ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 2023, № 5, с. 40-47

_____ ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ____ ТЕХНИКА

УДК 53.08

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ВОЛОКОННЫМ ДАТЧИКОМ НА ОСНОВЕ БРИЛЛЮЭНОВСКОЙ ОПТИЧЕСКОЙ РЕФЛЕКТОМЕТРИИ ВО ВРЕМЕННОЙ ОБЛАСТИ С АЛГОРИТМОМ БЛИЖАЙШИХ К-СОСЕДЕЙ (K-NN)¹

© 2023 г. Ahmed Sabri Kadhim Almoosa^{*a,b,**}, Mohd Saiful Dzulkefly Zan^{*a*}, Mohd Faisal Ibrahim^{*a*}, Norhana Arsad^{*a*}, Mohd Hadri Hafiz Mokhtar^{*a*}, Ahmad Ashrif A. Bakar^{*a*}, Ю. А. Константинов^{*c,***}

^aDepartment of Electrical, Electronic and Systems Engineering Faculty of Engineering and Built Environment University Kebangsaan Malaysia (UKM) Malaysia, 43300, Bangi, Selangor

^bDepartment of Electronic Technologies Basra Technical Institute, Southern Technical University

Iraq, 61001, Basra

^сПермский федеральный исследовательский центр УрО РАН Россия, 614990, Пермь, ул. Ленина, 13а *e-mail: ahmedsabri1988@gmail.com **e-mail: yuri.al.konstantinov@ro.ru Поступила в редакцию 23.01.2023 г. После доработки 15.03.2023 г. Принята к публикации 10.05.2023 г.

Предлагается использовать алгоритм ближайших К-соселей (K-NN) для обработки зонлирующих сигналов, полученных на предложенном авторами ранее оптоволоконном датчике бриллюэновской оптической рефлектометрии во временной области (БОРВО) с высоким пространственным разрешением, называемом дифференциальным кросс-спектральным БОРВО (ДКС-БОРВО). Ключевая проблема, связанная с ДКС-БОРВО, заключается в том, что, когда используемая длительность импульса Т₁ меньше, чем время жизни фонона (порядка 10 нс), ширина спектра бриллюэновского усиления (СБУ) увеличивается, хотя при этом и уменьшаются искажения спектра. Несмотря на это уменьшение искажений формы спектра, разрешение по бриллюэновскому сдвигу частоты ухудшается из-за расширения бриллюэновского спектра. С другой стороны, в то время как длительность T_{I} , превышающая установившееся состояние бриллюэновского сигнала, сужает спектр, возникают боковые лепестки в пределах установившегося состояния, что приводит к ухудшению разрешения по бриллюэновскому сдвигу частоты; это ограничение наблюдается только в ДКС-БОРВО, несмотря на его возможности измерения с высоким пространственным разрешением. В нашей модели мы использовали данные, измеренные экспериментально для волокна длиной около 400 м с оптимизированной последовательностью T_L в диапазоне температур 40-80°C для получения температурного коэффициента Бриллюэна C_T . Затем, на этапе обучения, мы построили идеальные СБУ с помощью моделирования с различной шириной линии 50-70 МГц, чтобы обучить модель K-NN с учетом изменения ширины линии из-за разницы в условиях на этапах обучения и тестирования, тем самым сделав ее гибкой для различных условий, в которых находится волокно. На этапе тестирования мы использовали данные, измеренные экспериментально для зондирования волокна длиной около 3.6 км с $T_L = 60$ нс, чтобы получить распределение температуры. Для случая $T_L = 60$ нс мы улучшили точность определения температуры, используя K-NN, примерно до 2.77°С. Следовательно, можно сделать вывод, что модель K-NN может быть отличным альтернативным инструментом для обработки СБУ, измеренных ДКС-БОРВО, и получения распределения температуры вдоль волокна.

