ФИЗИЧЕСКИЕ ПРИБОРЫ ДЛЯ ЭКОЛОГИИ, МЕДИЦИНЫ, БИОЛОГИИ

УДК 621.039.63

ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ПОВЫШЕНИЯ ТЕХНОЛОГИЧЕСКОГО ВЫХОДА ¹²³I ПРИ ОБЛУЧЕНИИ ПРОТОНАМИ МИШЕНИ С ¹²⁴Xe

© 2023 г. А. А. Артюхов^{*a*}, В. А. Загрядский^{*a*}, Я. М. Кравец^{*a*}, Т. М. Кузнецова^{*a*}, Т. Ю. Маламут^{*a*}, В. И. Новиков^{*a*}, А. В. Рыжков^{*a*}, И. И. Скобелин^{*a*}, Т. А. Удалова^{*a*,*}

^аНациональный исследовательский центр "Курчатовский институт" Россия, 123182, Москва, пл. Академика Курчатова, 1 *e-mail: udalova_ta@nrcki.ru Поступила в редакцию 24.01.2023 г. После доработки 17.04.2023 г. Принята к публикации 22.04.2023 г.

Одним из способов получения ¹²³I является облучение протонами газообразного ¹²⁴Xe, в среде которого происходят ядерные реакции, приводящие к образованию и распаду изотопов ¹²³Xe и ¹²³I. По окончании облучения газовую фазу конденсируют из мишенного устройства в специальную "распадную" емкость, в которой в процессе распада ¹²³Xe происходит образование и накопление целевого изотопа ¹²³I. За время облучения в мишенном устройстве образуется и оседает на его стенках количество ¹²³I, сопоставимое с получаемым в "распадной" емкости. Для повышения общего выхода ¹²³I была создана лабораторная установка и отработан технологический процесс извлечения ¹²³I со стенок мишени. Для этого использовались органические растворители – ацетон и диэтиловый эфир. При смывании со стенок мишенного устройства с алюминиевым корпусом доля извлекаемого ¹²³I составляет не менее 84%. Потери при последующей вакуумной отгонке растворителей не превышают 5%. После вакуумной отгонки выделенный ¹²³I растворяется в NaOH. На этом этапе эфективность смыва ¹²³I раствором 0.01 M NaOH составляет не менее 95%. Однако даже с учетом этих потерь предложенный способ дает возможность дополнительно извлекать из мишенного устройства радионуклид ¹²³I в количестве равном или превышающем активность нарабатываемого ¹²³I по существующей технологии.

DOI: 10.31857/S0032816223060010, EDN: XUZWTR

1. ВВЕДЕНИЕ

Радиоактивный изотоп ¹²³I широко используется для диагностики целого ряда заболеваний. В настоящее время известно несколько способов реализации производства радионуклида ¹²³I для медицины с использованием ускорителей. Извлечение ¹²³I из газовых мишеней при облучении ¹²⁴Xе преимущественно осуществляют водой. В зависимости от материала мишенного устройства, помимо воды, используются также слабые растворы NaOH, NaCl, NaHSO₃ с последующим концентрированием и очисткой различными радиохимическими методами [1–3].

В НИЦ "Курчатовский институт" разработан и реализован способ получения радионуклида ¹²³I [4, 5], при котором наработка радиоизотопа ¹²³I проводится облучением протонами изотопа ¹²⁴Xe по реакциям

124
Xe(p, 2n) 123 Cs $\rightarrow ^{123}$ Xe $\mu ^{124}$ Xe(p,pn) 123 Xe, (1)

$$Xe \rightarrow {}^{123}I.$$
 (2)

После облучения газообразные 124 Хе и 123 Хе криогенным способом конденсируются в "распадный" баллон, где их выдерживают для распада 123 Хе и накопления 123 I, после чего 124 Хе переконденсируются в резервуар для хранения и повторного использования. В этих работах авторами [4, 5] проанализирована эффективность разных технологий сбора 123 I после облучения. Наилучшей, т. е. обеспечивающей минимальные потери, признана технология, при которой выделение 123 I происходит и из мишени (сразу после облучения), и из "распадного" баллона (в момент, когда активность 123 I в нем достигает максимума).

