,b*}, С. П. Никитин^{*a*}, О. Е. Наний^{*a,b*}, В. Н. Трещиков^{*a*}

^a000 "T8"

Россия, 107076, Москва, Краснобогатырская ул., 44, стр. 1 ^bМосковский государственный университет им. М.В. Ломоносова Россия, 119991, Москва, Ленинские горы, 1 *e-mail: dudin.as@t8.ru Поступила в редакцию 02.03.2023 г. После доработки 14.03.2023 г. Принята к публикации 23.04.2023 г.

Исследовано увеличение дальности работы распределенного акустического датчика на базе фазочувствительного когерентного импульсного рефлектометра с помощью эрбиевого волоконного усилителя с удаленной накачкой. Показано, что за счет установки одного сегмента эрбиевого волокна на 70 км и использования попутной односторонней накачки мощностью 500 мВт на длине волны 1480 нм можно увеличить дальность работы рефлектометра на 45 км и тем самым получить общую дальность работы до 120 км в стандартном одномодовом волокне.

DOI: 10.31857/S003281622305018X, EDN: ZVAZPO

введение

Фазочувствительные когерентные импульсные рефлектометры (ϕ -OTDR), регистрирующие обратное рэлеевское рассеяние в волокне, используются в распределенных акустических датчиках (DAS) для охраны и мониторинга протяженных объектов [1], таких как трубопроводы [2], линии электропередач [3], железные [4, 5] и автомобильные дороги, нефтегазовые скважины [6], а также в распределенных датчиках изменения натяжения и температуры [7–9]. В последнее время DAS на базе ϕ -OTDR становится обязательным инструментом в геофизических и сейсмических исследованиях [10, 11].

Дальность работы датчиков на базе ф-OTDR ограничена затуханием в волокне и обычно составляет не более нескольких десятков километров. Увеличение дальности за счет повышения мощности зондирующего импульса ограничено из-за негативного воздействия нелинейных эффектов, таких как модуляционная неустойчивость [12] и фазовая самомодуляция [13], а также вынужленного комбинационного рассеяния (ВКР) [14]. Увеличение длительности импульса позволяет усилить мощность сигнала обратного рассеяния, но приводит к ухудшению пространственного разрешения, что во многих случаях непозволительно. Для увеличения дальности работы можно использовать распределенные рамановские усилители на эффекте вынужденного комбинационного рассеяния (ВКР) [15-20], распределенные бриллюэновские усилители на действии эффекта вынужденного рассеяния Мандельштама-Бриллюэна [21], двунаправленные эрбиевые волоконные усилители [22, 23], эрбиевые волоконные усилители с удаленной накачкой (далее ROPA) [24, 25], специальные волокна с увеличенным коэффициентом обратного отражения [26-31] или их комбинации [32-34].

Самым практичным методом увеличения дальности работы ф-OTDR является использование рамановских усилителей [35], так как в этом случае не требуется модификации волоконной линии: усиление за счет ВКР происходит в обычном волокне при вводе в него дополнительного излучения накачки на длине волны 1.45 мкм. При такой длине волны разность частот между накачкой и импульсом на длине волны 1.55 мкм

¹ Международная конференция "Оптическая рефлектометрия, метрология и сенсорика 2023", Россия, Пермь, 24–26 мая 2023 г. (International conference "Optical Reflectometry, Metrology & Sensing 2023", Russia, Perm, 24–26, May 2023).

составляет примерно 13 ТГц и соответствует максимуму спектра ВКР-усиления [35, 36]. Излучение накачки можно ввести вместе (сонаправленно) с зондирующим импульсом [18], во встречном направлении [19] с дальнего конца линии (с помощью дополнительного модуля) или с обеих сторон сразу. Последний вариант позволяет получить дальность более 100 км для многих исполнений *ф*-OTDR [15–17, 19, 20]. Широкое применение распределенных рамановских усилителей в φ-OTDR затруднено тем, что использующиеся в них лазеры накачки не являются массовым продуктом. В отличие от рамановского распределенный бриллюэновский усилитель обладает на порядок большим коэффициентом усиления, однако накачка в таких усилителях может быть только встречная, а спектр усиления зависит от натяжения и температуры волокна. Из-за данных ограничений распределенные бриллюэновские усилители не используются в коммерческих DAS.