DOI: 10.31857/S0032816223050270, EDN: LHLMAP

1. ВВЕДЕНИЕ

Распределенные волоконно-оптические дат-

чики на основе бриллюэновского рассеяния широко известны своей способностью контролировать структурное состояние зданий, мостов, плотин и самолетов [1–4]. Бриллюэновская оптическая рефлектометрия во временной области (БОРВО), которая является одной из хорошо известных технологий бриллюэновской сенсорики, может быть

Международная конференция "Оптическая рефлектометрия, метрология и сенсорика 2023", Россия, Пермь, 24–26 мая 2023 г. (International conference "Optical Reflectometry, Metrology & Sensing 2023", Russia, Perm, 24–26, May 2023).

использована для регистрации изменений, происходящих в этих структурах. В БОРВО оптический зондирующий импульс вводится в один торец оптоволокна для взаимодействия с тепловым фононом и генерации волны спонтанного рассеяния Мандельштама—Бриллюэна. Из-за доплеровского сдвига частота спектра спонтанного рассеяния Мандельштама—Бриллюэна смещается на величину бриллюэновского сдвига частоты около 11 ГГц. Поскольку бриллюэновский сдвиг частоты линейно изменяется с деформацией и температурой, анализ его изменения позволяет измеритьстепеньизменениядеформации итемпературы в волокне [5, 6].

В обычном БОРВО для генерации спонтанного рассеяния Мандельштама-Бриллюэна используется только один импульс. Это значительно уменьшает отношение сигнал/шум сигнала спонтанного рассеяния Мандельштама-Бриллюэна и делает неточным расчет бриллюэновского сдвига частоты из-за увеличенной ширины бриллюэновского спектра. В то же время увеличение длительности импульса с целью сужения ширины спектра приводит к ухудшению пространственного разрешения. Чтобы преодолеть эти проблемы, в обычном БОРВО были разработаны различные методы достижения разрешения порядка сантиметров с использованием сконструированных последовательностей импульсов вместо одного импульса, а также с использованием специальных методов обработки сигналов [7–10]. Тем не менее эти методы также имеют ограничения с точки зрения точности бриллюэновского сдвига частоты из-за использования обычного метода для его оценки. Лаборатория, где работает часть соавторов, разработала метод ДКС-БОРВО для достижения той же цели [11].

Как отмечено выше, ключевая проблема, связанная с ДКС-БОРВО, заключается в том, что, хотя длительность импульса T_L менее 10 нс уменьшает спектральные искажения, ширина СБУ увеличивается. Это приводит к ухудшению разрешения по бриллюэновскому сдвигу частоты. В то же время длительность T_L , превышающая время установившегося бриллюэновского состояния (более 10 нс), способствует сужению спектра, но приводит к появлению боковых лепестков в пределах бриллюэновского стационарного режима. Это в равной степени вызывает ухудшение разрешения по бриллюэновскому сдвигу частоты. В данной модели для извлечения температурного коэффициента Бриллюэна С_Т были использованы данные, полученные экспериментально в диапазоне температур 40-80°С при опросе коротких волокон (длина около 400 м), с импульсом T_L, оптимизированным до 18 нс. Затем на этапе обучения с помощью моделирования были построены "идеальные" СБУ с различной шириной ли-

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 5 2023

нии (50-70 МГц) для обучения модели K-NN, чтобы учесть изменение ширины линии из-за разницы в условиях на этапах обучения и тестирования. Это сделало модель применимой для различных условий, в которых может находиться волокно. На этапе тестирования были использованы данные, полученные экспериментально для зондирования длинного волокна (протяженность около 3.6 км), с $T_L = 60$ нс, чтобы получить распределение температуры. Для случая $T_L = 60$ нс была увеличена точность экстракции температуры из измерений ДКС-БОРВО с использованием K-NN. Следовательно, можно заключить, что этот метод может быть отличным альтернативным инструментом для обработки СБУ, измеренных ДКС-БОРВО, и для получения распределения температуры вдоль волокна.

