= НЕОРГАНИЧЕСКИЙ СИНТЕЗ И ТЕХНОЛОГИЯ НЕОРГАНИЧЕСКИХ ПРОИЗВОДСТВ **—**

УДК 54.057, 546.72, 546.56, 54-31

ИССЛЕДОВАНИЕ МЕДЬ–ЖЕЛЕЗО СМЕШАННОГО ОКСИДА СО СТРУКТУРОЙ КУБИЧЕСКОЙ ШПИНЕЛИ, СИНТЕЗИРОВАННОГО МЕТОДОМ ГОРЕНИЯ

© В. И. Симагина^{1,2}, О. В. Комова^{1*}, Г. В. Одегова¹, О. В. Нецкина¹, О. А. Булавченко¹, А. А. Почтарь¹, Н. Л. Кайль¹

 ¹ Институт катализа им. Г. К. Борескова СО РАН, Новосибирск
 ² Сибирский институт управления – филиал Российской академии народного хозяйства и государственной службы при Президенте РФ, Новосибирск
 * E-mail: komova@catalysis.ru

> Поступила в Редакцию 29 июня 2018 г. После доработки 15 октября 2018 г. Принята к публикации 23 октября 2018 г.

Интерес к работам по синтезу и исследованию свойств сложных оксидов обусловлен их широким использованием в различных областях материаловедения и катализа. В данной работе в режиме горения при локальном инициировании глицин-нитратного предшественника, спрессованного в таблетку, синтезирован медь-железо смешанный оксид структуры кубической шпинели. Получен новый результат о положительном влиянии добавления аммиака в состав предшественника, что привело к снижению скорости его горения и увеличению содержания шпинели с 34 до 80% без дополнительной стадии высокотемпературного прокаливания. В ходе проведенного исследования (рентгенофазовый анализ, дифференцирующее растворение, инфракрасная спектроскопия НПВО, включая ближнюю ИК область) установлена стехиометрия меди и железа в фазе феррита меди, определено ее содержание в продукте горения, обсуждается влияние восстановительных условий, реализующихся в зоне горения, на характеристики формирующегося продукта.

Ключевые слова: *СВС, глицин-нитратное горение, феррит меди, шпинель, стехиометрия.* DOI: 10.1134/S0044461819010031

Феррит меди — смешанный оксид структуры обращенной шпинели [1], который нашел применение в различных областях. Прежде всего следует отметить интерес к нему со стороны материаловедения в силу его высокопроводящих и магнитных свойств [2]. Анализ литературы показывает, что он успешно применяется как катализатор разнообразных процессов, где среди новых направлений следует отметить фотокатализ под действием видимого света [3]. Интересным является его недавнее применение в качестве катализатора процесса гидролиза NaBH₄, позволяющего получать водород при температуре окружающей среды, что актуально для создания различных зарядных устройств и источников питания на основе низкотемпературных топливных элементов с протонообменной мембраной [4]. Отметим, что керамический способ синтеза этого соединения энергозатратен и осуществляется в течение длительного времени. Данным способом получить однофазное соединение практически невозможно [5].

Среди альтернативных способов получения высокодисперсных фаз сложных оксидов, в том числе и феррита меди, можно выделить метод горения органометаллических предшественников, в основе которого лежит экзотермическая окислительно-восстановительная реакция [6-8]. Данный метод отличается простотой, доступностью и универсальностью. Его широко и успешно используют для синтеза различных соединений [9-13]. В отличие от многочасового прокаливания в муфельной печи стадия горения предшественника может осуществляться за секунды. Традиционно предшественники готовят путем растворения нитратов металлов и органического компонента (ОК) (лимонная кислота, крахмал, мочевина, глицин и др.) в минимальном количестве воды. Далее водный раствор компонентов упаривают до состояния вязкого геля (предшественника), дальнейший нагрев которого в оптимальных условиях приводит к самопроизвольному воспламенению с образованием большого количества газа и рыхлого высокодисперсного продукта горения. Такой режим горения относят к тепловому взрыву или объемному горению [6, 7, 14]. Его недостатком является плохая управляемость процесса, поскольку горение начинается внезапно, достаточно часто взрывообразно, сопровождается разбросом формирующегося продукта. Сушка геля предпочтительна, поскольку в присутствии воды наблюдается снижение температуры в зоне горения, так как энергия системы окислитель-топливо тратится на ее испарение и нагрев [7, 14].

Анализ литературы показывает, что для синтеза CuFe₂O₄ используют органические компоненты различной природы, варьируют условия приготовления предшественника, его горения/разложения, а также температуру дополнительного прокаливания образующегося продукта. Данные рентгенофазового анализа (РФА) образцов феррита меди, полученных из предшественников на основе лимонной кислоты, этиленгликоля, мочевины и глицина, представлены в табл. 1, в зависимости от метода получения может сформироваться CuFe₂O₄ как тетрагональной (т), так и кубической (к) структуры шпинели. В литературе также имеется информация о применении для синтеза феррита меди желатина [15], крахмала [16, 17], дизельного топлива совместно с моноолеатом сорбитана [18] и меда [2]. Видно, что характеристики образующегося кристаллического продукта зависят от условий синтеза (табл. 1). При этом природа органического топлива, соотношение топливо/нитраты, условия подготовки предшественника и режим его горения влияют на достигаемую температуру в зоне реакции и определяют фазовый состав образующегося продукта. Но, к сожалению, стехиометрию кубической шпинели CuFe2O4 методом РФА невозможно подтвердить без дополнительных исследований, поскольку Fe_3O_4 и $Cu_{1-x}Fe_{2+x}O_4$ обладают структурой шпинели и близкими параметрами решетки. Кроме того, достаточно редко обсуждается возможность восстановления образующейся оксидной фазы в зоне горения продуктами неполного окисления органического компонента.

В опубликованных ранее работах было показано, что использование режима автоволнового горения высушенного и спрессованного в таблетку глицин-нитратного предшественника более эффективно по сравнению с режимом объемного горения для синтеза фаз сложных оксидов (La₂CuO₄ [19], LaFeO₃ [20], LaCrO₃ [21]). Отметим, что этот режим является более управляемым, так как горение предшественника в этом случае инициируется кратковременным внешним тепловым воздействием [7]. За счет локализации процесса в узкой зоне и эффективной передачи тепла, выделяемого в зоне реакции, к последующему холодному слою предшественника, далее вступающему в реакцию, наблюдается достижение более высоких температур. Это обеспечивало формирование хорошо окристаллизованной и чистой фазы сложного оксида без дополнительной стадии высокотемпературного прокаливания. Автоволновой режим горения органометаллического предшественника, сопровождающийся выделением большого количества газа, достаточно редко применяется, и его возможности мало изучены.

В этой работе представлены новые данные об использовании горения высушенных глицин-нитратных предшественников, предварительно спрессованных в таблетки, для синтеза медь–железо смешанного оксида структуры кубической шпинели. Особое внимание уделено влиянию добавления водного раствора аммиака при приготовлении предшественника на его свойства, характер окислительно-восстановительной деструкции, а также фазовый состав образующегося продукта горения и стехиометрию фазы феррита меди.

Экспериментальная часть

Приготовление глицин-нитратных предшественников и модельных соединений. Использовали следующие реактивы: Cu(NO₃)₂·2.5H₂O — 98 мас% (Sigma-Aldrich, CAS 19004-19-4); Fe(NO₃)₃·9H₂O — «чистый» (OAO УЗХР, ГОСТ 4111-74); глицин C₂H₅O₂N — «чистый» (ООО Спектр-Хим, ГОСТ 5860-75); аммиак водный — ос.ч. (ЗАО База № 1 Химреактивов, ГОСТ 24147-80); NH₄NO₃ — ч.д.а. (ООО Промхимкомплект, ГОСТ 22867-77), HNO₃ ос.ч. 18-4 (ГОСТ 11125-84), HClO₄ — х.ч. (ЗАО Век-