Реализуемый в настоящее время в НИЦ "Курчатовский институт" способ не позволяет извлекать ¹²³I, образованный в мишенном устройстве

Таблица 1. Зависимость отношения активности ¹²³I, распадающегося в мишенном устройстве после шестичасового облучения, к максимуму активности ¹²³I в "распадной" емкости

<i>Δt,</i> ч	0	1	2	3	4	5	6	7
<i>q</i> , отн. ед.	1.65	1.57	1.49	1.41	1.34	1.27	1.21	1.15

за время облучения. Извлечение производится только из "распадного" баллона, что дает возможность получать радионуклид ¹²³I высокой чистоты, однако при этом значительная часть его теряется. Хотя авторами отмечается, что работа по схеме, в которой ¹²³I извлекается только из "распадного" баллона, приводит к большим потерям ¹²³I, для наработок была выбрана именно эта схема, так как ее было проще и быстрее технически реализовать. Данная схема при частых облучениях малой продолжительности позволила обеспечивать начальные потребности – получение ¹²³I в количестве примерно 1 Ки, с тем чтобы на ее основе перейти к более продуктивной схеме извлечения.

2. КИНЕТИКА НАКОПЛЕНИЯ 123 І

Оценим уровень неиспользуемого ¹²³I, остающегося в мишенном устройстве на момент прекращения стандартного шестичасового облучения и конденсации ¹²³Xe в "распадный" баллон.

Относительные количества изотопов ¹²³Хе и ¹²³I, образующихся и распадающихся в процессе облучения и после его окончания, описываются простыми кинетическими уравнениями, использующими лишь значения постоянных распада ¹²³Хе и ¹²³I.

2.1. ¹²³Хе и ¹²³І в мишенном устройстве

Изменение количества изотопов ¹²³Хе и ¹²³І во время облучения описывается функциями:

$$nl_{\rm Xe}(t) = \frac{V}{\lambda_{\rm Xe}} \left(1 - e^{-\lambda_{\rm Xe}t}\right),\tag{3}$$

$$N1_{I}(t) = V \left[\frac{1}{\lambda_{I}} - \frac{1}{\lambda_{I} - \lambda_{Xe}} e^{-\lambda_{Xe}t} + \frac{\lambda_{Xe}}{\lambda_{I} \cdot (\lambda_{I} - \lambda_{Xe})} \cdot e^{-\lambda_{I}t} \right],$$
(4)

где $\lambda_{Xe} = 0.333 \text{ ч}^{-1} \text{ и}^{123} \text{I} \lambda_{\text{I}} = 0.052 \text{ ч}^{-1}$ – постоянные распада ¹²³Хе и ¹²³I, $n1_{Xe}(t)$ и $N1_{\text{I}}(t)$ – количества изотопов ¹²³Хе и ¹²³I в мишени в процессе облучения, $V[\text{ч}^{-1}]$ – кумулятивная скорость ядерной реакции, t[ч] – время облучения.

Через шесть часов после прекращения облучения и конденсации газовой фазы в "распадную" емкость наработанный ¹²³I остается на стенках мишенного устройства и подлежит распаду.

2.2. 123 Хе и 123 І в "распадной" емкости

При условии, что весь ¹²³Хе — потенциальный источник следующей порции ¹²³І — полностью перенесен в "распадную" емкость, изменение их количеств описываются функциями:

$$n2_{\rm Xe}\left(t\right) = n1_{\rm Xe}\left(6\right)e^{-\lambda_{\rm Xe}t},\tag{5}$$

$$N2_{\rm I}(t) = n l_{\rm Xe} \left(6\right) \frac{\lambda_{\rm Xe}}{\lambda_{\rm I} - \lambda_{\rm Xe}} \left(e^{-\lambda_{\rm Xe}t} - e^{-\lambda_{\rm I}t}\right), \qquad (6)$$

где $n2_{Xe}(t)$ и $N2_{I}(t)$ – количества изотопов ¹²³Хе и ¹²³І в "распадной" емкости в процессе распада.