2. МЕТОДОЛОГИЯ

2.1. ДКС-БОРВО

Метод ДКС-БОРВО предполагает использование двух зондирующих пакетов. Как показано на рис. 1а, первый пакет состоит из длинного импульса протяженностью *Т*_L и короткого импульса протяженностью T_s, которые разделены временным интервалом Т. Во втором пакете присутствует только длинный импульс Т_L. Выходной сигнал, генерируемый каждым пакетом, подвергается дискретизации двумя оконными функциями, имеющими одинаковую продолжительность времени T_L и T_S и разделенными интервалом T_i . Как показано на рис. 16, быстрое преобразование Фурье рассчитывается на основе взаимной корреляции между данными, полученными с помощью функций широкого и узкого окон для каждого пакета. Когда Т_L установлено больше, чем время жизни фонона, вычисление быстрого преобразования Фурье дает малую ширину спектра Бриллюэна для каждого пакета. Вычитание бриллюэновского спектра, сгенерированного двумя пакетами, приводит к получению нового бриллюэновского спектра в точке вдоль волокна. Окончательный спектр Бриллюэна на коротком участке волокна определяется длительностью короткого импульса T_s , что приводит к субметровому пространственному разрешению.

2.2. Алгоритм ближайших К-соседей (K-NN)

Метод ближайших К-соседей — это легко реализуемый алгоритм, который помогает отслеживать все доступные примеры, а также прогнозировать числовую цель на основе их степени сходства (например, функции расстояния). Статистики применяли К-NN в качестве непараметрического метода оценки и выявления закономерностей более пяти десятилетий, начиная с 1970-х годов [12]. Ре-

Рис. 1. а) Форма сигнала пары импульсных пакетов. **б)** Две оконные функции для выбора фрагмента обратно-рассеянного излучения, измеренного по каждому пакету.

грессию K-NN легко реализовать, взяв среднее числового целевого значения среди ближайших соседей. Существует альтернативный метод, который берет среднее значение ближайших соседей К и назначает ему вес, обратно пропорциональный расстоянию между ними. Как и классификация K-NN, регрессия K-NN использует функции расстояния, чтобы определить, насколько близко два класса данных должны быть сгруппированы вместе. В табл. 1 приведены типы функций расстояния для измерения расстояния в K-NN [13]. Первые три типа функций допустимы для использования только в отношении непрерывных переменных. Если переменные являются категориальными, в идеале следует использовать расстояние Хэмминга.

Наилучший метод выбора оптимального значения для К состоит в том, чтобы начать с оценки данных. Как правило, высокое значение К означает большую точность, так как оно "смягчает" общий шум. Компромисс, однако, заключается в том, что края пространства признаков должны быть более заметными. Ранее перекрестная проверка служила еще одним методом расшифровки хорошего значения К путем проверки значения К с использованием другого набора данных. Большинство наборов данных лучше всего работает с десятью или более значениями К. Это дает результаты, которые намного лучше, чем результаты K-NN. Для извлечения температурного профиля из СБУ, измеренных БОРВО, используется алгоритм K-NN. Этапы обучения и тестирования K-NN для извлечения информации о температуре из СБУ показаны на рис. 2.

На этапе обучения мы провели эксперимент на установке ДКС-БОРВО, который объясняется в следующем разделе. Как показано на рис. 3, общая длина волокна составляла около 400 м. Мы разделили волокно на две части. Первые 220 м волокна выдерживались при комнатной температуре около 26° С, а второй отрезок длиной около 180 м был помещен в водяной тракт с повышением температуры от 40 до 80° С с шагом 5 °С.

На рис. 4 показано распределение бриллюэновского сдвига частоты для 400-метрового оптоволоконного датчика в случае $T_L = 18$ нс. Как видно, его величины для первых 220 м составляют около 10870 МГц, а для последних 180 м этот параметр увеличился на 5 значений, поскольку волокно было помещено в водяной тракт, а температура изменилась на 5°С. Также видно, что флуктуации и боковые лепестки очень малы. Это объясняет причину, по которой мы использовали случай 18 нс при построении идеального СБУ.

Спектры Бриллюэна для $T_L = 18, 60$ нс после обработки по методике ДКС-БОРВО показаны на рис. 5. Для случая $T_L = 18$ нс мы наблюдали более малую ширину бриллюэновского спектра.