Лимонная кислота [22] Нагрев высушенного геля 0.34 200 Сибе ₂ O ₄ (к) (9 нм) Лимонная кислота [23] Прокаливание высушенного геля 0.38 150 Сибе ₂ O ₄ (10 гм) Этиленгликоль [24] Интенсивное кипение раствора на основе 0.1 М HNO ₃ свос- ливаение вы риз 300°С 6.15 — Сибе ₂ O ₄ (10 гм) Этиленгликоль [24] Прокаливание высушенного геля 6.15 700 Сибе ₂ O ₄ (n) + CuO + Fe ₂ O ₃ Мочевина [25] Натрев раствора, воспламене- ине при 300°С 0.83 500 Сибе ₂ O ₄ (n) (40 гм) Мочевина [26] Натрев раствора, воспламене- ине при 300°С 0.83 500 Сибе ₂ O ₄ (n) (9 квм) Мочевина [27] Натрев раствора, воспламене- ине при 500°С 0.83 500 Сибе ₂ O ₄ (n) (7 квм) Мочевина [27] Натрев раствора, воспламене- ине при 500°С 0.83 — Сибе ₂ O ₄ (n) (37 км) Мочевина [28] Натрек раствора, воспламене- ине при 500°С 0.13 — Сибе ₂ O ₄ (n) (37 км) Глиции [29] Натрек раствора, воспламене- ине при 500°С 0.67 — Сибе ₂ O ₄ (n) (40 нм) + CuO 2.00 — Сибе ₂ O ₄ (n) (40 нм) + CuO	Органический компонент	Описание	ОК/NO ₃ , моль	Дополнительное прокаливание, °С	Данные РФА	
Лимонная кислота [23] Прокаливание высушенного геля 0.38 150 СиFe ₂ O ₄ (10 нм) СиFe ₃ O ₄ (10 нм) Этиленгликоль [24] Интенсивное кипение раствора на основе 0.1 М НNO ₄ с вос- лизаменением при 300°C 6.15 — СиFe ₃ O _{4(r)} (30 нм) Этиленгликоль [24] Прокаливание высушенного геля 6.15 700 СиFe ₃ O _{4(r)} + CuO + Fe ₂ O ₃ (1000 СиFe ₃ O _{4(r)} + CuO + Fe ₂ O ₃ (1000 Мочевина [25] Нагрев раствора, воспламене- ине при 300°C 0.83 500 СиFe ₃ O _{4(r)} (10 нм) (2uFe ₃ O _{4(r)} (10 нм) Мочевина [26] Нагрев раствора, воспламене- ине при 300°C 0.83 500 СиFe ₃ O _{4(r)} (10 нм) Мочевина [27] Нагрев раствора, воспламене- ине при 500°C 0.83 — СиFe ₃ O _{4(r)} (10 нм) Мочевина [28] Нагрев раствора, воспламене- ине при 500°C 0.13 — СиFe ₃ O _{4(r)} (34 нм) Мочевина [28] Нагрев раствора, воспламене- пие при 300°C 0.56 800 СиFe ₃ O _{4(r)} (34 нм) Пишин [29] Нагрев растертой смеси реа- гентов при 300°C 0.56 800 СиFe ₃ O _{4(r)} (40 нм) Прокаливанне растертой и вы- супенной смеси реа- гентов при 300°C 0.56 800 СиFe ₃ O _{4(r)} (41 мм)	Лимонная кислота [22]	Нагрев высушенного геля	0.34	200	CuFe ₂ O ₄ (к) (9 нм)	
геля400 700 $CuFe_{2}O_{4(2)}(10 m)$ $CuFe_{2}O_{4(2)}(30 m)$ Этилениликоль [24]Интенсивное кипение раствора на основе 0.1 М HNO3 с вос- илаженением при 300°C6.15— $CuFe_{2}O_{4(2)}(10 m)$ $CuFe_{2}O_{4(2)}(10 m)$ Этилениликоль [24]Прокаливание высушениюю ние при 300°C6.15700 $CuFe_{2}O_{4(1)}(10 m)$ $CuFe_{2}O_{4(2)}(10 m)$ Мочевина [25]Нагрев раствора, воспламене- ине при 300°C0.83700 $CuFe_{2}O_{4(1)}(10 m)$ $CuFe_{2}O_{4(1)}(10 m)$ Мочевина [26]Нагрев раствора, воспламене- ине при 300°C0.83500 $CuFe_{2}O_{4(1)}(18 m)$ $1000Мочевина [27]Нагрев раствора, воспламене-ине при 500°C0.83—CuFe_{2}O_{4(1)}(18 m)1000Мочевина [28]Нагрев раствора, воспламене-ине при 500°C0.13—CuFe_{2}O_{4(1)}(19 m)1000Мочевина [28]Нагрев раствора, воспламене-ине при 500°C0.67—CuFe_{2}O_{4(1)}(37 m)1000Мочевина [29]Нагрев раствора, воспламене-ине при 500°C0.67—CuFe_{2}O_{4(1)}(40 m)1.33—Глиции [29]Нагрев раствора, воспламене-ине при 250°C0.67—CuFe_{2}O_{4(1)}(40 m)1.33—Глиции [29]Нагрев раствора, воспламене-ине при 300°C0.67—CuFe_{2}O_{4(1)}(40 m)1.33—Глиции [29]Нагрев растертой смеси реа-гентов при 300°C0.67—CuFe_{2}O_{4(1)}(31 m)1.33—Глиции [31]Прокаливание растертой и вы-сушениюй смеси реа-сушений смеси реа-(267$	Лимонная кислота [23]	Прокаливание высушенного	0.38	150	CuFe ₂ O ₄ (10 нм)	
Этиленитиколь [24] Интепсивное кинение раствора на основе 0.1 М HNO ₃ свос- пламенением при 300°С 700 СиFe ₂ O ₄₍₂₎ (30 им) Этиленитиколь [24] Прокаливание высушенного гели 6.15 — СиFe ₂ O ₄₍₂₎ (40 им) Этиленитиколь [24] Прокаливание высушенного гели 6.15 700 СиFe ₂ O ₄₍₂₎ + CuO + Fe ₂ O ₃ СиFe ₂ O ₄₍₂₎ + CuO + Fe ₂ O ₃ Мочевина [25] Нагрев раствора, воспламене- ние при 300°С 0.83 700 СиFe ₂ O ₄₍₂₎ + Re ₂ O ₃ Мочевина [26] Нагрев раствора, воспламене- ние при 300°С 0.83 500 СиFe ₂ O ₄₍₂₎ (10 пм) Мочевина [27] Нагрев раствора, воспламене- ние при 500°С 0.83 — СиFe ₂ O ₄₍₂₎ (10 пм) Мочевина [28] Нагрев раствора, воспламене- ние при 500°С 0.83 — СиFe ₂ O ₄₍₂₎ (26 пм) Мочевина [28] Нагрев раствора, воспламене- ние при 250°С 0.67 — СиFe ₂ O ₄₍₂₎ (34 пм) Мочевина [29] Нагрев раствора, воспламене- гентов при 300°С 0.67 — СиFe ₂ O ₄₍₄₎ (34 nм) 200 — СиFe ₂ O ₄₍₄₎ (40 пм) 1.33 — СиFe ₂ O ₄₍₄₎ (34 nм) 200 — СиFe ₂ O ₄₍₄₎ (37 m)		геля		400	СиFe ₂ O ₄ (10 нм)	
Этиленгликоль [24] Интенсивное кипение раствора на основе 0.1 М НЮод с вос- лламенением при 300°С 6.15 — СиFe2O ₄₍₁₎ (10 нм) Этиленгликоль [24] Прокаливание высущенного геля 6.15 700 СuFe2O ₄₍₁₎ + CuO + Fe2O ₃ СuFe2O ₄₍₁₎ (40 нм) Мочевина [25] Нагрев раствора, вослламене- ние при 300°С 0.83 700 CuFe2O ₄₍₁₎ (40 нм) Мочевина [26] Нагрев раствора, вослламене- ние при 300°С 0.83 500 CuFe2O ₄₍₁₎ (10 пм) Мочевина [26] Нагрев раствора, вослламене- ние при 300°С 0.83 500 CuFe2O ₄₍₁₎ (10 пм) Мочевина [27] Нагрев раствора, воспламене- ние при 500°С 0.83 — CuFe2O ₄₍₁₎ (26 нм) Мочевина [28] Нагрев раствора, воспламене- ние при 500°С 0.13 — CuFe2O ₄₍₁₎ (34 нм) Глицин [29] Нагрев растертой смеси реа- гентов при 300°С 0.67 — CuFe2O ₄₍₁₎ (40 нм) + CuO Сибе2O ₄₍₁₎ (40 нм) 2.00 — CuFe2O ₄₍₁₎ (40 нм) + CuO 2.00 Глицин [30] Прокаливание растертой и вы- сушенной смеси реагитов 0.56 800 CuFe2O ₄₍₁₎ (24 нм) + CuO Гипцин [31] Нагрев раствора, воспламене- ние <td></td> <td></td> <td></td> <td>700</td> <td>СиFe₂O_{4(т)} (30 нм)</td>				700	СиFe ₂ O _{4(т)} (30 нм)	
Этилентликоль [24] Прокаливание высушенного геля 6.15 700 СиFe ₂ O ₄₍₇₎ + CuO + Fe ₂ O ₃ СиFe ₂ O ₄₍₇₎ (40 нм) Мочевина [25] Нагрев раствора, воспламене- ине при 300°С 0.83 700 СиFe ₂ O ₄₍₇₎ (40 нм) Мочевина [26] Нагрев раствора, воспламене- ине при 300°С 0.83 500 СиFe ₂ O ₄₍₇₎ (98 нм) Мочевина [26] Нагрев раствора, воспламене- ине при 300°С 0.83 500 СиFe ₂ O ₄₍₇₎ (10 нм) Мочевина [27] Нагрев раствора, воспламене- ине при 500°С 0.83 — СиFe ₂ O ₄₍₇₎ (10 нм) Мочевина [28] Нагрев раствора, воспламене- ине при 250°С 0.83 — СиFe ₂ O ₄₍₈₎ (26 нм) Мочевина [28] Нагрев раствора, воспламене- ине при 250°С 0.13 — СиFe ₂ O ₄₍₈₎ (34 нм) 700 СиFe ₂ O ₄₍₈₎ (34 нм) СиFe ₂ O ₄₍₈₎ (34 нм) 200 CuFe ₂ O ₄₍₈₎ (34 нм) 701 Прокаливание растертой смеси реа- гентов при 300°С — СиFe ₂ O ₄₍₈₎ (37 нм) + + CuFe ₂ O ₄₍₈₎ (37 нм) + + CuFe ₂ O ₄₍₈₎ (37 нм) + + CuFe ₂ O ₄₍₈₎ (37 нм) + + Fe ₂ O ₃ Глицин [30] Прокаливание растертой и вы- сушенной сисси реатентов 0.56 800 CuFe ₂ O ₄₍₁ (10 + m) Глицин	Этиленгликоль [24]	Интенсивное кипение раствора на основе 0.1 М HNO ₃ с вос- пламенением при 300°С	6.15		$CuFe_2O_{4(\kappa)}$ (10 нм)	