На рис. 1. представлены графики процессов изменения активностей ¹²³Хе и ¹²³І в относительных единицах. В мишенном устройстве активность ¹²³I, наработанного за шесть часов, равная $A1_{I}(6) = \lambda_{I} N \hat{1}_{I}(6)$, приведена к единице; после окончания облучения активность ¹²³І начинает понижаться за счет распада (рис. 1а). В "распадной" емкости активность йода $A2_{I}(t) = \lambda_{I}N2_{I}(t)$ со временем проходит через максимум $max(A2_1)$ в диапазоне 6.2–7 ч выдержки, составляющий 0.606 отн. ед. (рис. 1б). Это время определяется только постоянными распада ¹²³Хе и ¹²³І, не зависит от параметров облучения и является наиболее выгодным для извлечения ¹²³I из "распадной "емкости. По окончании шестичасового облучения в мишенном устройстве накапливается в 1.65 раза больше ¹²³I, чем при извлечении его максимального количества из "распадной" емкости. Если сбор ¹²³I из "распадной" емкости в момент его максимальной активности уже хорошо отработан, то технологию извлечения оставшегося в мишени ¹²³I предстоит создать. В табл. 1 представлены значения отношения *q* активности ¹²³I в мишенном устройстве к максимуму активности в "распадной" емкости в зависимости от времени извлечения:

$$q(\Delta t) = A l_{\rm I}(\Delta t) / \max(A 2_{\rm I}),$$

где Δt — время от окончания облучения до момента извлечения ¹²³I из мишенного устройства.

Приведенные в табл. 1 данные позволяют оценивать достигаемый технологический выход ¹²³I при своевременном извлечении ¹²³I из мишенного устройства. Чтобы сократить время от окончания облучения до извлечения ¹²³I из мишенного устройства, необходима разработка технологии конструктивного оформления и автоматизации этого процесса.

3. КОНСТРУКЦИЯ УСТАНОВКИ

Судя по доступной литературе, поиску альтернативных видов растворителей для извлечения остающегося в мишенном устройстве ¹²³I не уделялось существенного внимания. В работе [6] изотоп ¹²³I получался облучением протонами ксенона с обогащением 20% и 40% по изотопу ¹²⁴Хе. Корпусы мишенных устройств, изготовленные из кварца и сплава кобальта (Хавар), промывались последовательно растворами 0.1 М NaOH и 0.1 М HCl. Известна работа, в которой для облучения использовались высокообогащенный ¹²⁴Хе (99.9%), а корпус мишенного устройства был изготовлен из нержавеющей стали. Промывка мишени осуществлялась слабым раствором NaI и NaHSO₃ в воде, при этом удавалось извлечь $75 \pm 5\%$ йода [7]. На сегодняшний день широкое распространение получила установка KIPROS [8], в которой мишенное устройство изготовлено из алюминия с внутренним никелевым покрытием. Мишенное устройство промывается водой с дальнейшей концентрацией йода методом ионообменной хроматографии и последующим растворением в 0.02 M NaOH.

Разработанный нами способ основан на использовании органических растворителей, которые обеспечивают высокую растворимость йода и не взаимодействуют с материалом стенок мишенного устройства. Использование органических растворителей обеспечивает следующие преимущества:

- повышенную эффективность экстракции ¹²³I,

 отсутствие контакта внутренней поверхности мишенного устройства с водой,

 возможность применения несложных способов очистки экстрагированного ¹²³ I от радионуклидных примесей методами вакуумной разгонки.

Для экспериментов были выбраны ацетон и диэтиловый эфир, которые являются растворителями низкой токсичности (3-й класс), обладают высокой летучестью и полностью удаляются в процессе вакуумной отгонки. Применение в процедуре извлечения ¹²³I технологических операций "мокрой" химии потребовало усложнений в конструкции мишени.

На рис. 2. представлена схема созданной лабораторной установки, предназначенной для получения радионуклида ¹²³I путем облучения ¹²⁴Xe протонами, сбора газообразных продуктов в "распадную" емкость и извлечения ¹²³I со стенок мишенного устройства органическими растворителями. Установка состоит из двух блоков: газовакуумного (на схеме металлические трубки этого блока обозначены жирными линиями) и экстракционного (полимерные трубки экстракционного блока обозначены тонкими линиями). Оба блока соединены с мишенным устройством. 3D-модель

Рис. 1. Относительные активности A^{123} Хе и 123 I, нормированные на активность 123 I, наработанную в мишени за шестичасовое облучение: **а** – в мишенном устройстве, **б** – в "распадной" емкости.