методе к тата	
Функция расстояния	Математическое выражение
Евклидова	$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$
"Манхэттен"	$\sum_{i=1}^k (x_i - y_i) $
Минковского	$\left(\sum_{i=1}^k \left(x_i-y_i \right)^q\right)^{\!$
Хэмминга	$D_{\rm H} = \sum_{i=1}^k (x_i - y_i) $

Таблица 1. Типы функций расстояния, используемые в методе K-NN

Рис. 2. Предлагаемая модель для извлечения распределения температуры вдоль волокна с использованием алгоритма K-NN.

Была измерена полная ширина на полувысоте (FWHM), она составила 65 МГц. Кроме того, искажение формы спектра для случая $T_L = 18$ нс, повидимому, пренебрежимо мало. Это свидетельствует о лучшем результате, чем другие методы БОРВО [5]. Однако для случая $T_L = 60$ нс форма спектра искажается по мере уменьшения ширины спектра. Кроме того, с обеих сторон основного спектра появляются боковые лепестки с высокой амплитудой. Поскольку эти боковые лепестки появляются вблизи ширины линии спонтанного рассеяния Мандельштама–Бриллюэна, их амплитуды вызывают искажение формы спектра.

Идеальные СБУ для обучения методом K-NN получаются с использованием функции Лоренца [14]

$$g(v) = \frac{g_B}{1 + \left[\left(v - v_B \right) / \left(\frac{\Delta v_B}{2} \right) \right]^2},$$
 (1)

где v_B — бриллюэновский сдвиг частоты, Δv_B — ширина линии, а g_B — пиковое значение спектра. Бриллюэновские сдвиги частоты идеальных СБУ определяются с использованием температурного коэффициента (угла наклона) и их значений при

Рис. 3. Волоконный датчик длиной 400 м для обучения.

25°С (показано на рис. 6) в диапазоне температур от 10 до 90°С с шагом 1°С. Для каждой температуры существует несколько СБУ одного и того же бриллюэновского сдвига частоты, но с разной шириной линии, варьирующейся от 50 до 70 МГц с шагом 1 МГц. Диапазон ширин линии выбирается с учетом практического изменения ширины линии СБУ, получаемого из измерений БОРВО. Таким образом, у нас есть 81×21 идеальных температурных СБУ-пар для обучения K-NN. Диапазон частот в уравнении (1) составляет от 10.60 ГГц до 11.05 ГГц, что совпадает с диапазоном сканирования частоты в эксперименте, который равен 2.44140625 МГц.

3. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Конфигурация ДКС-БОРВО показана на рис. 7. Длительность короткого импульса T_s составляла 4 нс для достижения разрешения 40 см. Для анализа влияния T_L на производительность ДКС-БОРВО длительность *Т*_L была взята равной двум значениям – 18 и 60 нс, а интервал между импульсами (Т) составлял 2 нс, здесь учитываются соответственно время жизни фононов и время фронта импульса сигнала. Схема экспериментальной системы такая же, как у обычного БО-РВО, за исключением обработки сигнала и конфигурации импульсных пакетов. Оптический импульс генерировался с помощью модулятора Маха-Цендера. Для генерации сигнала на частоте биений за счет взаимодействия бриллюэновского обратного рассеяния света и локального излучения в спектральной области центра полосы частот сбалансированного фотодиода частота пакета импульсов с длиной волны 1.55 мкм была смещена вверх модулятором типа SSBM. Пико-

Рис. 4. Распределение бриллюэновского сдвига частоты (БСЧ) для 400-метрового оптоволоконного датчика в случае длительности импульса $T_L = 18$ нс.

Рис. 5. Спектры Бриллюэна для $T_L = 18$ нс и 60 нс.

