Журнал прикладной химии. 2019. Т. 92. Вып. 10

ВЛИЯНИЕ ПОРОШКОВОЙ ЦЕЛЛЮЛОЗЫ И СПОСОБА ПОЛУЧЕНИЯ ШИХТЫ НА ФАЗОВЫЙ СОСТАВ И ХАРАКТЕРИСТИКИ ЖЕЛЕЗО-КАЛИЕВООКСИДНОГО МАТЕРИАЛА

© А. Ю. Бугаева, И. В. Лоухина, Е. Г. Казакова, Л. Ю. Назарова, Ю. И. Рябков

Институт химии Федерального исследовательского центра «Коми научный центр Уральского отделения РАН», 167982, г. Сыктывкар, ул. Первомайская, д. 48 E-mail: bugaeva-ay@chemi.komisc.ru

> Поступила в Редакцию 29 марта 2019 г. После доработки 21 июня 2019 г. Принята к публикации 24 июня 2019 г.

Способами с использованием золь-гель и соосаждения солей получена шихта железо-калиевооксидной системы в присутствии порошковой целлюлозы. Методами дифференциальной калориметрии, термического и рентгенофазового анализа изучено влияние способа получения шихты, введения порошковой целлюлозы и ее количества на процессы фазообразования в системе [Fe₂O₃:K₂O:MoO₃:CeO₂:CaO:TiO₂: :MgO:SiO₂]:порошковая целлюлоза = (100 – x)[56.71:20.88:11.55:6.38:3.68:0.58:0.11:0.11]:x, где x = 0–3 мас%, в интервале температур 25–1200°С. Рассмотрено влияние режимов обжига, введения порошковой целлюлозы и ее количества на текстурные характеристики железо-калиевооксидного материала. Проведен расчет энергий активации трансформации маггемита в гематит в образцах системы. Оценен вклад количества энергии, выделяемой за счет термодеструкции порошковой целлюлозы, в общее количество энергии. Получены образцы железо-калиевооксидного материала с заданным фазовым составом и текстурными характеристиками, которые необходимы для дальнейшего изучения их каталитической активности.

Ключевые слова: порошковая целлюлоза; ферриты калия; фазообразование; текстурные характеристики

DOI: 10.1134/S0044461819100062

Ферритные системы используются в качестве конструкционных, магнитных и каталитических материалов. Активные фазы железооксидных катализаторов — ферриты калия образуются в процессе твердофазного взаимодействия между оксидом железа и соединениями калия при термической обработке в атмосфере воздуха [1-10]. Образование моноферрита калия КFeO2 происходит, по разным данным, в интервале температур 500-600 [2], 800°С [3] с формированием его до 700°С в орторомбической сингонии и от 700 до 900°С в кубической сингонии [4, 9]. Полиферрит калия КFe₁₁O₁₇ образуется в зависимости от состава системы при температурах >650 [2], 1200 [3], 800°С [9] или практически одновременно с КFeO₂ в интервале температур 550-750 [6], 550-850 [7], 600-900°С [10] в гексагональной сингонии [9].

В работах [2, 5, 9–12] изучены твердофазные взаимодействия, приводящие к образованию ферритов калия, получены сведения о кинетике, механизме формирования, химической и термической устойчивости и применении ферритов калия. При использовании оксидов железа в качестве основных компонентов катализаторов существует проблема получения катализаторов с развитой пористой структурой и большой величиной удельной поверхности [13].

Получение данных систем осуществляется при высоких температурах, что способствует их кристаллизации и высокотемпературной агрегации [14], устранение этой проблемы осуществляется введением в систему промотирующих добавок. Промотирующие добавки стабилизируют моно- и полиферриты калия, находящиеся в динамическом равновесии, а также улучшают эксплуатационные и физико-механиче-

УДК 546.723-31

ские характеристики катализатора [5-9, 11, 15-17]. Присутствие щелочного промотора К₂О в составе катализатора способствует стабилизации дефектной структуры и активной фазы катализатора вследствие образования моноферритов, стабильных в восстановительной среде [6], ускорению реакции гидратации кокса на поверхности катализатора [16], нейтрализации кислотных центров и как следствие подавлению побочных реакций и повышению селективности [15, 17]. В зависимости от получаемого продукта в гетерогенно-каталитической реакции содержание К2О в системе варьируют в интервале 2-20 мас% [11]. Влияние структурообразующих CaO, MgO и TiO₂ и каталитических MoO₃, CeO₂ промоторов на фазовый состав и свойства катализатора изучено в работах [2, 5-9]. Комбинированное добавление промоторов CaO, MgO, CeO₂, MoO₃ способствует формированию большего количества КFeO2, обладающего высокой каталитической активностью, и уменьшает образование КFe₁₁O₁₇ [5].