и фото мишенного устройства представлены на рис. 3.

Корпус мишенного устройства выполнен из алюминия марки АД1. Рабочая камера цилиндрической формы диаметром 15 мм и длиной 50 мм. Объем камеры 8.8 см³. Входная мембрана из алюминия толщиной 200 мкм уплотняется проклад-ками из витона.

4. ПРИБОРЫ И РЕАКТИВЫ

Измерения активности образцов на последовательных технологических стадиях обработки

Рис. 2. Схема лабораторной установки: 1, 10 – датчики давления АИР-20-М2-ДА, 2 – сорбционная ловушка с активированным углем, 3 – емкость с исходным ¹²⁴Хе, 4 – мерная ловушка (вспомогательная) для ¹²⁴Хе, 5 – ловушка для сбора облученного ¹²⁴Хе и ¹²³Хе, 6 – мишенное устройство, 7 – шприц-дозатор с ацетоном, 8 – шприц-дозатор с диэтиловым эфиром, 9 – шприц-дозатор с 0.01 М NaOH, 11 – форвакуумный насос, 12 – кварцевая колба для сбора смывов, 13 – прокачная ловушка, $\partial 1-\partial 6$ – сосуды Дьюара, $\beta 1-\beta 1$ – вентили.

Рис. 3. Конструкция мишенного устройства 6.

проводились по линии ¹²³I $E_{\gamma} = 159$ кэВ с помощью γ-спектрометра фирмы ORTEC GEM 35P4 (США) с Ge-детектором. Весовой баланс при проведении операций контролировался гравиметрически с помощью аналитических весов Mettler PM6100, давление газов — датчиками AИР-20-M2-ДА. В работе использовались ацетон (ОСЧ), диэтиловый эфир (ЧДА), гидроксид натрия (ОСЧ) и деионизированная вода. После отработки основных технологических операций переходили к работам с изотопно-обогащенным ¹²⁴Хе (99.9%, АО "ПО ЭХЗ") и радионуклидом ¹²³I, нарабатываемом на циклотроне У-150 НИЦ "Курчатовский институт".

5. ТЕХНОЛОГИЧЕСКИЕ ОПЕРАЦИИ

5.1. Заполнение мишенного устройства ксеноном-124

Подготовка и заполнение мишенного устройства проводились следующим образом (рис. 2). Перед напуском ¹²⁴Хе в рабочую камеру коммуникации мерная ловушка 4 и мишенное устройство 6 вакуумировались с помощью сорбционной ловушки 2 до остаточного давления 1 Па. Для напуска необходимого давления ¹²⁴Хе в мишенное устройство ксенон из емкости 3 конденсировался в мерную ловушку 4 объемом 1 см³. Затем мерная ловушка медленно отогревалась и в мишенное устройство напускался ¹²⁴Хе до давления 300 кПа. Остатки ¹²⁴Хе конденсировались обратно в емкость 3.

5.2. Облучение на циклотроне

Мишенное устройство с вентилем *вб* отсоединялось от стенда и передавалось для облучения на циклотрон У-150. Стандартное облучение для отработки технологии извлечения ¹²³I из мишени с помощью органических растворителей проводилось протонами с энергией 30 МэВ при токе 1 мкА в течение 10 мин. После облучения мишенное устройство выдерживалось в течение суток, затем его подсоединяли к стенду, предварительно измерив активность ¹²³I гамма-спектрометром.

5.3. Отгонка облученного ¹²⁴Хе

Стенд вакуумировался и 124 Хе конденсировался из мишенного устройства в приемную ловушку 5 до остаточного давления 1 Па. Далее мишенное устройство с вентилем *вб* отсоединялось от стенда и проводились измерения оставшейся в нем активности 123 I.