Почевина [25] нагрев раствора, воспламене- ние при 300°С 1100 Си $Fe_2O_{4(7)}$ (40 нм) 2 Мочевина [26] Нагрев раствора, воспламене- ние при 300°С 0.83 700 Си $Fe_2O_{4(7)}$ (98 нм) Мочевина [26] Нагрев раствора, воспламене- ние при 300°С 0.83 500 Си $Fe_2O_{4(7)}$ (98 нм) Мочевина [27] Нагрев раствора, воспламене- ние при 500°С 0.83 500 Си $Fe_2O_{4(7)}$ (10 нм) Мочевина [27] Нагрев раствора, воспламене- ние при 500°С 0.83 — Си $Fe_2O_{4(8)}$ (8 нм) Мочевина [28] Нагрев раствора, воспламене- ние при 250°С 0.13 — Си $Fe_2O_{4(8)}$ (26 нм) Мочевина [29] Нагрев раствора, воспламене- пентов при 300°С 0.13 — Си $Fe_2O_{4(8)}$ (34 нм) Глицин [29] Нагрев растертой смеси реа- гентов при 300°С 0.67 — Си $Fe_2O_{4(8)}$ (34 нм) + CuO Глицин [30] Прокаливание растертой и вы- сушенной смеси реагентов 0.56 800 Си $Fe_2O_{4(7)}$ (24 нм)+CuO + $+Fe_2O_3$ Глицин [31] Нагрев раствора, воспламене- пие 1; 1.48 800 Си $Fe_2O_4(7)$ (24 нм)+CuO + $+Fe_2O_3$ Глицин [28] Нагрев раств	Этиленгликоль [24]	Прокаливание высушенного	6.15	700	$CuFe_2O_{4(T)} + CuO + Fe_2O_3$	
Мочевина [25] Нагрев раствора, воспламенение пие при 300°С 0.83 700 Си Fe ₂ O ₄₍₇₎ + Fe ₂ O ₃ Мочевина [26] Нагрев раствора, воспламенение пие при 300°С 0.83 500 Си Fe ₂ O ₄₍₇₎ + Fe ₂ O ₃ Мочевина [26] Нагрев раствора, воспламенение пие при 300°С 0.83 500 Си Fe ₂ O ₄₍₇₎ (10 нм) Мочевина [27] Нагрев раствора, воспламенение пие при 500°С 0.83 — Си Fe ₂ O ₄₍₇₎ (155 нм) Мочевина [28] Нагрев раствора, воспламенение при 250°С 0.13 — Си Fe ₂ O ₄₍₈₎ (26 нм) Мочевина [29] Нагрев раствора, воспламенение при 250°С 0.67 — Си Fe ₂ O ₄₍₆₎ (37 нм) Пицин [29] Нагрев растертой смеси реагентов при 300°С 1.33 — Си Fe ₂ O ₄₍₆₎ (37 нм) + tCuO Сипе 204(6) Прокаливание растертой и высушенной смеси реагентов 0.56 800 Си Fe ₂ O ₄₍₆₎ (37 нм) + tCuO Глицин [30] Прокаливание растертой и высушенной смеси реагентов 0.56 800 Си Fe ₂ O ₄₍₆ (10 нм) + CuO 1 1.48 1000 Си Fe ₂ O ₄ (10 см) + Fe ₂ O ₃ 2 1000 Си Fe ₂ O ₄₍₇₎ Глицин [31] Нагрев		геля		1100	$CuFe_2O_{4(T)}$ (40 HM)	
Но типи [25]Нир вра 300°С1000Си $F_{2}O_{4(1)}$ Си $F_{2}O_{4(1)}$ Мочевина [26]Натрев раствора, воспламене- ине при 300°С0.83500Си $F_{2}O_{4(1)}$ (110 пм)Мочевина [27]Натрев раствора, воспламене- иие при 500°С0.83—Си $F_{2}O_{4(1)}$ (191 пм)Мочевина [28]Нагрев раствора, воспламене- иие при 500°С0.83—Си $F_{2}O_{4(1)}$ (26 пм)Мочевина [28]Нагрев раствора, воспламене- иие при 250°С0.13—Си $F_{2}O_{4(1)}$ (26 пм)Мочевина [28]Нагрев раствора, воспламене- иие при 250°С0.13—Си $F_{2}O_{4(1)}$ (26 пм)Пир враствора, воспламене- иие при 300°С0.67—Си $F_{2}O_{4(1)}$ (40 пм)Сипе 204(1)Сипе 204(1)(40 пм) + CuO2.00—Си $F_{2}O_{4(1)}$ (40 пм) + CuOСипе 204(1)Прокаливание растертой и вы- сушенной смеси реагентов0.56800Си $F_{2}O_{4(1)}$ (24 пм) + CuO + + Fc2O_3Глицин [30]Прокаливание растертой и вы- сушенной смеси реагентов1; 1.48800Си $F_{2}O_{4}$ CuO + Fc2O_3Глицин [28]Нагрев раствора, воспламене- ние0.13—Си $F_{2}O_{4}$ CuO + Fc2O_3Глицин [28]Нагрев раствора, воспламене- ине при 250°С0.13—Си $F_{2}O_{4}$ CuO + Fc2O_3Глицин [28]Нагрев высушенного геля1.4200Си $F_{2}O_{4}$ 13 нм)800Си $F_{2}O_{4}$ 13 нм)800Си $F_{2}O_{4}$ 13 нм)<	Мочевина [25]	Нагрев раствора воспламене-	0.83	700	$CuFe_2O_4(x) + Fe_2O_2$	
Мочевина [26] Нагрев раствора, воспламене- ние при 300°С 0.83 500 СиFe2O4(r) (98 нм) СиFe2O4(r) (110 нм) Мочевина [27] Нагрев раствора, воспламене- ние при 500°С 0.83 — СиFe2O4(r) (191 нм) Мочевина [28] Нагрев раствора, воспламене- ние при 250°С 0.83 — СиFe2O4(r) (26 нм) Мочевина [28] Нагрев раствора, воспламене- ние при 250°С 0.13 — СиFe2O4(r) (34 нм) 900 СuFe2O4(r) (37 нм) 800 СuFe2O4(r) (37 нм) 800 Глицин [29] Нагрев растертой смеси реа- гентов при 300°С 0.67 — CuFe2O4(r) (34 нм) + CuO 2.00 _ СuFe2O4(r) (34 нм) + CuO 2.00 _ CuFe2O4(r) (24 нм) + CuO 7.133 — CuFe2O4(r) (24 нм) + CuO 2.00 _ CuFe2O4(r) (24 нм) + CuO 7.141 Прокаливание растертой и вы- сушенной смеси реаетнов 0.56 800 CuFe2O4(r) (24 нм) + CuO + + Fe2O3 7.111 Нагрев раствора, воспламене- ние 1; 1.48 1000 CuFe2O4(r) (13 нм) 7.111 Нагрев раствора, воспламене- ние при 250°С 0.13 — CuFe2O4(r) (13 нм)		ние при 300°С	0.02	1000	$CuFe_2O_4(r)$	
Истери и пров раствора, восплажене- ние при 300°С 0.00 0.00 СиFe2O4(7) (10 нм) СиFe2O4(7) (110 нм) Мочевина [27] Нагрев раствора, восплажене- ние при 500°С 0.83 — СиFe2O4(7) (10 нм) Мочевина [28] Нагрев раствора, восплажене- ние при 500°С 0.83 — СиFe2O4(8) (26 нм) Мочевина [28] Нагрев раствора, восплажене- ние при 250°С 0.13 — СиFe2O4(8) (26 нм) Глицин [29] Нагрев растертой смеси реа- гентов при 300°С 0.67 — СиFe2O4(8) (40 нм) Глицин [30] Прокаливание растертой и вы- сушенной смеси реаентов 0.56 800 СиFe2O4(8) (37 нм) + + CuFe2O4(7) (24 нм)+CuO Глицин [31] Нагрев раствора, восплажене- ние 1; 1.48 800 CuFe2O4(7) (24 нм)+CuO + + Fe2O3 Глицин [31] Нагрев раствора, восплажене- ние 1; 1.48 800 CuFe2O4(7) (24 нм)+CuO + + Fe2O3 Глицин [32] Нагрев раствора, восплажене- ние 0.13 — СuFe2O4(6) (13 нм) Глицин [32] Нагрев раствора, восплажене- ние 0.13 — СuFe2O4(7) (24 нм)+CuO + + Fe2O3 Глицин [32] Нагрев раствора, восплажене- ние 0.13 — СuFe2O4(7) (31 нм) Боо СuFe2O4(7) (37 нм)	Моцерина [26]	Нагрев раствора воспламене-	0.83	500	$CuFe_{2}O_{4}(1)$	
Мочевина [27] Нагрев раствора, воспламене- ине при 500°С 0.83 — СиFe ₂ O _{4(r)} (151 км) СиFe ₂ O _{4(r)} (191 км) Мочевина [28] Нагрев раствора, воспламене- ине при 250°С 0.13 — CuFe ₂ O _{4(k)} (26 нм) Мочевина [28] Нагрев раствора, воспламене- ине при 250°С 0.13 — CuFe ₂ O _{4(r)} (31 км) 800 СuFe ₂ O _{4(r)} (34 нм) 900 CuFe ₂ O _{4(k)} (26 нм) 700 СuFe ₂ O _{4(r)} (34 нм) 900 CuFe ₂ O _{4(k)} (34 нм) + CuO 700 СuFe ₂ O _{4(k)} (34 нм) + CuO 2.00 — CuFe ₂ O _{4(k)} (37 нм) + 700 СuFe ₂ O _{4(k)} (37 нм) + — CuFe ₂ O _{4(k)} (37 нм) + + 700 СuFe ₂ O _{4(r)} (24 нм)+CuO 1.33 — CuFe ₂ O _{4(k)} (24 нм) + CuO 700 СuFe ₂ O _{4(k)} (37 нм) + + CuFe ₂ O _{4(r)} (24 нм) + CuO + 700 Прокаливание растертой и вы- сушенной смеси реагентов 0.56 800 CuFe ₂ O _{4(r)} (24 нм) + CuO + + 700 СuFe ₂ O _{4(r)} (37 нм) - 2 1000 CuFe ₂ O _{4(r)} (24 нм) - 700 CuFe ₂ O _{4(r)} (37 нм)		ние при 300°С	0.05	800	$CuFe_2O_{4(T)}$ (110 HM)	
Мочевина [27] Нагрев раствора, воспламене- ние при 500°С 0.83 — СиFe ₂ O _{4(x)} (191 нм) Мочевина [28] Нагрев раствора, воспламене- ние при 250°С 0.13 — СuFe ₂ O _{4(x)} (26 нм) 700 СuFe ₂ O _{4(x)} (26 нм) 700 CuFe ₂ O _{4(x)} (26 нм) 700 CuFe ₂ O _{4(x)} (26 нм) 800 CuFe ₂ O _{4(x)} (26 нм) 700 CuFe ₂ O _{4(x)} (26 нм) 900 CuFe ₂ O _{4(x)} (37 нм) 700 CuFe ₂ O _{4(x)} (34 нм) + CuO 200 CuFe ₂ O _{4(x)} (40 нм) + CuO 701 CuFe ₂ O _{4(x)} (37 нм) + cuO 2.00 — CuFe ₂ O _{4(x)} (37 нм) + t- + CuFe ₂ O _{4(x)} (24 нм)+CuO + te ₂ O ₃ 701 Прокаливание растертой и вы- сушенной смеси реагентов 0.56 800 CuFe ₂ O ₄ (-) (24 нм)+CuO + t- + Fe ₂ O ₃ 701 Прокаливание раствора, воспламене- ние 1; 1.48 1000 CuFe ₂ O ₄ (-) (24 нм)+CuO + t- Fe ₂ O ₃ 700 CuFe ₂ O _{4(x)} (31 нм) — CuFe ₂ O _{4(x)} (35 нм) — 700 CuFe ₂ O _{4(x)} (35 нм) — CuFe ₂ O _{4(x)} (36 нм) Mare pa 250°C 700				900	$CuFe_2O_{4(T)}$ (110 mm)	