вая мощность сигнала оптического пакета, вводимого в исследуемое оптическое волокно, составляла 600 мВт. Затем частотные компоненты всего обратного бриллюэновского рассеяния одновременно регистрировались с помощью балансного фотодетектора. Полученный сигнал подвергался дискретизации цифровым осциллографом, и к дискретным данным применялось быстрое преобразование Фурье для анализа спектра Бриллюэна. Форма сигнала обратно-рассеянного излучения измерялась 20000 раз для каждого из двух импульсных пакетов, показанных на рис. 1. Исследуемое волокно представляет собой одномодовое волокно (ITU-T G650-2) длиной около 3.6 км. Оно было исследовано при комнатной температуре 25°С, а отрезок волокна длиной около 5 м был размещен в водяной термостатической бане с температурой 72°С.

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 8 показано распределение температуры вдоль волокна длиной 3.6 км в случае $T_L =$ = 18 нс. Хорошо видно, что распределение температуры около 25°С указывает на то, что волокно подвергалось воздействию комнатной температуры, за исключением дальнего конца волокна; температура на 5-метровом волокне составляет около 72°С. В целом, можно четко различить разницу температур между обогреваемыми и необогреваемыми участками. Анализ пространственных фронтов нарастания и убывания нагретого

Рис. 6. Взаимосвязь между бриллюэновским сдвигом частоты и температурой при $T_0 = 25^{\circ}$ С, $v_0 = 10.873$ ГГц.

Рис. 7. Схема установки ДКС-БОРВО: ГСПФ – генератор сигналов произвольной формы, БФД – сбалансированный фотодиод, ПФ – полосовой фильтр, ВЭУ – волоконный эрбиевый усилитель, ММЦ – модулятор Маха–Цендера, О – осциллограф, ПС – поляризационный скремблер, SSBM – однополосный модулятор, ГСС – генератор синтезированных сигналов, ПЛИ – перестраиваемый лазерный источник.

участка волокна, а также длины нагретого участка успешно подтверждает пространственное разрешение в 40 см, что соответствует использованию $T_{S} = 4$ Hc.

На рис. 9 показано распределение температуры на дальнем конце тестового волокна длиной 3.6 км для случая $T_L = 60$ нс. В отличие от рис. 8, на дальнем конце волокна трудно наблюдать рост температуры, а значит, невозможно точно определить место нагрева волокна. Это связано с появлением боковых лепестков в окрестности ширины бриллюэновской линии для случая T_L = = 60 нс, показанного на рис. 5, что привело к ошибке в оценке температуры. Погрешность измерения температуры достигала 30.67°С. Кроме того, повышение температуры на участке волокна длиной 5 м было наблюдать затруднительно.

Также невозможно точно подтвердить пространственное разрешение простым анализом пространственных передних и задних фронтов нагретого участка волокна и длины нагретого участка.

На рис. 10 показано распределение температуры вдоль исследуемого волокна длиной 3.6 км при использовании модели K-NN. На дальнем конце волокна мы заметили, что предложенная модель улучшила распределение температуры. Значительно уменьшилась флуктуация распределения температуры вдоль волокна; мы получили определения температуры 2.77°C. точность Это подтверждает улучшение точности экстракции температуры по сравнению с наблюдаемой на рис. 9. Кроме того, на дальнем конце волокна отчетливо видно повышение температуры. Наконец, пространственное разрешение 40 см было

Рис. 8. Распределение температуры на дальнем конце волокна длиной 3.6 км для случая $T_L = 18$ нс.

Рис. 9. Распределение температуры на дальнем конце волокна длиной 3.6 км для случая $T_L = 60$ нс.

успешно подтверждено анализом восходящего фронта участка нагретого волокна.