В последние несколько лет активно продвигаются ф-OTDR со специальными волокнами с увеличенным коэффициентом обратного рассеяния [26-32]. При установке такого волокна после стандартного одномодового волокна уровень обратного отражения/рассеяния с дальнего конца линии повышается, что и обеспечивает увеличение дальности. В работах [30-32] показана возможность работы *ф*-OTDR со специальными волокнами, установленными на расстоянии более 100 км от начала линии. Из-за повышенного по сравнению со стандартными одномодовыми волокнами коэффициента затухания использование коммерческих специальных волокон (с затуханием менее 0.7 дБ/км [26]) позволяет увеличить дальность работы *ф*-OTDR всего на величину порядка 10 км без промежуточных "слепых" зон [31].

Самым простым методом увеличения дальности является использование двунаправленных эрбиевых усилителей [22], где для усиления зондирующего импульса и обратного рэлеевского рассеяния в линии используются отдельные эрбиевые усилители, соединенные между собой через оптические циркуляторы. За счет этого можно тонко настроить общий уровень коэффициента усиления. Однако такие усилители требуют электричество для работы. Если доступа к электричеству нет, то для увеличения дальности работы ф-OTDR можно использовать эрбиевые усилители с удаленной накачкой (ROPA). При использовании ROPA в линию необходимо вварить один [24, 32] или несколько [22, 25] сегментов волокна, легированного ионами эрбия Er³⁺, вдали от начала волоконной линии. Далее к этим сегментам необходимо подвести излучение накачки на длине волны 1.48 мкм по тому же самому [24, 25, 32] или дополнительным [22] волокнам. При прохождении зондирующего импульса и обрат-

ного рэлеевского рассеяния через данные эрбиевые волокна происходит их усиление. Также стоит отметить, что когда накачка и импульс распространяются по одному волокну, накачка ROPA усиливает импульс и обратное рассеяние за счет эффекта ВКР так же, как это происходит в распределенных рамановских усилителях [25], но с меньшим коэффициентом усиления [36]. В работе [24] с помощью односекционного ROPA была продемонстрирована работа DAS на базе ф-OTDR на расстояниях до 75 км. В работе [25] была получена дальность работы DAS до 100 км: для этого потребовалось использовать ROPA с двумя сегментами эрбиевого волокна. В работе [22] было показано, что с помощью четырех сегментов эрбиевого волокна с накачкой по трем дополнительным волокнам можно получить дальность 123 км. Однако такая схема достаточно сложна, чтобы ее можно было использовать повсеместно. В работе [32] была предложена схема DAS на базе **Ф-ОТDR с использованием ROPA и специального** волокна с увеличенным обратным отражением длиной около 1 км, установленного на 151 км, где и было продемонстрировано детектирование сигнала внешнего воздействия на специальные волокна. Однако ничего не сообщалось про то, есть ли "слепые зоны" на расстоянии 100-150 км, где не было установлено специальное волокно. Таким образом, ранее дальности работы ϕ -OTDR с ROPA более 100 км без использования дополнительных волокон (специальных с увеличенным обратным отражением или волокон доставки излучения накачки) показано не было.

В данной работе нами исследована возможность увеличения дальности работы DAS "Дунай" компании T8 Сенсор на базе ф-OTDR до расстояний свыше 100 км за счет использования самого простого варианта ROPA: с одним сегментом эрбиевого волокна и попутной односторонней накачкой, распространяющейся по тому же волокну, что и импульс.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Схема экспериментальной установки изображена на рис. 1. В φ -ОТDR использовался лазер с центральной длиной волны $\lambda = 1550$ нм. К нему была подключена линия из пяти катушек стандартного одномодового волокна общей длиной примерно 121.1 км: 49.7, 19.5, 49.9, 1 и 1 км. Коэффициент затухания на длине волны 1550 нм у всех волокон 0.17–0.18 дБ/км. После 69 км между второй и третьей катушками в линию было дополнительно вварено 2 м эрбиевого волокна с пиковым поглощением 7 ± 1 дБ/км на 1530 нм. Примерно на 120.1 км между четвертой и последней катушками был установлен волоконный пьезомодулятор (РZT), состоящий из пьезоэлемента с намотанным на него стандартным одномодовым во-

Рис. 1. Схема экспериментальной установки. Выходы фазового когерентного импульсного рефлектометра и лазера накачки соединены в одно волокно с помощью спектрального объединителя. Тестируемая линия общей длиной 121.1 км состоит из 5 катушек обычного SMF-волокна длиной 49.7, 19.5, 49.9, 1 и 1 км, эрбиевого волокна (Er³⁺) длиной 2 м между 2-й и 3-й катушками. Между 4-й и 5-й катушками на расстоянии 120 км от начала волокна расположен пьезомодулятор (PZT), который создает воздействие.