Мочевина [27] Нагрев раствора, воспламенение при 500°С 0.83 — Сиге204(к) (8 нм) Мочевина [28] Нагрев раствора, воспламенение при 250°С 0.13 — СиFe204(к) (26 нм) Мочевина [28] Нагрев раствора, воспламенение при 250°С 0.13 — СиFe204(г) (37 нм) Глицин [29] Нагрев растертой смеси реагентов 0.67 — СиFe204(к) (34 нм) + CuO Глицин [29] Нагрев растертой смеси реагентов 0.67 — СиFe204(к) (34 нм) + CuO Глицин [30] Прокаливание растертой и высушенной смеси реагентов 0.56 800 СиFe204(к) (37 нм) + + + CuFe204(к) (32 нм) + + + + CuFe204(к) + + + + + CuFe204(к) + + + + + + + + + + + + + + + + + + +				1000	$CuFe_2O_4(-)$ (191 HM)	
Мочевина [23] Нагрев раствора, воспламене- ние при 500°С 0.13 — CuFe ₂ O _{4(k)} (26 нм) Мочевина [28] Нагрев раствора, воспламене- ние при 250°С 0.13 — CuFe ₂ O _{4(k)} (26 нм) Плицин [29] Нагрев раствора, воспламене- пентов при 300°С 0.67 — CuFe ₂ O _{4(k)} (34 нм) + CuO СиFe ₂ O _{4(k)} (34 нм) + CuO 2.00 — CuFe ₂ O _{4(k)} (34 нм) + CuO СиFe ₂ O _{4(k)} (34 нм) + CuO 2.00 — CuFe ₂ O _{4(k)} (34 нм) + CuO СиFe ₂ O _{4(k)} (37 нм) 2.00 — CuFe ₂ O _{4(k)} (34 нм) + CuO СиFe ₂ O _{4(k)} (37 нм) 2.00 — CuFe ₂ O _{4(k)} (34 нм) + CuO СиFe ₂ O _{4(k)} (37 нм) 2.00 — CuFe ₂ O _{4(k)} (34 нм) + CuO Глицин [30] Прокаливание растертой и вы- сушенной смеси реагентов 0.56 800 CuFe ₂ O _{4(r)} (24 нм)+CuO + +Fe ₂ O ₃ Глицин [31] Нагрев раствора, воспламене- ние 1; 1.48 800 CuFe ₂ O _{4(k)} (13 нм) СиFe ₂ O _{4(k)} (13 нм) 2 800 CuFe ₂ O _{4(k)} (13 нм) 1 Глицин [28] Нагрев раствора, воспламене- ние при 250°С 500 CuFe ₂ O _{4(k)} (13 нм) 800 Глицин [28] Нагрев высушенного геля<	Моцерина [27]	Нагрев раствора воспламене-	0.83		$CuFe_{1}O_{1} (8 \mu M)$	
Мочевина [28] Нагрев раствора, воспламенение при 250°С 0.13 — СиFe ₂ O _{4(R)} (26 нм) Глицин [29] Нагрев растертой смеси реагентов при 300°С 0.67 — СиFe ₂ O _{4(R)} (34 нм) Глицин [29] Нагрев растертой смеси реагентов при 300°С 0.67 — СиFe ₂ O _{4(R)} (34 нм) + CuO Глицин [30] Прокаливание растертой и высущенной смеси реагентов 0.67 — CuFe ₂ O _{4(R)} (34 нм) + CuO Глицин [30] Прокаливание растертой и высущенной смеси реагентов 0.56 800 CuFe ₂ O _{4(R)} (24 нм)+CuO + + Fe ₂ O ₃ Глицин [31] Нагрев раствора, воспламенение пачентов 1; 1.48 800 CuFe ₂ O _{4(R)} (13 нм) Глицин [31] Нагрев раствора, воспламенение 1; 1.48 1000 CuFe ₂ O _{4(R)} (13 нм) Глицин [28] Нагрев раствора, воспламенение 0.13 — CuFe ₂ O _{4(R)} (36 нм) Глицин [28] Нагрев высушенного геля 1.4 200 CuFe ₂ O _{4(R)} (36 нм) 900 СuFe ₂ O _{4(R)} (37 нм) 900 CuFe ₂ O _{4(R)} (37 нм) 900 Глицин [28] Нагрев высушенного геля 1.4 200 CuFe ₂ O _{4(R)} (36 нм)		ние при 500°С	0.05		$curc_{2}o_{4(K)}(0 mm)$	
ини гри 250°С 700 СиFe2O4(r) (37 нм) ини при 250°С 700 СиFe2O4(r) (37 нм) воо сиFe2O4(r) (34 нм) 900 СиFe2O4(r) (34 нм) 900 СиFe2O4(r) (34 нм) 900 Глицин [29] Нагрев растертой смеси реа- гентов при 300°С 0.67 — СuFe2O4(r) (37 нм) 1.33 — СuFe2O4(r) (37 нм) 1.33 — CuFe2O4(r) (37 нм) Глицин [30] Прокаливание растертой и вы- сушенной смеси реагентов 0.56 800 CuFe2O4(r) (24 нм)+CuO + + Fe2O3 Глицин [31] Нагрев раствора, воспламене- ние 1; 1.48 1000 CuFe2O4 + CuO + Fe2O3 Глицин [28] Нагрев раствора, воспламене- ние 0.13 — CuFe2O4(r) (36 нм) Глицин [28] Нагрев раствора, воспламене- ние 0.13 — CuFe2O4(r) (36 нм) Глицин [28] Нагрев раствора, воспламене- ние 0.13 — CuFe2O4(r) (37 нм) 800 CuFe2O4(r) (37 нм) 900 CuFe2O4(r) (37 нм) 900 Глицин [28] Нагрев высушенного геля 1.4 200 CuFe2O4(r) (37 нм) 900 СuFe2O4(r) (37 нм) 900 CuFe2O4(r) (37 нм)	Моцерина [28]	Нагрев раствора воспламене-	0.13		$CuFe_{2}O_{1}O_{2}(26 \text{ mm})$	
Глицин [29] Нагрев растертой смеси реа- гентов при 300°С 0.67 — СиFe ₂ O ₄₍₇₎ (34 нм) Глицин [30] Прокаливание растертой и вы- сушенной смеси реагентов 0.67 — СиFe ₂ O ₄₍₈₎ (34 нм) + CuO Глицин [30] Прокаливание растертой и вы- сушенной смеси реагентов 0.56 800 СиFe ₂ O ₄₍₈₎ (37 нм) + + CuFe ₂ O ₄₍₈₎ Глицин [31] Нагрев раствора, воспламене- ние 1; 1.48 800 СuFe ₂ O ₄₍₇₎ (24 нм)+CuO + + Fe ₂ O ₃ Глицин [31] Нагрев раствора, воспламене- ние 1; 1.48 800 CuFe ₂ O ₄₍₇₎ (37 нм) Глицин [32] Нагрев ваствора, воспламене- ние 1; 1.48 1000 CuFe ₂ O ₄₍₇₎ (37 нм) Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₂ O ₄₍₇₎ (37 нм) Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₂ O ₄₍₇₎ (37 нм) 900 СuFe ₂ O ₄₍₇₎ (37 нм) 900 CuFe ₂ O ₄₍₇₎ (37 нм) 900 Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₂ O ₄₍₇₎ (37 нм) 900 СuFe ₂ O ₄₍₇₎ (37 нм) 900 CuFe ₂ O ₄₍₇₎ (39 нм)		ние при 250°С	0.15	700	$CuFe_2O_{4(K)}$ (20 HM)	
Глицин [29] Нагрев растертой смеси реа- гентов при 300°С 0.67 — CuFe ₂ O _{4(r)} (40 нм) Глицин [30] Прокаливание растертой и вы- сушенной смеси реагентов 0.67 — CuFe ₂ O _{4(k)} (34 нм) + CuO Глицин [30] Прокаливание растертой и вы- сушенной смеси реагентов 0.56 800 CuFe ₂ O _{4(k)} (37 нм) + + CuFe ₂ O _{4(r)} Глицин [31] Нагрев раствора, воспламене- ние 1; 1.48 800 CuFe ₂ O ₄ + CuO + Fe ₂ O ₃ Глицин [28] Нагрев раствора, воспламене- ние при 250°С 0.13 — CuFe ₂ O _{4(r)} (36 нм) Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₂ O _{4(r)} (39 нм) Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₂ O _{4(r)} (39 нм)		line lipit 250 C		800	$CuFe_2O_{4(T)}(34 \text{ HM})$	
Глицин [29] Нагрев растертой смеси реагентов при 300°С 0.67 — СиFe ₂ O _{4(к)} (34 нм) + CuO Гентов при 300°С 1.33 — СиFe ₂ O _{4(к)} (34 нм) + CuO 2.00 — СиFe ₂ O _{4(к)} (37 нм) + 2.07 — СиFe ₂ O _{4(к)} (37 нм) + СиFe ₂ O _{4(к)} (37 нм) + - СиFe ₂ O _{4(к)} (37 нм) + 1.33 — СиFe ₂ O _{4(к)} (37 нм) + 2.67 — СиFe ₂ O _{4(к)} (37 нм) + - сушенной смеси реагентов 0.56 800 CuFe ₂ O _{4(к)} (37 нм) + Глицин [31] Нагрев раствора, воспламенение 1; 1.48 1000 CuFe ₂ O ₄ + CuO + Fe ₂ O ₃ Глицин [28] Нагрев раствора, воспламенение при 250°С 1.13 — СuFe ₂ O _{4(m} (13 нм) Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₂ O _{4(m} (39 нм) Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₂ O ₄ + CuO + Fe ₂ O ₃ 1.7 200 CuFeO ₂ + CuO + Fe ₂ O ₃ 1.7 200 CuFeO ₂ + CuO + Fe ₂ O ₃				900	$CuFe_2O_{4(T)}(40 \text{ HM})$	
Глицин [25]Глиров растертов смен рей 3.63 гентов при 300°C—Сш $e_{2}O_{4(k)}$ (40 нм) + CuO CuFe $_{2}O_{4(k)}$ (40 нм) + CuO CuFe $_{2}O_{4(k)}$ (37 нм) + + CuFe $_{2}O_{4(k)}$ (24 нм)+CuO + + Fe $_{2}O_{3}$ Глицин [30]Прокаливание растертой и вы- сушенной смеси реагентов0.56800CuFe $_{2}O_{4(k)}$ (24 нм)+CuO + + Fe $_{2}O_{3}$ Глицин [31]Нагрев раствора, воспламене- ние1; 1.48800CuFe $_{2}O_{4}$ + CuO + Fe $_{2}O_{3}$ Глицин [28]Нагрев раствора, воспламене- ние при 250°C0.13—CuFe $_{2}O_{4}$ Глицин [32]Нагрев высушенного геля1.4200CuFe $_{2}O_{4(r)}$ (37 нм) 600Глицин [32]Нагрев высушенного геля1.4200CuFe $_{2}O_{4(r)}$ (39 нм)Глицин [32]Нагрев высушенного геля1.4200CuFe $_{2}O_{4(r)}$ (39 нм)	Глицин [29]	Нагрев растертой смеси реа-	0.67		$CuFe_{2}O_{4(T)}$ (10 mm) + $CuO_{1}O_{1}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	