5. ЗАКЛЮЧЕНИЕ

Было показано, что модель ближайших К-соседей (K-NN) успешно улучшила измерение распределения температуры для случая $T_L = 60$ нс в датчике ДКС-БОРВО. На этапе обучения мы провели эксперимент для датчика с коротким волокном (длина около 400 м), чтобы извлечь температурный коэффициент C_T , который позже использовался для построения идеальных бриллюэновских спектров. Затем мы построили идеальный СБУ на основе лоренцевского спектра усиления для различных ширин линии в диапазоне от 50 до 70 МГц и для диапазона температур от 10 до 90°С с шагом по температуре 1°С. Таким образом, у нас было 81 × 21 СБУ-температурных пар. И идеальные СБУ, и связанные с ними температуры, которые использовались для обучения K-NN, были нормализованы, чтобы иметь значения от 0 до 1. Именно метод K-NN лучше работает с нормализованными данными. Прежде чем использоваться для извлечения температуры, метод K-NN должен быть сначала обучен расшифровке структуры СБУ и соответствующим им температурам. После того, как модель K-NN полностью обучена, информация о температуре извлекается напрямую. Хорошо видно, что K-NN обеспечивает более вы-

Рис. 10. Распределение температуры на дальнем конце волокна длиной 3.6 км для случая $T_L = 60$ нс после применения модели K-NN.

сокую точность и демонстрирует большую устойчивость к шуму измерений. Кроме того, после обучения K-NN было получено достаточно короткое время обработки с использованием этой модели, оно составляет около 0.1 с. Исходя из этого предварительного результата, мы считаем, что K-NN является потенциальным альтернативным методом для получения данных о температуре из СБУ, измеренных методом БОРВО.

ФИНАНСИРОВАНИЕ РАБОТЫ

Раздел 1 подготовлен в рамках государственного задания АААА-А19-119042590085-2

СПИСОК ЛИТЕРАТУРЫ

- Bai Q., Wang Q., Wang D., Wang Y., Gao Y., Zhang H., Zhang M., Jin B // Sensors. 2019.V. 19. P. 1862. https://doi.org/10.3390/s19081862
- Bao X., Chen L. // Sensors. 2012. V. 12. P. 8601. https://doi.org/10.3390/s120708601
- Hartog A.H. An introduction to distributed optical fibre sensors. CRC press. 2017. https://doi.org/10.1201/9781315119014
- 4. Almoosa A.S.K., Hamzah A.E., Zan M.S.D., Ibrahim M.F., Arsad N., Elgaud M.M. // Opt. Fiber Technol. 2022. V. 70. P. 102860. https://doi.org/10.1016/j.yofte.2022.102860

- Zan M.S.D. et al. // Opt. Fiber Technol. 2022. V. 72. P. 102977. https://doi.org/10.1016/j.yofte.2022.102977
- 6. Zan M. et al. // J. Physics: Conference Series 2021. V. 1892. P. 012034.
- https://doi.org/10.1088/1742-6596/1892/1/012034 7. Kovamada Y., Sakairi Y., Takeuchi N., Adachi S. /
- Koyamada Y., Sakairi Y., Takeuchi N., Adachi S. // IEEE Photonics Technol. Lett. 2007. V. 19. P. 1910. https://doi.org/10.1109/LPT.2007.908651
- Nishiguchi K.I., Li C.-H., Guzik A., Kishida K. // Sensors. 2014. V. 14. P. 4731. https://doi.org/10.3390/s140304731
- 9. Horiguchi T., Masui Y., Zan M.S.D, // Sensors. 2019.
 V. 19. P. 1497. https://doi.org/10.3390/s19071497
- Shibata R., Kasahara H., Elias L.P., Horiguchi T. // IE-ICE Electron. Express. 2017. P. 14.20170267. https://doi.org/10.1587/elex.14.20170267
- Zan M.S.D., Masui Y., Horiguchi T. // In 2018 IEEE 7th International Conference on Photonics (ICP). 2018. P. 1. https://doi.org/10.1109/ICP.2018.8533208
- Bansal M., Goyal A., Choudhary A. // Decision Analytics J. 2022. V. 3. P.100071. https://doi.org/10.1016/j.dajour.2022.100071
- Chaplot N., Dhyani P., Rishi O. // Inter. J. Comput. Sci., Engin.& Technol. 2013. V. 1. P. 12. Corpus ID: 173168717
- Nordin N.D., Zan M.S.D., Abdullah F. // Opt. Fiber Technol. 2020. V. 58. P. 102298. https://doi.org/10.1016/j.yofte.2020.102298