локном длиной $L_{PZT} \sim 30$ м. Для минимизации потерь первые три катушки и эрбиевое волокно были сварены между собой. Последние две катушки и PZT были соединены между собой и с остальной частью линии с помощью оптических розеток типа LC/APC. Для накачки эрбиевого волокна в ROPA использовался лазер на длине волны 1480 нм с выходной мощностью около 500 мВт. Накачка ROPA вводилась в линию через спектральный объединитель (WDM). Частота повторения зондирующего импульса ф-OTDR равнялась 500 Гц, а длительность $\tau \sim 200$ нс, что обеспечивает разрешающую способность прибора около 20 м. При выключенной накачке ROPA пиковая мощность зондирующего импульса ф-ОТ-DR на входе в линию устанавливалась на уровне 200 мВт, что является максимальным значением: при более высоком значении мощности в волокне начинает проявляться модуляционная неустойчивость, по причине которой уровень сигнала рефлектометра (рефлектограмма) дополнительно уменьшается с длиной [12]. При включенной накачке импульс усиливается при прохождении по волокну, поэтому чтобы мощность импульса в точке максимума в волокне не превышала порог модуляционной неустойчивости, необходимо, чтобы входная мощность импульса была гораздо ниже, чем 200 мВт. Кроме того, в каждом случае регулировался коэффициент усиления встроенного в о-OTDR усилителя, так чтобы уровень рефлектограммы не превышал верхней границы динамического диапазона аналого-цифрового преобразователя *ф*-OTDR. Дополнительно после второй катушки до установки эрбиевого волокна были измерены с помощью фотоприемника и осциллографа профили мощности зондирующего импульса при выключенной и включенной накачке ROPA. PZT в конце линии был установлен для демонстрации работы DAS: частота воздействия была установлена 30 Гц, а амплитуда воздействия составляла $\Delta \phi = 0.1$ рад или же в терминах растяжения $\Delta \varepsilon = \lambda \cdot (4\pi n L_{PZT} \xi)^{-1} \cdot \Delta \phi = 0.35$ нанострейнов (здесь n = 1.47 – показатель преломления

волокна, $\xi = 0.78$ — коэффициент, учитывающий фотоупругий эффект [35]). Такой уровень воздействия примерно соответствует воздействию человеческих шагов на оптический кабель, закопанный на глубине полметра.

РЕЗУЛЬТАТЫ

На рис. 2 показаны профили мощности зондирующего импульса под действием эффекта ВКР и без него. Видно, что за счет эффекта ВКР зондирующий импульс усиливается, а накачка в это же время сильно истощается. Коэффициент усиления передней и средней частей импульса составил примерно 8.5-9 дБ, однако задняя часть импульса усиливается примерно на 1 дБ больше, что можно объяснить разностью групповых скоростей импульса на длине волны 1550 нм и накачкой на длине волны 1480 нм: в стандартном одномодовом волокне накачка обгоняет импульс и поэтому задний фронт импульса усиливается за счет еще не истощенной накачки. Также было проведено численное моделирование системы уравнений, описывающей распространение импульса и накачки [35]:

$$\begin{cases} \frac{\partial P_s(z,t)}{\partial z} = -\alpha_s P_s(z,t) + g_R P_s(z,t) P_p(z,t), \\ \frac{\partial P_s(z,t)}{\partial z} = +d \frac{\partial P_p(z,t)}{\partial t} = \\ = -\alpha_p P_p(z,t) - \frac{\lambda_s}{\lambda_p} g_R P_p(z,t) P_s(z,t), \end{cases}$$
(1)

где индексы "*p*" и "*s*" соответствуют накачке и зондирующему импульсу, P(z,t) – профиль мощности, α – затухание (0.17 дБ/км для импульса и 0.2 дБ/км для накачки), $d = v_p^{-1} - v_s^{-1} \approx 1$ нс/км – параметр разбега, определяющийся разностью обратных значений групповых скоростей импульса и накачки (был подобран для хорошего соответствия с экспериментальными данными), λ – длина волны (1550 и 1480 нм), $g_R = g_R(\lambda_s, \lambda_p) \approx$