Глицин [30]Прокаливание растертой и вы- сушенной смеси реагентов 0.56 800 $CuFe_2O_{4(k)}(37 \text{ нм}) + +CuFe_2O_{4(r)}(24 \text{ нм})+CuO + +Fe_2O_3Глицин [31]Нагрев раствора, воспламене-ние1; 1.48800CuFe_2O_4 + CuO + Fe_2O_3Глицин [31]Нагрев раствора, воспламене-ние1; 1.481000CuFe_2O_4 + CuO + Fe_2O_3Глицин [32]Нагрев раствора, воспламене-ние0.13—СuFe_2O_4(r) (24 нм)+CuO +2CuFe_2O_4Глицин [32]Нагрев высушенного геля1.4200CuFe_2O_{4(r)}(39 \text{ нм})Глицин [32]Нагрев высушенного геля1.4200CuFeO_2 + CuO + Fe_2O_3Глицин [32]Нагрев высушенного геля1.4200CuFeO_2 + CuO + Fe_2O_3$	1 Jindini [29]	гентов при 300°С	1 33		$CuFe_2O_{4(\kappa)}$ (40 HM) + CuO	
Глицин [30]Прокаливание растертой и вы- сушенной смеси реагентов 2.67 — $CuFe_2O_{4(K)}(37 \text{ нм}) + + CuFe_2O_{4(T)}$ Глицин [31]Прокаливание растертой и вы- сушенной смеси реагентов 0.56 800 $CuFe_2O_{4(T)}(24 \text{ нм})+CuO + + Fe_2O_3$ Глицин [31]Нагрев раствора, воспламене- ние $1; 1.48$ 800 $CuFe_2O_4 + CuO + Fe_2O_3$ Глицин [28]Нагрев раствора, воспламене- ние при 250°С $1; 1.48$ 1000 $CuFe_2O_4$ Глицин [28]Нагрев раствора, воспламене- ние при 250°С 0.13 — $CuFe_2O_{4(T)}(13 \text{ нм})$ Глицин [32]Нагрев высушенного геля 1.4 200 $CuFe_2O_{4(T)}(39 \text{ нм})$ Глицин [32]Нагрев высушенного геля 1.4 200 $CuFe_2O_4 + CuO + Fe_2O_3$ Глицин [32]Нагрев высушенного геля 1.4 200 $CuFe_2O_4 + CuO + Fe_2O_3$ Глицин [32]Нагрев высушенного геля 1.4 200 $CuFeO_2 + CuO + Fe_2O_3$			2.00		$CuFe_2O_{4(\kappa)}$ (10 mm) + CuO	
Глицин [30] Прокаливание растертой и вы- сушенной смеси реагентов 0.56 800 CuFe ₂ O _{4(r)} (24 нм)+CuO + +Fe ₂ O ₃ Глицин [31] Нагрев раствора, воспламене- ние 1; 1.48 800 CuFe ₂ O ₄ + CuO + Fe ₂ O ₃ Глицин [28] Нагрев раствора, воспламене- ние при 250°С 1; 1.48 1000 CuFe ₂ O ₄ Глицин [28] Нагрев раствора, воспламене- ние при 250°С 0.13 — CuFe ₂ O _{4(r)} (36 нм) Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₂ O _{4(r)} (39 нм) Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₀ ₂ + CuO + Fe ₂ O ₃ Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₀ ₂ + CuO + Fe ₂ O ₃			2.67		$CuFe_2O_{4(K)}$ (37 HM) + + $CuFe_2O_{4(T)}$	
Сушенной смеси реагентов1; 1.48800 $(UFe_2O_4 + CuO + Fe_2O_3)$ Глицин [31]Нагрев раствора, воспламене- ние1; 1.481000 $CuFe_2O_4 + CuO + Fe_2O_3$ Глицин [28]Нагрев раствора, воспламене- ние при 250°С0.13— $CuFe_2O_4(K)$ (13 нм)Глицин [28]Нагрев высушенного геля0.13— $CuFe_2O_{4(K)}$ (13 нм)Глицин [32]Нагрев высушенного геля1.4200 $CuFe_2O_{4(T)}$ (39 нм)Глицин [32]Нагрев высушенного геля1.4200 $CuFeO_2 + CuO + Fe_2O_3$ Глицин [32]Нагрев высушенного геля1.4200 $CuFeO_2 + CuO + Fe_2O_3$ Глицин [32]Нагрев высушенного геля1.4200 $CuFeO_2 + CuO + Fe_2O_3$ Глицин [32]Нагрев высушенного геля1.4200 $CuFeO_2 + CuO + Fe_2O_3$ Глицин [32]Нагрев высушенного геля1.4200 $CuFeO_2 + CuO + Fe_2O_3$ Глицин [32]Нагрев высушенного геля1.4200 $CuFeO_2 + Cu + Fe_2O_3$ Глицин [32]Нагрев высушенного геля1.4200 $CuFeO_2 + Cu + Fe_2O_3$	Глицин [30]	Прокаливание растертой и вы-	0.56	800	$CuFe_2O_{4(r)}$ (24 HM)+CuO +	
Глицин [31] Нагрев раствора, воспламенение 1; 1.48 800 CuFe ₂ O ₄ + CuO + Fe ₂ O ₃ ние 1; 1.48 1000 CuFe ₂ O ₄ + CuO CuFe ₂ O ₄ + CuO Глицин [28] Нагрев раствора, воспламенение при 250°С 0.13 — CuFe ₂ O _{4(K)} (13 нм) Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₂ O _{4(T)} (39 нм) Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₂ O _{4(T)} (39 нм) Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₂ O _{4(T)} (39 нм)		сушенной смеси реагентов			$+ \text{Fe}_2\text{O}_3$	
ние1; 1.481000 $CuFe_2O_4 + CuO$ ние1; 1.481000 $CuFe_2O_4$ 2800 $CuFe_2O_4$ 21000 $CuFe_2O_4$ Глицин [28]Нагрев раствора, воспламене- ние при 250°С0.13—СиFe_2O_4(к) (13 нм) $CuFe_2O_4(k) (13 нм)$ 6700 $CuFe_2O_4(k) (36 нm)$ 700 $CuFe_2O_4(k) (39 нm)$ 800 $CuFe_2O_4(k) (39 нm)$ 800 $CuFe_2O_4(k) (37 нm)$ 900 $CuFe_2O_4(k) (39 hm)$ Глицин [32]Нагрев высушенного геля1.41.4200 $CuFeO_2 + CuO + Fe_2O_3$ 1.7200 $CuFeO_2$ 1.9200 $CuFeO_2 + Cu + Fe_3O_4$	Глицин [31]	Нагрев раствора, воспламене-	1; 1.48	800	$CuFe_2O_4 + CuO + Fe_2O_3$	
Глицин [28] Нагрев раствора, воспламенение при 250°С 2 800 СиFe ₂ O ₄ Глицин [28] Нагрев раствора, воспламенение при 250°С 0.13 — СиFe ₂ O _{4(x)} (13 нм) Килицин [32] Нагрев высушенного геля 1.4 200 СиFe ₂ O _{4(T)} (39 нм) Глицин [32] Нагрев высушенного геля 1.4 200 СиFe ₂ O _{4(T)} (39 нм) Глицин [32] Нагрев высушенного геля 1.4 200 СиFe ₂ O _{4(T)} (39 нм)		ние	1; 1.48	1000	$CuFe_2O_4 + CuO$	
Глицин [28] Нагрев раствора, воспламенение при 250°С 2 1000 СиFe ₂ O ₄ Глицин [28] Нагрев раствора, воспламенение при 250°С 0.13 — СиFe ₂ O _{4(x)} (13 нм) Глицин [32] Нагрев высушенного геля 1.4 200 СиFe ₂ O _{4(T)} (39 нм) Глицин [32] Нагрев высушенного геля 1.4 200 СиFe ₂ O _{4(T)} (39 нм) Глицин [32] Нагрев высушенного геля 1.4 200 СиFe ₂ O _{4(T)} (39 нм) Глицин [32] Нагрев высушенного геля 1.4 200 СиFeO ₂ + CuO + Fe ₂ O ₃ 1.7 200 СиFeO ₂ + Cu + Fe ₃ O ₄ 1.9 200 СиFeO ₂ + Cu + Fe ₃ O ₄			2	800	CuFe ₂ O ₄	
Глицин [28] Нагрев раствора, воспламенение при 250°С 0.13 — СuFe ₂ O _{4(к)} (13 нм) ние при 250°С 500 CuFe ₂ O _{4(т)} (36 нм) CuFe ₂ O _{4(т)} (37 нм) 700 CuFe ₂ O _{4(т)} (37 нм) 800 CuFe ₂ O _{4(т)} (37 нм) 900 CuFe ₂ O _{4(т)} (39 нм) 900 CuFe ₂ O _{4(т)} (39 нм) Глицин [32] Нагрев высушенного геля 1.4 200 CuFeO ₂ + CuO + Fe ₂ O ₃ 1.7 200 CuFeO ₂ CuFeO ₂ 1.9 200 CuFeO ₂ + Cu + Fe ₃ O ₄			2	1000	CuFe ₂ O ₄	
Ние при 250°С500 $CuFe_2O_{4(T)}$ (36 нм)ние при 250°С500 $CuFe_2O_{4(T)}$ (36 нм)700 $CuFe_2O_{4(T)}$ (39 нм)800 $CuFe_2O_{4(T)}$ (37 нм)900 $CuFe_2O_{4(T)}$ (39 нм)Глицин [32]Нагрев высушенного геля1.4200200 $CuFeO_2 + CuO + Fe_2O_3$ 1.7200200 $CuFeO_2 + Cu + Fe_3O_4$	Глицин [28]	Нагрев раствора, воспламене-	0.13		CuFe ₂ O _{4(к)} (13 нм)	
Глицин [32] Нагрев высушенного геля 1.4 200 СuFe ₂ O _{4(T)} (39 нм) СuFe ₂ O _{4(T)} (37 нм) СuFe ₂ O _{4(T)} (37 нм) Глицин [32] Нагрев высушенного геля 1.4 200 CuFeO ₂ + CuO + Fe ₂ O ₃ 1.7 200 CuFeO ₂ + CuO + Fe ₂ O ₃ 1.9 200 CuFeO ₂ + Cu + Fe ₃ O ₄		ние при 250°С		500	СиFe ₂ O _{4(т)} (36 нм)	
Глицин [32]Нагрев высушенного геля1.4200 $CuFe_2O_{4(T)} (37 \text{ нм})$ $CuFe_2O_{4(T)} (39 \text{ нм})$ Глицин [32]1.7200 $CuFeO_2 + CuO + Fe_2O_3$ 1.7 1.7200 $CuFeO_2$ 1.9200 $CuFeO_2 + Cu + Fe_3O_4$				700	СиFe ₂ O _{4(т)} (39 нм)	
Глицин [32] Нагрев высушенного геля 1.4 200 CuFe ₂ O _{4(T)} (39 нм) 1.7 200 CuFeO ₂ + CuO + Fe ₂ O ₃ 1.9 200 CuFeO ₂ + Cu + Fe ₃ O ₄				800	СиFe ₂ O _{4(т)} (37 нм)	
Глицин [32] Нагрев высушенного геля 1.4 200 CuFeO ₂ + CuO + Fe ₂ O ₃ 1.7 200 CuFeO ₂ CuFeO ₂ 1.9 200 CuFeO ₂ + Cu + Fe ₃ O ₄				900	СиFe ₂ O _{4(т)} (39 нм)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Глицин [32]	Нагрев высушенного геля	1.4	200	$CuFeO_2 + CuO + Fe_2O_3$	
1.9 200 $CuFeO_2 + Cu + Fe_3O_4$			1.7	200	CuFeO ₂	
			1.9	200	$CuFeO_2 + Cu + Fe_3O_4$	