5.4. Заполнение мишенного устройства растворителем и слив элюата

Мишенное устройство подсоединялось к стенду для проведения экстракции ¹²³ I. Для этого с помощью форвакуумного насоса 11 проводилось вакуумирование коммуникации, ограниченной вентилями в5-в11, и кварцевой колбы 12. После этого перекрывались вентиль *в*11 на кварцевой колбе и вентиль в 10. Затем открывался вентиль вб на мишенном устройстве и с помощью вентилей 67, 68 заполнялось мишенное устройство ацетоном, диэтиловым эфиром или их смесью из шприцов-дозаторов 7, 8. После заполнения мишенного устройства растворителем перекрывались вентили вб, в7, в8 и проводилось вакуумирование коммуникаций, при этом остатки растворителей улавливались в прокачной ловушке 13, охлаждаемой жидким азотом. Для проведения экстракции растворитель в мишенном устройстве выдерживался в течение 15 мин. После этого осуществлялся слив растворителя из мишени в вакуумированную приемную кварцевую колбу 12, охлажденную жидким азотом. Для этого последовательно открывались вентили в11 и вб. После слива растворителя с извлеченным радионуклидом ¹²³І закрывались вентили вб и в 11, от стенда отсоединялись мишенное устройство с вентилем вб и приемная кварцевая колба с вентилем *в*11 для измерения в них активности ¹²³ I.

5.5. Вакуумная отгонка растворителя

После измерения активности мишенное устройство и кварцевая колба подсоединялись к стенду и проводилась вакуумная отгонка растворителя из кварцевой колбы при комнатной температуре. Растворитель улавливался в прокачной ловушке 13, охлаждаемой жидким азотом. Продолжительность вакуумной отгонки растворителя составляла 20-30 мин. Отгонка проводилась до остаточного давления в колбе 5 Па. После завершения вакуумной отгонки приемная кварцевая колба 12 отсоединялась от стенда вместе с вентилем *в11* для измерения активности ¹²³ I. После измерения активности кварцевая колба подсоединялась к стенду и вакуумировались коммуникании.

5.6. Смыв ¹²³ І раствором 0.01 М NaOH

Путем последовательного открывания вентилей *в11* и *в9* в колбу подавался 0.01 М раствор NaOH в количестве 5 см³ для смыва радионуклида ¹²³I со стенок колбы. После этого перекрывались вентили *в11* и *в9*, коммуникации промывались небольшим количеством ацетона из шприца-дозатора 7 и вакуумировались коммуникации через прокачную ловушку *13*. Далее приемная

Состав растворителя	Эффективность извлечения ¹²³ I из мишени при смыве, %	Потери ¹²³ I при отгонке растворителя, %	Общая эффективность извлечения ¹²³ I, %
Ацетон 100%	84	17	70 ± 5
Диэтиловый эфир 100%	40	3	39 ± 5
Ацетон + Диэтиловый эфир 50: 50% об.	84	5	80 ± 5

Таблица 2. Эффективность выделения ¹²³ I из мишенного устройства

кварцевая колба 12 отсоединялась от стенда и вручную с помощью шприца с капиллярной трубкой проводился отбор 0.01 М раствора NaOH. После отбора проводились измерения активности в кварцевой колбе и раствора в шприце для оценки эффективности смыва.

6. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Опыты по извлечению из мишенного устройства наработанного ¹²³I проводились с использованием ацетона, диэтилового эфира и смеси этих растворителей состава 50 : 50% об.

Для заполнения мишенного устройства растворителями оно предварительно вакуумировалось. При открывании вентиля растворители затягивались в него за счет перепада давлений. Результаты модельных экспериментов показали, что степень заполнения зависит как от вида растворителя, так и от условий заполнения. Заполнение проводилось при одинаковой температуре мишенного устройства, коммуникаций и растворителя. Заполняемость внутреннего объема мишени ацетоном составляла не менее 95% при условии вакуума в мишени и давления над жидким ацетоном 1 ата. В случае заполнения диэтиловым эфиром эффективность заполнения снижалась до уровня примерно 85%, при этом было необходимо создавать избыточное давление около1 ата над жидким эфиром при заполнении. Повидимому, это связано с образованием паровой пробки в мишени вследствие высокой упругости паров диэтилового эфира. Заполненное растворителями мишенное устройство выдерживалось в течение 15 мин при комнатной температуре.

В зависимости от условий проведения процесса изменялась доля растворителя, извлекаемого из мишенного устройства. При сливании растворителя в вакуумированную кварцевую колбу 12, имеющую комнатную температуру, удавалось собрать 85% эфира и 90% ацетона, а при охлаждении колбы жидким азотом эффективность сбора приближалась к 100%. Охлаждение приемной кварцевой колбы 12 оказалось необходимым также для более плавного прохождения процесса отгонки, исключающего вскипание растворителя на начальной стадии.