Рис. 2. Сравнение экспериментальных и численно смоделированных профилей мощности зондирующего импульса и накачки на расстоянии 69 км под действием ВКР и без него. Синей штриховой линией показан экспериментально измеренный профиль зондирующего импульса длительностью около 200 нс в отсутствие накачки, зеленой сплошной линией экспериментально измеренный профиль мощности импульса при наличии накачки мощностью 500 мВт, а зеленой штрихпунктирной линией — смоделированный профиль мощности импульса в отсутствие накачки. Красной штрихпунктирной линией с двумя точками показан экспериментально измеренный профиль мощности накачки, а красной штриховой линией — смоделированный.

≈ 0.3 (Вт · км)⁻¹ – коэффициент ВКР-усиления для частотного сдвига 9 ТГц в стандартном одномодовом волокне [36]. В качестве начального профиля мощности импульса $P_s(z = 0, t)$ в моделировании был взят экспериментальный. Результаты численного моделирования показывают хорошее совпадение с экспериментальными данными. С помощью данного моделирования было определено, что оптимальная мощность импульса на входе в линии составляет примерно 30— 40 мВт. При таком уровне входной мощности зондирующего импульса и мощности накачки 500 мВт мощность зондирующего импульса не будет превышать порога модуляционной неустойчивости вдоль первых 69 км.

На рис. 3 изображены зависимости мошности сигнала обратного рассеяния от расстояния вдоль волокна, полученные из экспериментально измеренных рефлектограмм и усредненные по длине в скользящем окне длиной примерно 0.5 км. Первый случай соответствует выключенной накачке (мощность импульса 200 мВт), а второй – включенной накачке (мощность импульса 30 мВт). При выключенной накачке уровень обратного рассеяния убывает как $exp(-2\alpha_s z)$ до 69 км, а дальше падает ниже уровня шума, так как зондирующий импульс полностью поглощается в эрбиевом волокне. При включенной накачке за счет ВКР импульс и обратно рассеянный сигнал усиливаются: максимум мошности сигнала обратного рассеяния расположен примерно на 25 км. а усиление составило примерно 10 дБ. На расстоянии 69 км излучение накачки поглощается эрбиевым волокном, а импульс и сигнал обратного рэлеевского рассеяния при прохождении через него усиливаются. Общий для импульса и сигнала обратного рассеяния коэффициент усиления ROPA на расстоянии 69 км составил около 10 дБ.

Для оценки увеличения дальности работы φ-ОТDR в работе измерялись продольные зависимости отношения сигнал/шум фототока *SNR*₁ [38]:

$$SNR_I(z) = 10 \lg (S(z)/N(z)),$$

Рис. 3. Зависимость мощности обратного рассеяния от расстояния вдоль волокна, усредненной вдоль скользящего окна размером около 0.5 км, при выключенной (синяя линия) и включенной (зеленая линия) накачке ROPA в логарифмическом (дБ) масштабе. Линейные аппроксимации усредненной по длине мощности обратного рассеяния показаны наклонными штриховой и штрихпунктирной линиями для обоих случаев.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 5 2023

Рис. 4. Зависимость *SNR*_I от расстояния вдоль волокна при выключенной (синяя линия) и включенной (зеленая линия) накачке ROPA в логарифмическом (дБ) масштабе. Наклонные прямые штриховая и штрихпунктирная линии соответствуют линейным аппроксимациям *SNR*_I для обоих случаев. Горизонтальная штриховая линия соответствует пороговому уровню примерно 10 дБ.

где под мощностями сигнала S(z) и шума N(z) подразумеваются квадрат среднего значения $S(z) = \langle \overline{I(z)}^2 \rangle$ и дисперсия $N(z) = \langle \sigma_I^2(z) \rangle$ фототока в точке волокна z, \overline{x} – по времени/номеру импульса, а $\langle x \rangle$ – усреднение вдоль длины волокна в скользящем окне. В работе [39] было показано, что среднеквадратичная чувствительность интерферометрических датчиков бф ограничена SNR_I : $\delta \phi \approx 2/\sqrt{SNR_I}$. В данной работе SNR_I вычислялось по 100 последовательно измерениы рефлектограммам (общее время измерения $t_{\mu_{3M}} = 200$ мс), также оно усреднялось в скользящем окне размером примерно 0.5 км. Сравнение SNR_I показано на рис. 4.