Таблица 1 Приготовление $CuFe_2O_4$ методом горения

тон, ТУ 6-09-2878), Fe(ClO₄)₃·9H₂O (Sigma-Aldrich, CAS 15201-61-3), FeSO₄·7H₂O — х.ч. (ЗАО Союз-ХимПром, ГОСТ 4148–78), FeCl₃·6H₂O — «чистый» (ЗАО СоюзХимПром, ГОСТ 4147–74), α -Fe₂O₃ — NANOCAT®Superfine (MACH I Inc.).

Для приготовления предшественника CuFeGly предварительно в стеклянном стакане готовили водный раствор требуемых количеств исходных реагентов [1.165 г Cu(NO₃)₂·2.5H₂O, 4.04 г Fe(NO₃)₃·9H₂O, 1.875 г глицина (Gly)] в 10 мл воды, который перемешивали при комнатной температуре в течение 15 мин. Мольное отношение Gly/NO₃ = 0.63. Показатель pH раствора, измеренный рН-метром Анион 4100 (НПП Инфраспак-Аналит, Россия), составил 0.9. Далее полученный раствор компонентов грели на магнитной мешалке с постоянным перемешиванием в течение 2 ч, поддерживая температуру в растворе 60°С, в результате чего формировался вязкий гель. Процедура приготовления предшественника CuFeGly(NH₃) аналогичная, отличием являлось добавление по каплям в раствор нитратов металлов и глицина 1.9 мл водного раствора аммиака ($\rho = 0.908 \ r \cdot m \pi^{-1}$), что соответствовало мольному отношению Gly/NH₃ = 1. В этом случае рН водного раствора компонентов составил 2.9. Образцы гелеобразных предшественников досушивали в вакуумном шкафу в течение 2 ч при температуре 60°С. Такая температура термообработки предшественников была выбрана для того, чтобы исключить окислительно-восстановительные превращения на этой стадии. Высушенные образцы измельчали в агатовой ступке до состояния порошка, который хранили в эксикаторе над P_2O_5 . Методом атомноэмиссионной спектрометрии с индуктивно связанной плазмой (АЭС-ИСП), выполненным на приборе Optima 4300 DV (Perkin Elmer, США), показано, что мольное отношение Fe/Cu в образцах CuFeGly и CuFeGly(NH₃) составило 2.19 и 2.24 соответственно.

Образцы, обозначенные как GlyNH₄NO₃ и GlyHNO₃, были синтезированы в качестве соединений сравнения (для анализа ИК спектров предшественников): водные растворы глицина и NH₄NO₃ (либо HNO₃) смешивали в мольном соотношении 1:1. В остальном синтез аналогичен синтезу предшественников.

Комплексное соединение $[Fe_3O(Gly)_6(H_2O)_3] \times (ClO_4)_7 \cdot 3H_2O$ (шифр FeGlyClO₄) было приготовлено по методике, адаптированной из [33, 34]. Готовили раствор перхлората железа (0.005 моль в 80 мл) и водный раствор глицина (0.01 моль в 4 мл). Смешивали их в химическом стакане, добавляли по каплям (0.4 мл) 61% HClO₄, стакан накрывали калькой и нагревали в течение 12 ч при 40°С, обеспечив медленный процесс испарения, после чего наблюдали выпадение мелких игольчатых рыжих кристаллов. Осадок отфильтровывали и отмывали сухим эфиром на стеклянном фильтре. Сушка осуществлялась в вакуумном шкафу без нагрева в течение 4 ч. Полученный образец хранили в эксикаторе. Сравнение ИК спектра этого образца с литературными данными [33, 34] свидетельствует о том, что синтезированное соединение является [Fe₃O(Gly)₆(H₂O)₃](ClO₄)₇·3H₂O.

Образцы Fe₃O₄ готовили по традиционной методике осаждением. Для удаления примеси кислорода дистиллированную воду продували аргоном. В трехгорлую колбу (500 мл) перенесли навески солей: 2.8 г FeSO₄·7H₂O и 5.4 г FeCl₃·6H₂O в случае $Fe^{3+}/Fe^{2+} = 2$ (образец Fe_3O_4 -I); 1.4 г $FeSO_4 \cdot 7H_2O$ и 3.7 г FeCl₃·6H₂O в случае Fe³⁺/Fe²⁺ = 2.7 (образец Fe₃O₄-II), добавили 150 мл подготовленной воды. Включили продувку аргоном при перемешивании, затем внесли в колбу 1 мл олеиновой кислоты и 10 мл 28%-ного раствора аммиака. Образовался черный коллоид, который нагревали при 40°С в течение 30 мин. Полученный образец промыли 3 раза водой, затем спиртом и ацетоном, сушили на воздухе. Рентгенофазовый анализ подтвердил структуру кубической шпинели этих образцов, размеры ОКР составили 110 Å.

Приготовление медь-железо смешанных оксидов методом горения. Горение высушенных предшественников [CuFeGly, CuFeGly(NH₃)] проводили следующим образом: порошок навеской 600 мг предварительно прессовали в таблетку диаметром 12 мм и толщиной ~4 мм с помощью лабораторного настольного гидравлического пресса ПГР-10 (ООО ЛабТулс, Россия) под давлением 70 бар, затем горение таблетки инициировали в течение ~2 с с помощью бытовой пропан-бутановой зажигалки, после чего источник нагрева убирали и наблюдали образование увеличивающихся в длине черных рыхлых «змеек» продуктов горения. Скорость горения таблетки определяли следующим образом: измеряли общее время ее сгорания секундомером (после короткого процесса инициирования). Рассчитывали массовую скорость горения (мг·с⁻¹). Полученные значения усредняли, различия между ними в одной серии экспериментов не превышали 10 отн%. Продукты [CuFe-Ign из CuFeGly, CuFe(NH₂)–Ign из CuFeGly(NH₂)], получаемые в ходе горения отдельных таблеток, усредняли перемешиванием и изучали рядом физико-химических методов.

Исследование образцов физическими методами. Инфракрасную спектроскопию нарушенного полного внутреннего отражения (ИК НПВО) проводили на спектрометре Agilent Cary 600 (Agilent Technologies, США), оснащенном приставкой Gladi ATR (PIKE Technologies, США), в диапазоне 250–10 000 см⁻¹ без дополнительной подготовки образцов.

Термический анализ соединений выполняли на установке Netzsch STA 449 C Jupiter, оснащенной держателем ДТА/ТГ, в интервале температур 20–1000°C в токе Не. Скорость нагрева образцов составляла 10 град мин⁻¹, навески образцов — 10 мг.

Рентгенофазовый анализ (РФА) был выполнен на дифрактометре Bruker D8 Advance (Германия) в интервале углов 10-80° с шагом по 20 0.05° при времени накопления 3 с в каждой точке с применением линейного детектора Lynxeve. Использовалось монохроматизорованное $Cu_{K_{\alpha}}$ -излучение ($\lambda = 1.5418$ Å). Был проведен количественный фазовый анализ методом Ритвельда и уточнены параметры решетки соединений. Результаты суммированы в табл. 2. Средние размеры ОКР определялись по следующим рефлексам: 311 для кубической шпинели (Fe_3O_4 , $CuFe_2O_4$), 111 для CuO, 111 для Cu, 104 для Fe₂O₃. Для идентификации фаз использовались данные: кубическая шпинель CuFe₂O₄ (PDF 25-283), Fe₃O₄ (PDF 26-1136), CuO (PDF 45-937), Cu₂O (PDF 5-667), Cu (PDF 4-836), Fe₂O₃ (PDF 33-664), CuFeO₂ (ICSD 98488).

Изображения растровой электронной микроскопии (РЭМ) были получены с помощью оборудования JSM-6460 LV (Jeol).

Удельную поверхность *S*_{уд} продуктов горения определяли методом десорбции аргона с использованием Сорбтометра Сорби-М (ЗАО Мета, Россия).

Дифференцирующее растворение анализируемой пробы продукта горения [3.37 мг, CuFe(NH₃)–Ign] проводили в проточном динамическом режиме при увеличении во времени концентрации и температуры растворения с использованием стехиографа. Оптимизировали условия растворения в режиме стехиографического титрования. Проточный динамический режим начинали с водного раствора HCl (pH 2), постепенно переходили к 1.2 M HCl, 3 M HCl, затем к 6 M HCl. Растворение проводили при постепенном повышении температуры от 20 до 80°С. Поток образующегося раствора пробы направляли в детектор-анализатор стехиографа АЭС-ИСП. Элементный состав потока определяли каждые 5 с по спектральным линиям элементов (нм): Cu 324.7, Fe 238.2. Эти линии выбраны с учетом отсутствия их спектрального наложения.

Обсуждение результатов

Исследование предшественников методом ИК НПВО. На рис. 1 представлен ИК спектр исследуемого образца CuFeGly, приготовленного в кислой среде без добавления аммиака, и образца FeGlyClO₄, рассматриваемого в качестве модельного соединения, структура и ИК спектр которого хорошо изучены и описаны в литературе [33, 34]. Видно, что спектры очень близки между собой. Различия связаны с колебаниями ионов NO₃⁻ и ClO₄⁻, которые поглощают в разных областях ИК спектра. Это свидетельствует о том, что соединение, полученное из кислого раствора глицина, имеет близкую структуру с $[M_3(\mu_3 - O)]$ $(Gly)_6(H_2O)_3](X)_7 \cdot nH_2O(I),$ где М — Fe³⁺, X — ClO₄⁻ или NO₃⁻. Отличительными спектральными характеристиками этого соединения являются полосы поглощения (п. п.) $v_{as}(COO)$ при 1645 см⁻¹, $v_s(COO)$ при 1413 см⁻¹ и п. п. v(Fe-O) в области 580-530 и 390 см⁻¹. Следует отметить, что в ИК спектре образца CuFeGly не обнаруживаются п. п., соответствующие соединениям меди. Это дает основание предположить вхождение основной части ионов меди в структуру обнаруженного соединения. Присутствие

Рис. 1. Сравнение ИК спектров CuFeGly и CuFeGly(NH₃) со спектрами модельных соединений.

неинтенсивных п. п., характерных для колебаний функциональных групп v(C=O) и v(C-OH) (рис. 1, a), свидетельствует о взаимодействии небольшой части глицина с азотной кислотой [35].

Известно, что в водном растворе в условиях высокой кислотности глицин преимущественно находится в протонированной форме (NH₂+CH₂COOH). Добавление аммиака и увеличение рН раствора до 2.9 приводит к увеличению концентрации цвиттериона (NH₃⁺CH₂COO⁻), что, по-видимому, отражается на характере взаимодействия глицина с катионами металлов. Из рис. 1, а видно, что приготовление образца CuFeGly(NH₃) в среде с добавлением аммиака приводит к снижению интенсивности п. п. v(C=O) и усложнению ИК спектра в области колебаний функциональных групп СОО⁻ и NH₃⁺. Наряду с п. п. v_{as}(СОО) при 1642 см⁻¹ и v_{as}(NH₃) при 1594 см⁻¹, характерными для соединений со структурой типа (I), в спектре дополнительно наблюдаются интенсивная п. п. при 1562 см⁻¹ и плечо при 1627 см⁻¹, которые могут быть отнесены к колебаниям $v_{as}(COO)$ и v_{as}(NH₃) соответственно (тип II). Можно предположить, что при добавлении аммиака в состав предшественника реализуется другой тип взаимодействия карбоксильной группы с катионами металлов, характеризующийся более низкой величиной $\Delta = v_{as}(COO) - v_s(COO) = 151 \text{ см}^{-1}$, в то время как для соединений структуры (I) она составляет ~230 см⁻¹. Кроме того, введение аммиака способствует нейтрализации высвобождающейся азотной кислоты с образованием нитрата аммония. Методом ИК НПВО показано, что в состав предшественника CuFeGly(NH₂) входят и ионы NH₄⁺, о чем свидетельствует наличие в спектре п. п. при 3165 (v₃), 3040 (v₂ + v₄) и 2890 см⁻¹ (2v4), совпадающих по положению с п. п., наблюдаемыми в спектрах NH_4NO_3 и модельного соединения Gly NH_4NO_3 (рис. 1, δ).