Следующий этап — вакуумная отгонка растворителей из смыва, сконденсированного при температуре —196°С, проводилась при отогревании ловушки в атмосфере воздуха комнатной температуры. При использовании диэтилового эфира продолжительность вакуумной отгонки при одинаковых условиях сокращается примерно на треть по сравнению с использованием ацетона и составляет примерно 20 мин для диэтилового эфира и около 30 мин для ацетона.

Смыв полученного радионуклида ¹²³I из кварцевой колбы после вакуумной отгонки органических растворителей проводился 0.01 М раствором NaOH. В результате этой операции эффективность смыва, которая определялась по соотношению активности ¹²³I в колбе до и после смыва, составляла не менее 95%.

Эффективность извлечения ¹²³I из мишенного устройства и уровень потерь при отгонке растворителя оценивались по результатам измерений активности ¹²³I в мишенном устройстве и колбе до и после проведения операций. Результаты измерений представлены в табл. 2.

Сопоставление результатов, представленных в табл. 2, показывает, что эффективность извлечения радионуклида ¹²³I ацетоном в два раза выше, чем диэтиловым эфиром. В то же время, уровень потерь ¹²³I при вакуумной отгонке ацетона более чем в пять раз превышает уровень потерь при отгонке диэтилового эфира. Полученные результаты свидетельствуют о возможности дальнейшей оптимизации процессов путем изменения состава смеси растворителей. Это продемонстрировано использованием в качестве экстрагента смеси ацетона и диэтилового эфира состава 50: 50% об., обеспечившей наиболее высокий процент извлечения ¹²³I.

7. ЗАКЛЮЧЕНИЕ

Разработана, изготовлена и протестирована лабораторная установка, на которой отработан

технологический процесс извлечения радионуклида ¹²³I из мишенного устройства путем смывания органическими растворителями. Продемонстрировано, что разрабатываемый метод позволяет извлекать не менее 80% ¹²³I, остающегося на внутренних стенках мишенного устройства за время облучения ¹²⁴Xe.

По мнению авторов, разработанная конструкция лабораторной установки и технологическая схема делают возможной автоматизацию процесса, что позволит сократить время от окончания облучения до извлечения ¹²³I из мишенного устройства и дополнительно извлекать радионуклид ¹²³I в количестве равном или превышающем активность нарабатываемого ¹²³I по существующей технологии без увеличения временной загрузки циклотрона.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке НИЦ "Курча-товский институт", приказ № 98 от 20.01.2023 г.

СПИСОК ЛИТЕРАТУРЫ

- 1. Левин В.И., Попович В.Б., Малинин А.Б., Куренков Н.В. SU671194A1. Советский патент 1980 года по МПК C01B7/00.
- 2. Флеров Г.Н., Оганесян Ю.Г., Белов А.Г., Стародуб Г.Я. Препринт ОИЯИ № 18-85-750, 1985.
- 3. Алексеев Е.Г., Гусельников В.С., Зайцев В.М. SU1709399A1. 1989. Советский патент 1992 года по МПК G21G1/10.
- 4. Веников Н.И., Воробьев О.А., Новиков В.И., Себякин А.А., Соколов А.Ю., Фомичев Д.И., Шабров В.А. Препринт ИАЭ-4934/14, 1989 г.
- 5. Веников Н.И., Себякин А.А. Патент SU 1661842. // Бюллетень № 25 от 07.07.1991 г.
- Firouzbakht M.L., Teng R.R., Schlyer D.J., Wolf A.P. // Radiochimica Acta. 1987. V. 41. P. 1. https://doi.org/10.1524/ract.1987.41.1.1
- Tarkanyi F., Quaim S.M., Stöcklin G., Sajjad M., Lambrecht R.M., Schweickert H. // Intern. J. Radiat. Appl. Instrument. Part A. Appl. Radiat. Isotop.1991. V. 42. P.221.

https://doi.org/10.1016/0883-2889(91)90080-K

8. Oberdorfer F., Meissner M., Tiede A., Schweickert H. IAEA-RC-1025.3 2009.