При разработке технологии производства твердофазных катализаторов особое внимание уделяют изучению влияния их химического и фазового состава на текстурные характеристики. Широко распространен способ формирования пористых текстурированных структур керамических материалов путем введения в шихту выгорающих добавок. В работе [18] при получении пористой керамики на основе диоксида кремния в качестве выгорающей добавки использовали микроцеллюлозу в количестве 2-25 мас%, с длиной волокон 10-30 мкм, диаметром ~2-5 мкм. Микроцеллюлоза это порошковая целлюлоза (ПЦ) «предельной» степени полимеризации. ПЦ представляет собой тонкодисперсный продукт деструкции целлюлозы, наиболее полно высвобожденный из клеточной стенки сосудистых растений [19]. Введение в шихту длинных волокон целлюлозы (1-5 мм) не отвечает условиям создания мезопор при последующем выгорании добавки, что, вероятно, является причиной отсутствия в литературе сведений о введении длинноволокнистой целлюлозы в качестве выгорающей добавки.

Ранее при синтезе пористых железооксидных систем ПЦ в качестве выгорающей добавки не вводили.

Влияние тепловых эффектов термодеструкции целлюлозы на фазообразование в процессе термообработки в железооксидных системах ожидаемо, но ранее не изучалось.

Изучение текстурных характеристик катализаторов свидетельствует о том, что структура, имеющая большие поры, удобна для предотвращения и затруднения накопления кокса и для поддержания высокой активности катализаторов [20]. С одной стороны, увеличение площади удельной поверхности катализатора [21], размера и объема пор [20] вызывает повышение скорости активации процессов ферритообразования. С другой стороны, объем пор и прочность катализатора обратно пропорциональны друг другу [20], и увеличение объема пор ведет к повышению гигроскопичности и хрупкости материала [22]. Для получения эффективного катализатора с удовлетворительными прочностными характеристиками необходимо учитывать комплекс параметров.

Целью данной работы являлось изучение физико-химических основ получения на основе многокомпонентной системы [Fe₂O₃–K₂O–MoO₃–CeO₂–CaO– TiO₂–MgO–SiO₂]–ПЦ продуктов с контролируемыми значениями пористости и удельной поверхности.

Экспериментальная часть

В качестве исходных реагентов были использованы $Fe(NO_3)_3 \cdot 9H_2O(x.ч.), Ce(NO)_3 \cdot 6H_2O(x.ч.), Mg(NO_3)_2 \cdot 6H_2O(x.ч.), KNO_3(x.ч.), MoO_3(x.ч.), TiO_2(oc.ч.), CaCO_3(«чистый»), тетраэтоксисилан (C_2H_5O)_4Si (TУ 6-09-11-053–94) и ПЩ, которые были взяты в стехиометрическом соотношении. ПЦ получена гидролизом беленой сульфатной целлюлозы 3%-ным раствором пероксимоносерной кислоты при 100°C в течение 2 ч [23]. Степень полимеризации ПЦ составила 170 ед. (по вязкости растворов в кадоксене [24]). ПЦ имеет структурную модификацию целлюлозы I. Степень кристалличности ПЦ составила 79.7% [25].$

Шихта многокомпонентной системы получена импрегнированием ПЦ продуктами гидролиза солей, полученных с использованием способов соосаждения (способ 1) и золь-гель (способ 2), высушиванием и дальнейшей термообработкой на воздухе.

Изучение термических превращений ПЦ и ксерогелей системы проводили методом комплексного термического анализа (ТГ-ДСК) на приборе Netzsch STA 409 PC. Измерения проводили в динамическом режиме в интервале температур 25–600°С со скоростью нагрева ($V_{\rm harp}$) 10 град·мин⁻¹ для образца ПЦ и 25–1200°С при $V_{\rm harp}$ 10 град·мин⁻¹ для образцов системы в алундовых тиглях на воздухе. Ошибка измерения составляла ±1%. Интервалы температур протекающих процессов для всех образцов определены с помощью программы Proteus Analysis.