Исследование предшественников методом термического анализа. На рис. 2 представлены данные термического анализа для CuFeGly и CuFeGly(NH₃) в атмосфере гелия. Видно, что разложение CuFeGly с высокой скоростью начинается в районе 160°С и заканчивается уже при 180°С. Такое быстрое развитие окислительно-восстановительного взаимодействия компонентов сопровождается резким выделением тепла на кривой ДТА (рис. 2, б). Использование аммиака при синтезе предшественника, как показано методом ИК спектроскопии, снизило его структурную однородность: было зарегистрировано два состояния карбоксильной группы глицина, взаимодействующей с катионами металлов, выявлено присутствие ионов аммония, предположительно входящих в состав предшественника в виде соединения нитрата аммония с глицином. Эти изменения в составе и строении исследуемого образца отразились на его термических свойствах. В этом случае разложение начинается при более низкой температуре (~140°С), протекает с меньшей скоростью и заканчивается при 250°С (рис. 2).

Влияние аммиака на скорость разложения предшественника в ходе термического анализа соотносится с измеренными величинами скоростей горения таблеток предшественников на воздухе. Так, средняя массовая скорость горения таблетки массой 600 мг при переходе от CuFeGly к CuFeGly(NH₃) снижается с 60 до 12 мг·с⁻¹.

Влияние способа приготовления предшественников на состав продуктов горения. Данные РФА продуктов горения (рис. 3, табл. 2) показывают, что использование CuFeGly предшественника не позво-

Рис. 2. Данные термического анализа CuFe-предшественников: кривые ТГ (*a*), ДТА (*б*); Не, 10 мг, 10 град мин⁻¹.

Рис. 3. Рентгенограммы продуктов горения: CuFe-Ign (из CuFeGly) и CuFe(NH₃)-Ign [из CuFeGly(NH₃)].

ляет получать фазу шпинели с высоким выходом. При этом высокое значение ОКР фазы кубической шпинели, наличие Cu⁰ и Cu₂O свидетельствуют о том, что образец CuFe-Ign формировался в условиях высоких температур и недостатка кислорода воздуха. Это, полагаем, обусловлено энергетикой системы и высокой скоростью горения. Удельная поверхность этого продукта составила менее 1 м²·г⁻¹. Использование аммиака на стадии синтеза предшественника CuFeGly(NH₃) способствовало уменьшению скорости горения его таблетки. Это привело к повышению содержания кубической шпинели с 34 до 80%, снижению ее ОКР (табл. 2) и увеличению удельной поверхности до 4 м²·г⁻¹. Исходя из содержания кристаллических фаз, определенных методом Ритвельда (табл. 2), и закладываемого содержания меди и железа в составе предшественника, можно предположить, что основной кристаллической фазой в образце CuFe(NH₃)–Ign является нестехиометричный смешанный оксид со структурой кубической шпинели — Cu_{1-x}Fe_{2+x}O₄, где $x \sim 0.4$. В образце CuFe–Ign содержание меди в составе шпинели ниже, и величина x соответствует ~0.6.

Снижение содержания меди в структуре шпинели, по-видимому, связано с реализацией высоких температур и восстановительных условий в зоне формирования продукта. Известно, что восстановление феррита меди под действием метана, угля и СО происходит при относительно невысоких температурах (≤500°C) [36-38]. Этот процесс начинается с выделением металлической меди из структуры шпинели, формированием Fe₃O₄ и его последующим восстановлением. По окончании процесса горения металлические фазы могут окисляться на воздухе до оксидов. Присутствие в продукте CuFe(NH₂)–Ign примесной фазы CuFeO₂ связано с тем, что в процессе горения достигалась высокая температура (>800-1000°С) [5, 32]. Отметим, что присутствие восстановленных Fe²⁺ и Cu⁺ в образцах феррита меди, синтезированных методом горения органометаллического предшественника, обсуждается в [16, 18, 39].

Полученные результаты формирования кубической шпинели согласуются с рядом опубликованных работ, посвященных исследованиям продуктов горения органометаллических предшественников различной природы (табл. 1). Это, по-видимому, связано с температурным режимом ее формирования в процессе горения. Хорошо известно, что нагрев CuFe₂O₄ тетрагональной структуры до ~900°C и быстрое охлаждение до комнатной температуры (процедура закаливания) позволяет получать CuFe₂O₄ кубической структуры [40]. Кроме того, снижение концентрации кислорода в газовой фазе и уменьшение отношения

Образец	<i>S</i> _{уд} , м ² ·г ^{−1}	Скорость горения, мг·с ⁻¹	T V	Характеристики	
			Фазовыи состав	параметр ячейки <i>a</i> , Å	ОКР, нм
CuFe–Ign из CuFeGly	<1	60	34% кубическая шпинель 40% Fe ₂ O ₃ 18% Cu 7% Cu ₂ O	8.395	77 66 >100
CuFe(NH ₃)–Ign из CuFeGly(NH ₃)	4	12	80% кубическая шпинель 2% Cu 3% Cu ₂ O 6% CuO 9% CuFeO ₂	8.376	58

Таблица 2 Данные РФА продуктов горения CuFe-предшественников

Cu/Fe также способствуют стабилизации шпинели кубической модификации [5]. Поскольку тетрагональное искажение октаэдров возникает в результате кооперативного эффекта Яна–Теллера за счет присутствия в них ионов Cu²⁺, формирование шпинели с тетрагональной или кубической структурой в процессе приготовления образцов будет зависеть от температурного режима и характера распределения ионов Cu²⁺ в анионной подрешетке.

На основании метода РФА сложно делать выводы о стехиометрии полученного смешанного оксида $Cu_{1-x}Fe_{2+x}O_4$, поскольку структуры и дифракционные картины смешанного Cu–Fe оксида и Fe₃O₄ близки. На изменение параметров решетки влияет множество факторов, и довольно большой разброс в значениях параметра решетки кубической шпинели представлен в литературе. В то же время стехиометрия является наиболее важной характеристикой, определяющей проводящие, магнитные и каталитические свойства синтезируемых образцов феррита меди. Для установления стехиометрии Cu/Fe образец с содержанием кристаллической фазы шпинели 80% был изучен методом дифференцирующего растворения.

На рис. 4, *а* представлены кинетические кривые дифференцирующего растворения и стехиограмма Cu/Fe для образца CuFe(NH₃)–Ign из CuFeGly(NH₃). Отметим, что в ходе эксперимента наблюдалось полное растворение образца. Видно, что на стехиограмме имеется линейный участок, соответствующий Cu/Fe = 0.29 ± 0.2 . После вычитания этой фазы из суммарных кинетических кривых растворения железа и меди очевидно выделение начального участка, соответствующего растворению медьсодержащей фазы, фазы со стехиометрией Cu/Fe = 1 и железосодержащей фазы, которая растворятся в конце эксперимента в

условиях высоких значений концентрации кислоты и температуры (рис. 4, б).

Интегрирование соответствующих областей показало, что содержание фаз со стехиометрией Cu_{0.29}Fe₁ и Cu₁Fe₁ равно 64.5 и 16.8 мас% соответственно (без учета кислорода в их составе). Содержание железосодержащей фазы — 10.8 мас%. Содержание медьсодержащей фазы — 7.9 мас%. Этот фазовый состав согласуется с данными РФА этого образца (табл. 2), с учетом того что в методе дифференцирующего растворения анализируется растворение как кристаллических, так и рентгеноаморфных фаз. Если растворение железосодержащей фазы связать с Fe₃O₄, то содержание фазы кубической шпинели будет соответствовать данным РФА. Таким образом, согласно дифференцирующему растворению, если принять, что растворение этого образца соответствует растворению фаз Cu_{0 67}Fe_{2 33}O₄, Fe₃O₄, CuFeO₂ и (Cu + Cu₂O), то их содержание будет составлять 66, 11, 19 и 7 мас% соответственно. Элементный анализ этого образца составил 48.9 мас% Fe и 23.2 мас% Cu.

Таким образом, анализируемый образец CuFe(NH₃)–Ign содержит, по данным РФА, 80% кубической шпинели, по данным дифференцирующего растворения — 66% фазы Cu_{0.67}Fe_{2.33}O₄ и, возможно, примесь Fe₃O₄ (11%). Снижение содержания меди в структуре шпинели Cu_{1-x}Fe_{2+x}O₄ (0 < x ≤ 0.5) приводит к изменению электронного состояния меди и железа: наряду с Fe³⁺ и Cu²⁺ в структуре могут присутствовать Fe²⁺ и Cu⁺ [41]. При этом пары (Cu⁺ + Fe³⁺) и (Cu²⁺ + Fe²⁺) более стабильны в тетраэдрическом и октаэдрическом окружении соответственно.

Для подтверждения присутствия в образце CuFe(NH₃)–Ign ионов Fe²⁺ были записаны спек-

Рис. 4. Данные дифференцирующего растворения для образца CuFe(NH₃)–Ign: кинетические кривые растворения меди и железа и стехиограмма Cu/Fe (*a*), кинетические профили растворения выделенных фаз (б).

Рис. 5. ИК НПВО спектры продуктов горения [CuFe–Ign и CuFe(NH₃)–Ign] и модельных соединений (Fe₂O₃, Fe₃O₄): ближняя ИК область (*a*), область колебаний металл–кислород (*б*).

тры НПВО в ближней ИК области. Согласно [42, 43] поглощение в этой области спектра для Fe_3O_4 обусловлено переносом заряда между близлежащими $Fe^{2+}-Fe^{3+}$ в октаэдрическом окружении. В стехиометрическом $CuFe_2O_4$, так же как в Fe_2O_3 , этот электронный перенос не наблюдается из-за отсутствия в структуре Fe^{2+} . Из рис. 5, *а* видно, что спектр $CuFe(NH_3)$ –Ign, содержащего шпинель состава $Cu_{0.67}Fe_{2.33}O_4$, характеризуется достаточно интенсивным поглощением в области 9000–5000 см⁻¹, которое по интенсивности близко к поглощению образца Fe_3O_4 , синтезированного при отношении $Fe^{3+}/Fe^{2+} =$ = 2.76. Это согласуется с предположением о присутствии Fe^{2+} в образце $CuFe(NH_3)$ –Ign.

Присутствие Fe²⁺ в составе образца подтверждается и данными инфракрасной спектроскопии в области колебаний металл–кислород. Наши исследования показывают (рис. 5, δ), что в ИК спектре НПВО CuFe(NH₂)–Ign присутствуют две интенсивные п. п. в области 540 (тетраэдр) и 320 см⁻¹ (октаэдр), которые, согласно [2, 17], хорошо соотносятся с опубликованными спектрами образцов ферритов меди, полученных в условиях горения органометаллических предшественников. Асимметрия высокочастотной п. п. в районе 600 см⁻¹ может быть связана с поглощением примесных фаз Cu₂O и CuFeO₂. Как и следовало ожидать, спектр продукта CuFe-Ign с низким содержанием шпинели (рис. 5, б) характеризуется набором широких относительно небольшой интенсивности п. п. в области 650-250 см-1. Помимо п. п., соответствующих поглощению шпинели, присутствие дополнительных п. п. при 610 (пл.), 450 и 383 см⁻¹ подтверждает наличие в образце фазы Fe₂O₃ и, возможно, некоторого количества фазы Си₂О.