Когда уровень рефлектограммы достаточно высокий, шумами приемной части рефлектометра можно пренебречь, а определяющую роль начинает играть фазовый шум используемого лазера [38]. В данном случае использовался лазер с шириной линии Δν ~ 2 кГц и уходами частоты менее 1 МГц/с. На временах *t*_{изм} уходами частоты можно пренебречь [40], а SNR_I будет ограничен только шириной линии $SNR_I \leq \frac{3}{2\pi} \Delta v^{-1} \tau^{-1} \approx 30 \, \mathrm{д}\mathrm{E}.$ На расстоянии более 75 км от начала линии при работе без ROPA наблюдается низкий уровень мощности сигнала обратного рассеяния, уровень SNR_{I} уже определяется не уровнем фазовых шумов, а относительным уровнем шумов приемной части рефлектометра и, соответственно, он убывает с расстоянием как $exp(-2\alpha_s z)$. На практике без ROPA со стандартным одномодовым волокном дальность работы DAS "Дунай" составляет около 70-75 км, этому расстоянию соответствует

уровень SNR_I примерно 10 дБ. При таком уровне можно регистрировать такие слабые воздействия, как шаги человека по закопанному оптическому кабелю на уровне 0.51 м. Более сильные воздействия (например, проезд поезда) можно обнаружить и при более низком SNR_I . В нашем случае уровень 10 дБ из линейной аппроксимации SNR_I соответствует расстоянию примерно 75 км. При использовании ROPA уровень SNR_I практически не падает ниже 25 дБ на расстоянии до 50 км, а на 70 км вырастает от 20 примерно до 25 дБ и снова опускается до порогового значения 10 дБ только на расстоянии примерно 120 км, что на 45 км дальше, чем без использования ROPA.

Из последовательности записанных рефлектограмм были посчитаны разностные фазы с базой измерения длиной около 20 м. Далее были рассчитаны спектр сигнала разностной фазы на расстоянии 120 км, усредненный по пространственных каналам, где располагался PZT, и спектр шума, усредненный по пространственным каналам, где модулятора не было (см. рис. 5).

Видно, что уровень сигнала на частоте 30 Гц превышает уровень шума на 20 дБ в полосе 1 Гц. Из практики нам известно, что такое отношение сигнал/шум разностной фазы достаточно для определения таких воздействий на закопанный кабель, как шаги человека, копка земли лопатой, проезд автомобиля и др. В качестве примера на рис. 6 показана временная пространственная диаграмма разностной фазы после фильтрации с помощью полосового фильтра Баттерворта 3-го порядка в полосе 25–35 Гц. На ней хорошо виден отклик на воздействие РZT на длине примерно 120 км.

Рис. 5. Спектр сигнала разностной фазы на расстоянии примерно 120 км: в месте, где располагался РZT-модулятор (красная линия), и вне его (фон – синяя линия). Измерения проходили при включенной накачке ROPA.

выводы

В данной работе продемонстрировано увеличение дальности работы DAS "Дунай" на расстоянии 45 км за счет использования самой простой схемы ROPA с попутной накачкой 500 мВт и всего с одним сегментом эрбиевого волокна. Воздействие с амплитудой 0.35 нанострейнов уверенно детектировалось на расстоянии 120 км, при этом отношение сигнал/шум составило 20 дБ в полосе 1 Гц. Общая дальность работы DAS составила не менее 120 км в стандартном одномодовом волокне без промежуточных "слепых зон" (общее затухание в линии не менее 20 дБ).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Муратов Э.М.* Подготовка профессиональных кадров в магистратуре для цифровой экономики (ПКМ-2020). 2021. С. 201.
- Stajanca P., Chruscicki S., Homann T., Seifert S., Schmidt D., Habib A. // Sensors. 2018. V. 18. P. 2841. https://doi.org/10.3390/s18092841
- 3. *Wu H.Y., Qian H.Li, Xiao S., Fu Z., Rao Y.* //CLEO: Applications and Technology. 2015. P. ATu1M. 4. https://doi.org/10.1364/CLEO_AT.2015.ATu1M.4
- 4. Бухарин М.А., Шишков К.В. // Железнодорожный транспорт. 2020. № 4. С. 58.
- 5. Бухарин М.А., Прокопенко С.В., Гуртовой К.В., Скубченко С.А., Трещиков В.Н. // Автоматика, связь, информатика. 2019. № 9. С. 8.
- Mateeva A., Mestayer J., Cox B., Kiyashchenko D., Wills P., Lopez J., Roy J. // SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists. 2012. P. 1.
- Nikitin S.P., Kuzmenkov A.I., Gorbulenko V.V., Nanii O.E., Treshchikov V.N. // Laser Phys. 2018. V. 28. P. 085107. https://doi.org/10.1088/1555-6611/aac714