Расчет энергии активации трансформации маггемита в гематит в исходном образце системы и образцах системы с введенной ПЦ проводили по стандартной методике.^{*} Стандартное отклонение при определении энергии активации составило $\pm 1.5 \text{ кДж} \cdot \text{моль}^{-1}$.

Оценку вклада количества энергии, выделяемой при термодеструкции ПЦ в общее количество энергии, выделяющейся при протекании экзотермических процессов (окисление магнетита до маггемита, трансформация маггемита в гематит и образование K₂MoO₄), проводили на основании расчета энтальпии в характерных для них температурных интервалах с использованием программы Proteus Analysis.

Обжиг образцов системы проводили ступенчато на воздухе в электрических печах с карборундовыми нагревателями в интервале температур 20–1200°С, $V_{\rm harp}$ 1–10 град·мин⁻¹ с изотермической выдержкой в течение 3 ч на воздухе.

Варьировались режимы обжига образцов: режим A (900°C, изотермическая выдержка 3 ч, $V_{\rm harp}$ 10 град·мин⁻¹), режим B (700°C, изотермическая выдержка 3 ч, $V_{\rm harp}$ 10 град·мин⁻¹) и режим C (в интервале температур 25–300°C $V_{\rm harp}$ 1 град·мин⁻¹; в интервале температур 300–400°C $V_{\rm harp}$ 2 град·мин⁻¹; 400–700°C, $V_{\rm harp}$ 10 град·мин⁻¹; 700°C, изотермическая выдержка 3 ч, $V_{\rm harp}$ 10 град·мин⁻¹).

Образцы системы обозначили как К1–0, К2–0, где цифра рядом с буквой — способ получения шихты, а цифра после тире — количество введенной ПЦ от 0 до 3 мас%. Приводимые значения T_1/T_2 , изменения массы при термообработке соответствовали образцам, полученным способами 1 и 2 соответственно. Образцы системы обозначили как К1_B, К1_C, К2_B, К2_C, где буква после нижнего подчеркивания — режим обжига.

Рентгенофазовый анализ (РФА) ПЦ и образцов системы проводили методом порошка на дифрактометре Shimadzu XRD-6000 (излучение $Cu_{K_{\alpha}}$).

Изучение площади удельной поверхности, объема пор, диаметра пор ПЦ и образцов системы проводили методом низкотемпературной физической сорбции азота на приборе Quantachrome Nova 1200a (Quantachrome, USA). Ошибка измерения составляла $\pm 3\%$.

Определение пикнометрической плотности (р_{пикн}) ПЦ и образцов системы проводили согласно ГОСТ 31992.1–2012 (ISO 2811-1:2011).

Оценка размера частиц (*d*_{cp}) в порошках проведена по результатам определения величины их удельной

поверхности в предположении сферической формы частиц по формуле [26]

$$S_{\rm yg} = 6/\rho d_{\rm cp}$$

где $d_{\rm cp}$ — средний размер частиц, $S_{\rm yg}$ — удельная поверхность, ρ — плотность материала.

Обсуждение результатов

Объектом исследования является система с соотношением компонентов (мас%) [Fe₂O₃:K₂O:MoO₃: :CeO₂:CaO:TiO₂:MgO:SiO₂]:ПЩ = (100 - x)[56.71:20.88: :11.55:6.38:3.68:0.58:0.11:0.11]:x, где x = 0-3.

Химический состав изучаемой системы в отличие от железо-калиевых катализаторов (производство РФ), изучавшихся в [5] (ЖКД), содержал SiO₂ и не содержал оксида фосфора P_2O_5 и сопоставим с химическим составом образцов STYROMAX 9 (производство США) [27].

Получение образцов — многостадийный процесс: синтез, термообработка и аттестация. Для получения шихты системы были выбраны два способа. Первый способ — соосаждение солей [28] — позволил варьировать пористость структуры. Вторым был выбран способ с использованием золь-гель технологии, который обеспечивает гомогенное распределение компонентов в гетерофазной коллоидной системе и снижение размера зерна керамики. При этом учитывался тот факт, что прочность керамики тем выше, чем меньше средний размер зерна и чем выше однородность зерен [22].

Методом комплексного термического анализа (ТГ-ДСК) были исследованы образцы ПЦ и системы для идентификации фазовых превращений, протекающих во время термообработки. Результаты исследования ПЦ методом ТГ-ДСК представлены на рис. 1.