Рис. 6. РЭМ синтезированного образца медь-железо смешанного оксида CuFe(NH₃)–Ign. Метки соответствуют 100 и 1 мкм для *а* и *б* соответственно.

По сравнению со спектральными характеристиками образцов феррита меди, полученных другими методами, спектр CuFe(NH₃)–Ign характеризуется более широким и несимметричным поглощением в области колебания октаэдра (400–300 см⁻¹) (рис. 5, δ). При этом максимум этих колебаний более чем на 70 см⁻¹ смещен в область низких частот. Полагаем, что данные изменения обусловлены прежде всего присутствием Fe²⁺ в октаэдрическом кислородном окружении, поскольку близкий спектр наблюдается для Fe₃O₄ (рис. 5, δ). Различия спектров CuFe(NH₃)– Ign и Fe₃O₄, по-видимому, связаны с колебаниями катионов меди в октаэдрическом и тетраэдрическом окружениях в случае образца феррита меди.

Растровое электронное изображение анализируемого образца CuFe(NH₃)–Ign представлено на рис. 6. Видно, что во время горения формируется пористая макроструктура за счет выделяющихся газообразных продуктов, что приводит к увеличению удельной поверхности образца.

Выводы

Методами ИК спектроскопии НПВО в области $250-10\ 000\ \text{см}^{-1}$, РФА и дифференцирующего растворения изучено формирование медь-железо смешанного оксида структуры кубической шпинели с развитой пористой макроструктурой при автоволновом горении высушенного и спрессованного в таблетки глицин-нитратного предшественника. Показана перспективность введения аммиака на стадии синтеза предшественника, что определило характер взаимодействия исходных компонентов и термические свойства формирующегося образца. В итоге снижение скорости горения таблетки позволило значительно увеличить выход фазы шпинели. Без дополнительной стадии прокаливания получен продукт с содержанием кубической шпинели, по данным РФА, 80 мас%. Анализ состава примесей свидетельствует о том, что в ходе горения органометаллического предшественника в зоне формирования продукта реализуются восстановительные условия, что подтверждается присутствием кристаллических фаз Cu⁰, Cu₂O, СиFeO₂. Использование метода дифференцирующего растворения позволило установить стехиометрию медь-железо смешанного оксида — Cu_{0.67}Fe_{2.33}O₄, а также оценить содержание железо- и медьсодержащих примесей. Эти данные хорошо соотносятся с результатами РФА. Исследование образца, состоящего преимущественно из фазы кубической шпинели, методом ИК НПВО позволило предположить присутствие Fe²⁺ в его составе.

Работа выполнена в рамках государственного задания Института катализа СО РАН (проект АААА-А17-117041710089-7), исследование спектральными методами проведено при поддержке программы президиума РАН № 56 «Фундаментальные основы прорывных технологий в интересах национальной безопасности». Авторы выражают благодарность А. В. Дербилиной за приготовление образцов и Н. А. Рудиной за изучение образца методом РЭМ.

Список литературы

- Balagurov A. M., Bobrikov I. A., Maschenko M. S., Sangaa D., Simkin V. G. // Crystallogr. Reports. 2013. V. 58. N 5. P. 710–717.
- [2] Yadav R. S., Kuřitka I., Vilcakova J., Havlica J., Masilko J., Kalina L., Tkacz J., Hajdúchová M., Enev V. // J. Mater. Sci. Mater. Electron. 2017. V. 28. N 8. P. 6245–6261.
- [3] Casbeer E., Sharma V. K., Li X. Z. // Sep. Purif. Technol. 2012. V. 87. P. 1–14.
- [4] Tang M., Xia F., Gao C., Qiu H. // Int. J. Hydrogen Energy. 2016. V. 41. N 30. P. 13058–13068.
- [5] Kenfack F., Langbein H. // Cryst. Res. Technol. 2004.
 V. 39. N 12. P. 1070–1079.
- [6] Мержанов А. Г. // Успехи химии. 2003. Т. 72. № 4.
 С. 323–345 [Merzhanov A. G. // Russ. Chem. Rev. 2003. V. 72. N 4. P. 289–310].
- [7] Рогачев А. С., Мукасьян А. С. // Горение для синтеза материалов. М.: Физматлит, 2013. 389 с.
- [8] Sutka A., Mezinskis G. // Front. Mater. Sci. 2012. V. 6. N 2. P. 128–141.
- [9] Попков В. И., Альмяшева О. В., Гусаров В. В. // ЖПХ. 2014. Т. 87. № 10. С. 1416–1420 [Popkov V. I., Almjasheva O. V., Gusarov V. V. // Russ. J. Appl. Chem. 2014. V. 87. N 10. С. 1417–1421].
- [10] Комлев А. А., Вилежанинов Е. Ф. // ЖПХ. 2013.
 Т. 86. № 9. С. 1373–1380 [Komlev A. A., Vilezhaninov E. F. // Russ. J. Appl. Chem. 2013. V. 86. N 9.
 Р. 1344–1350].
- [11] Дьяченко С. В., Мартинсон К. Д., Черепкова И. А., Жерновой А. И. // ЖПХ. 2016. Т. 89. № 4. С. 417– 421 [Dyachenko S. V., Martinson K. D., Cherepkova I. A., Zhernovoi A. I. // Russ. J. Appl. Chem. 2016. V. 89. N 4. P 535–539].
- [12] Комлев А. А., Гусаров В. В. // Неорган. материалы. 2014. Т. 50, № 12. С. 1346–1351 [Komlev A. A., Gusarov V. V. // Inorg. Mater. 2014. V. 50. N 12. Р. 1247–1251].
- [13] Khaliullin S. M., Zhuravlev V. D., Russkikh O. V., Ostroushko A. A., Bamburov V. G. // Int. J. Self-Propag. High-Temp. Synth. 2015. V. 24. N 2. P. 83–88.
- [14] Mukasyan A. S., Epstein P., Dinka P. // Proc. Combust. Inst. 2007. V. 31. N 2. P. 1789–1795.

- [15] Costa A. F., Pimentel P. M., Aquino, Melo D. M. A., Melo M. A. F., Santos I. M. G. // Mater. Lett. 2013. V. 112. P. 58–61.
- [16] Köferstein R., Walther T., Hesse D., Ebbinghaus S. G.// J. Solid State Chem. 2014. V. 213. P. 57–64.
- [17] Yadav R. S., Havlica J., Masilko J., Kalina L. // J. Supercond. Nov. Magn. 2015. V. 29. N 3. P. 759–769.
- [18] Xu Z.-X., Xu G.-S., Fu X.-Q., Wang Q. // Nanomater. Nanotechnol. 2016. V. 6. P. 1–10.
- [19] Komova O. V., Mukha S. A., Netskina O. V., Odegova G. V., Pochtar A. A., Ishchenko A. V., Simagina V. I. // Ceram. Int. 2015. V. 41. N 1. Part B. P. 1869–1878.
- [20] Komova O. V., Simagina V. I., Mukha S. A., Netskina O. V., Odegova G. V., Bulavchenko O .A., Ishchenko A. V., Pochtar' A. A.// Adv. Powder Technol. 2016. V. 27. N 2. P. 496–503.
- [21] Симагина В. И., Комова О. В., Нецкина О. В., Одегова Г. В, Булавченко О. А., Ищенко А. В. // Альтернатив. энергетика и экология. 2017. № 25–27. С. 71–87.
- [22] Chatterjee B. K., Bhattacharjee K., Dey A., Ghosh C. K., Chattopadhyay K. K. // Dalt. Trans. 2014. V. 43. N 21. P. 7930–7944.
- [23] Tasca J. E., Quincoces C. E., Lavat A., Alvarez A. M., González M. G. // Ceram. Int. 2011. V. 37. N 3. P. 803– 812.
- [24] Kongkaew T., Sakurai K. // Chem. Lett. 2017. V. 46. N 10. P. 1493–1496.
- [25] Selvan R. K., Augustin C. O., Berchmans L. J., Saraswathi R. // Mater. Res. Bull. 2003. V. 38. N 1. P. 41–54.
- [26] Iqbal M. J., Yaqub N., Sepiol B., Ismail B. // Mater. Res. Bull. 2011. V. 46. N 11. P. 1837–1842.
- [27] Shetty K., Renuka L., Nagaswarupa H. P., Nagabhushana H., Anantharaju K. S., Rangappa D., Prashantha S. C., Ashwini K. // Mater. Today Proc. 2017. V. 4. N 11. P. 11806–11815.

- [28] Pongpadung S., Kamwanna T., Amornkitbamrung V. // J. Korean Phys. Soc. 2016. V. 68. N 5. P. 697–704.
- [29] Deraz N. M. // J. Alloys Compd. 2010. V. 501. N 2. P. 317–325.
- [30] Gingaşu D., Mîndru I., Patron L., Carp O., Matei D., Neagoe C., Balint I. // J. Alloys Compd. 2006. V. 425. N 1–2. P. 357–361.
- [31] Hosseini S. N., Enayati M. H., Karimzadeh F., Sammes N. M. // Int. Sch. Sci. Res. Innov. 2015. V. 9. N 7. P. 857–860.
- [32] Chiu T.-W., Huang P.-S. // Ceram. Int. 2013. V. 39. Suppl.1. P. S575–S578.
- [33] Straughan B. P., Lam O. M. // Inorg. Chim. Acta. 1985.
 V. 98. N 1. P. 7–10.
- [34] Tucker W. F., Asplund R. O., Holt S. L. // Arch. Biochem. Biophys. 1975. V. 166. N 2. P. 433–438.
- [35] *Ghazaryan V. V., Fleck M., Petrosyan A. M.* // J. Mol. Struct. 2010. V. 977. N 1–3. P. 117–129.
- [36] Kang K.-S., Kim C.-H., Cho W.-C., Bae K.-K., Woo S.-W., Park C.-S. // Int. J. Hydrogen Energy. 2008. V. 33. N 17. P. 4560–4568.
- [37] Wang B., Yan R., Zhao H., Zheng Y. // Energy Fuels. 2011. V. 25. N 7. P. 3344–3354.
- [38] Estrella M., Barrio L., Zhou G., Wang X., Wang Q., Wen W., Hanson J. C., Frenkel A. I., Rodriguez J. A. // J. Phys. Chem. C. 2009. V. 113. N 32. P. 14411–14417.
- [39] Thapa D., Kulkarni N., Mishra S. N., Paulose P. L., Ayyub P. // J. Phys. D: Appl. Phys. 2010. V. 43. N 19.
 P. 195004 (5 pp).
- [40] Roy S., Ghose J. // Mater. Res. Bull. 1999. V. 34. N 10–11. P. 1805–1811.
- [41] Nanba N.// J. Appl. Phys. 1978. V. 49. N 5. P. 2950– 2952.
- [42] Park S., Ishikawa T., Tokura Y. // Phys. Rev. B. 1998.
 V. 58. N 7. P. 3717–3720.
- [43] Kim K. J., Lee J. H., Lee S. H. // J. Magn. Magn. Mater. 2004. V. 279. N 2–3. P. 173–177.