Рис. 6. Пространственно-временная диаграмма разностной фазы после фильтрации в каждом пространственном канале с помощью полосового фильтра Баттерворта третьего порядка в полосе 25–35 Гц. Розовым прямоугольником с шириной 40 м показана граница отклика на воздействие модулятора PZT с длиной намотанного волокна около 30 м. Цветом отображается значение разностной фазы после фильтрации относительно своего максимума.

- Бухарин М.А., Спиридонов Е.П., Филютич Е.А., Остапенко Д.А., Нуруллин А.А., Трещиков В.Н. // Фотон-экспресс. 2021. № 6 (174). С. 249.
- Shatalin S.V., Treschikov V.N., Rogers A.J. // Appl. Opt. 1998. V. 37. P. 5600.
- Parker T., Shatalin S., Farhadiroushan M. // First Break. 2014. V. 32. P. 63. https://doi.org/10.3997/1365-2397.2013034
- Mestayer J., Cox B., Wills P., Kiyashchenko D., Lopez J., Costello M., Bourne S., Ugueto G., Lupton R., Solano G., Hill D., Lewis A. // SEG technical program expanded abstracts 2011. Society of Exploration Geophysicists. 2011. P. 4253. https://doi.org/10.1190/1.3628095
- Nikitin S.P., Ulanovskiy P.I., Kuzmenkov A.I., Nanii O.E., Treshchikov V.N. // Laser Physics. 2016. V. 26. P. 105106. https://doi.org/10.1088/1054-660X/26/10/105106
- Alekseev A.E., Vdovenko V.S., Gorshkov B.G., Potapov V.T., Simikin D.E. // Laser Physics. 2016. V. 26. P. 035101. https://doi.org/10.1088/1054-660X/26/3/035101
- Харасов Д.Р., Чурилин И.А., Никитин С.П., Наний О.Е., Трещиков В.Н. // 8-й Российский семинар по волоконным лазерам. 2018. Р. 208. https://doi.org/10.31868/RFL2018.208-210
- Martins H.F., Martin-Lopez S., Corredera P., Filograno M.L., Frazao O., Gonzalez-Herraez M. // J. Lightwave Technol. 2014. V. 32. P. 1510. https://doi.org/10.1109/JLT.2014.2308354
- 16. Martins H.F., Martin-Lopez S., Corredera P., Filograno M.L., Frazao O., Gonzalez-Herraez M. // J. Lightwave Tech-

nol. 2015. V. 33. P. 2628.

- https://doi.org/10.1109/JLT.2015.2396359
- Peng F., Peng Z.P., Jia X.H., Rao Y.J., Wang Z.N., Wu H. // Optical Fiber Communication Conference. 2014. P. M3J. 4. https://doi.org/10.1364/OFC.2014.M3J.4
- Kharasov D.R., Naniy O.E., Nikitin S.P., Treschikov V.N. // IEEE. 2018. P. 285. https://doi.org/10.1109/LO.2018.8435872
- Kharasov D.R., Fomiryakov E.A., Nikitin S.P., Nanii O.E., Treshchikov V.N. // IEEE. 2020. P. 1. https://doi.org/10.1109/ICLO48556.2020.9285481
- Kharasov D.R., Fomiryakov E.A., Bengalskii D.M, Nikitin S.P., Nanii O.E., Treshchikov V.N. // IEEE. 2022. P. 1. https://doi.org/10.1109/ICLO54117.2022.9840022
- Wang Z.N., Li J., Fan M.Q., Zhang L., Peng F., Wu H., Zeng J.J., Zhou Y., Rao Y.J. // Opt. Lett. 2014. V. 39. P. 4313.