Десорбция физически связанной воды происходит в интервале температур 80–152°С (эндотермический эффект, минимум 99°С на кривой ДСК). Потери массы (ТГ) при температуре 200–540°С связаны с окислением органической матрицы, деструкцией ПЩ и образованием углерода. Дегидратация, деполимеризация и окисление ПЦ протекали последовательно, начиная с температуры 317°С (рис. 1, кривая *1*). На кривой ДСК этим процессам соответствуют эффекты: несимметричный эффект с плечом при 322°С и максимумом при 365°С (экзо), с минимумом при 455°С (эндо), с максимумом при 520°С (экзо) соответственно (рис. 1, кривая *2*). В интервале температур 570-600°С скорость потери массы образцов снижается вплоть до полного выгорания углерода.

^{*} Standard Method for Estimating Kinetic Parameters by Differential Scanning Calorimeter Using the Borchardt and Daniels Method // ASTM International. E 2041 — 01.2001.

Рис. 1. Кривые комплексного термического анализа порошковой целлюлозы.

По результатам изменения температурных интервалов термических процессов, протекающих в системе, в зависимости от количества ПЦ и способа получения шихты (табл. 1) установлены следующие закономерности.

В образцах одинакового химического состава в отсутствие ПЦ температурный интервал протекающих процессов шире для образцов, полученных способом 1, по сравнению с образцами, полученными способом 2. В присутствии ПЦ процессы разложения нитрата аммония и продуктов гидролиза солей ускорились в интервале температур, при которых протекали процессы термодеструкции ПЦ. С одной стороны, проявилось каталитическое влияние оксидов металлов на процесс окислительной термодеструкции целлюлозы, как показано в работе [29]. С другой — энергия, выделяемая при термодеструкции ПЦ, способствует протеканию экзотермических процессов: окислению магнетита до маггемита (4Fe₃O₄ + O₂ \rightarrow 6 γ -Fe₂O₃) 305-418°C/311-406°С, трансформации маггемита в гематит (γ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃) 418–671°C / 406–710°C (табл. 1).

По результатам ТГ-ДСК введение в исходные системы 3 мас% ПЦ приводит к смещению протекания указанных процессов в область более низких температур (окисление магнетита до маггемита $305-418^{\circ}C/311-406^{\circ}C \rightarrow 306-370^{\circ}C/256-280^{\circ}C$; трансформация маггемита в гематит $418-671^{\circ}C/406-710^{\circ}C \rightarrow 370-433^{\circ}C/280-380^{\circ}C$; табл. 1).

Расчет энергии активации трансформации маггемита в гематит в исходном образце системы и образце системы с введенным ПЦ свидетельствует о следующем. Энергия активации процесса в исходной системе, полученной способом 2, составляет 70 кДж·моль⁻¹, тогда как введение 1 мас% ПЦ в систему приводит к снижению энергии активации процесса до 65 кДж·моль⁻¹. При увеличении содержания ПЦ в системе до 3 мас% наблюдается снижение энергии активации до -5 кДж·моль⁻¹.

Оценку вклада количества энергии, выделяемой при термодеструкции ПЦ, в общее количество энергии, выделяющейся при протекании экзотермических процессов (окисление магнетита до маггемита, трансформация маггемита в гематит и образование K₂MoO₄), проводили на основании расчета энтальпии в характерных для них температурных интервалах. Расчет энтальпии проводили для исходной ПЦ и для образцов, шихта которых получена способом 2.

Согласно проведенному расчету значение энтальпии термодеструкции исходной ПЦ составляет 5314 Дж·г⁻¹. Следовательно, при введении в систему 1 мас% ПЦ ее вклад составит 53 Дж·г⁻¹, 3 мас% — 159 Дж·г⁻¹. Общее значение энтальпии экзотермических процессов для образца, содержащего 1 мас% ПЦ, составляет 300.5 Дж·г⁻¹, с учетом того что 53 Дж·г⁻¹ выделяется при термодеструкции ПЦ, ее вклад составляет 17%. Аналогичный расчет для образца, в состав шихты которого введено 3 мас%, показывает, что вклад ПЦ составляет 30% (общее значение энтальпии 497 Дж·г⁻¹, из них 159 Дж·г⁻¹ приходится на ПЦ).

Обнаружено, что температурные интервалы экзотермических процессов (окисление магнетита до маггемита, трансформация маггемита в гематит и рекристаллизация оксидов железа) не зависят от способа получения шихты, а зависят от содержания выгорающей добавки ПЦ. Это особенно важно для установления закономерностей получения гематита как основного источника для образования ферритов [10].