https://doi.org/10.1364/OL.39.004313

- 22. *Arioka T., Nakamura K.* // Opt. Continuum. 2022. V. 1. P. 1375.
 - https://doi.org/10.1364/OPTCON.460475
- Tian X., Dang R., Tan D., Liu L., & Wang H. // Opt. Communication. Optical Fiber Sensors, and Optical Memories for Big Data Storage. SPIE. 2016. V. 10158. P. 191.
 - https://doi.org/10.1117/12.2246763
- 24. *Sha Z., Feng H., Shi Y., Zhang W., Zeng Z. //* IEEE Photonics Technol. Lett. 2017. V. 29. № 16. P. 1308. https://doi.org/10.1109/LPT.2017.2721963
- Van Putten L.D., Masoudi A., Brambilla G. // Opt. Lett. 2019. V. 44. P. 5925. https://doi.org/10.1364/OL.44.005925
- Официальное описание волокна OFS AcoustiSens URL: https://www.ofsoptics.com/wp-content/uploads/AcoustiSens-Wideband-GS86545-web.pdf (да-
- та обращения: 23.01.2023). 27. *Kharasov D.R., Bengalskii D.M., Fomiryakov E.A., Nanii O.E., Bukharin M.A., Nikitin S.P., Treshchikov V.N.* // Moscow University Physics Bulletin. 2021. V. 76. № 3. Р. 167. https://doi.org/10.3103/S0027134921030048
- 28. Farhadiroushan M. // 80th EAGE Conference & Exhibition 2018 Workshop Programme. European Associa-

tion of Geoscientists & Engineers. 2018. P. cp-556-00043.

https://doi.org/10.3997/2214-4609.201801921

29. Lalam N., Lu P., Buric M., Ohodnicki P.R. // Photonic Instrumentation Engineering VII. SPIE. 2020. V. 11287. P. 165.

https://doi.org/10.1117/12.2545089

- Kharasov D.R., Bengalskii D.M., Vyatkin M.Yu., Nanii O.E., Fomiryakov E.A., Nikitin S.P., Popov S.M., Chamorovsky Yu.K., Treshchikov V.N. // Quantum Electron. 2020. V. 50. P. 510. https://doi.org/10.1070/QEL17232
- Cedilnik G., Lees G., Schmidt P.E., Herstrøm S., Geisler T. // IEEE Sensors Lett. 2019. V. 3. P. 1. https://doi.org/10.1109/LSENS.2019.2895249
- 32. *Masoudi A., Beresna M., Brambilla G. //* Opt. Lett. 2021. V. 46. P. 552. https://doi.org/10.1364/OL.413206
- 33. Yu J., Liu J., Hu Q., Xu J., Nie M., Chen X., Wu J., Zhang X. Liu H., Yu S., Li G., Qin X. // Opt. Fiber Sensors. 2022. P. Th4. 11. https://doi.org/10.1364/OFS.2022.Th4.11
- 34. Wang Z.N., Zeng J.J., Li J., Fan M.Q., Wu H., Peng F., Zhang L., Zhou Y., Rao Y.J. // Opt. Lett. 2014. V. 39. P. 5866. https://doi.org/10.1364/OL.39.005866
- 35. *Headley C., Agrawal G.P.* Raman amplification in fiber optical communication systems. Elsevier Academic Press. USA. 2005.
- Shikhaliev I.I., Gainov V.V., Dorozhkin A.N., Nanii O.E.E., Konyshev V.A., Treshchikov V.N. // Quantum Electron. 2017. V. 47. P. 906. https://doi.org/10.1070/QEL16405
- Bertholds A., Dandliker R. // J. Lightwave Technol. 1988. V. 6. P. 17. https://doi.org/10.1109/50.3956
- Nikitin S., Fomiryakov E., Kharasov D., Nanii O., Treshchikov V. // J. Lightwave Technol. 2019. V. 38. P. 1446. https://doi.org/10.1109/JLT.2019.2952688
- 39. *Gabai H., Eyal A.* // IEEE. 2017. P. 1. https://doi.org/10.1117/12.2265527
- 40. Фомиряков Э.А., Харасов Д.Р., Никитин С.П., Наний О.Е., Трещиков В.Н. // Фотон-экспресс. 2021. №. 6 (174). Р. 252. https://doi.org/10.24412/2308-6920-2021-6-252-253