Таким образом, способ получения шихты преимущественно влияет на температурный интервал эндотермических процессов, протекающих в системе, а количество порошковой целлюлозы — на температурный интервал экзотермических процессов (табл. 1).

Результаты изучения влияния количества выгорающей добавки (1–3 мас%) на температуру завершения термических процессов, идущих с изменением массы, представлены на рис. 2. В интервале температур 25–195°C/25–152°С потери массы на кривых ТГ связаны с удалением кристаллизационной воды H₂O и углекислого газа CO₂ [29]. В интервале температур 188–306°C/150–304°С наблюдался экзотермический эффект термодеструкции. В интервале температур 264–638°C/308–680°С наблюдался эндотермический эффект термодеструкции. Процессы термодеструк-

Процессы, протекающие в многокомпонентной системе, в зависимости от количества ПЦ
и способа получения шихты

Таблица 1

		Интервал термических эффектов, °С, для x, мас% ПЦ						
Π	Тепловой	0		1		3		
Процесс	эффект	способ получения шихты						
		1	2	1	2	1	2	
Удаление адсорбированной и кристаллизационной H ₂ O, CO ₂ [29]	Эндо	25–170	25–147	25–188	25–150	25–195	25–152	
Термодеструкция ПЦ	Экзо			188–282	150–304	195–306	150–254	
Разложение NH ₄ NO ₃ [30] Термодеструкция ПЦ Разложение Mg(OH) ₂ , Ce(OH) ₄ , Fe(OH) ₃ [32, 33]	Эндо » »	170–335 335–671	147–342 342–710	282–392 392–638 392–638	187–308 308–680 308–680	228–264 264–638 264–638	187–308 308–591 308–591	
Окисление магнетита до маггемита [32] Трансформация маггемита в гематит [33]	Экзо »	305–418 418–671	311–406 406–710	240–363 363–441	313–403 403–519	306–370 370–433	256–280 280–380	
Образование К ₂ МоО ₄ : (240–360) [31], (320–360) [34] (360–500) [32, 34] (360–500) [28, 32]	Эндо Экзо »	298–323 426–507 —	300–323 411–483 —	248–257 443–495	230–260 433–580	210–250 441–501	251–266 400–500 500–557	
Образование КFeO ₂ [2, 3] Образование КFe ₁₁ O ₁₇ [2, 6, 7, 9, 10] Испарение ферритов [8, 9]	Эндо » »	614–671 817–961 1137–1200	657–721 846–949 830–937	657-860 762-950 964-1070	650–703 703–880 873–935	659–897 934–1000	590–738 738–870 873–935	
К ₂ MoO ₄ [32] Рекристаллизация α-Fe ₂ O ₃	»	901-904	949-999	887-954	918-934	911-938	900-932	
[∠]: первичная собирательная	Экзо »	888–1070 1070–1200	917–992 1070–1200	912–1060 1060–1200	928–1073 1073–1200	937–1098 1098–1200	912–1065 1065–1200	
Завершение потери по мас- се (по Маршу)		25-638	25–746	25-638	25-693	25–637	25-591	

ции сопровождались снижением массы. Практически одновременно, а именно в интервале температур 282–638°C/187–680°С, наблюдались эндотермические эффекты дегидратации гидроксидов металлов, разложения NH4NO₃ [33], сопровождающиеся резким снижением массы (табл. 1, рис. 2). Экзотермические эффекты кристаллизации форм оксида железа (магнетита Fe₃O₄, маггемита γ -Fe₂O₃, гематита α -Fe₂O₃ [33]), а именно окисление магнетита до маггемита

и фазовый переход маггемит → гематит, не сопровождались видимым изменением массы. Дальнейшее повышение температуры (800–1000°С) протекало с незначительной (~1%) убылью массы образовавшегося гематита. Полученные результаты согласуются с литературными данными [21, 31]. Процессы испарения ферритов калия и молибдата калия наблюдались в интервале 911–1200°С/830–935°С (табл. 1) с уменьшением массы на 0.6%/0.75% (табл. 1, рис. 2).

Рис. 2. Кривые термогравиметрического анализа при различных содержаниях порошковой целлюлозы для образца К2: 0 (1), 1 (2), 3 мас% (3).

Согласно литературным данным [2], экзотермический эффект в области температур 888–1070°С/880–1100°С обусловлен рекристаллизацией оксидов железа (табл. 1), сопровождается незначительной потерей массы 0.24 мас%/0.25 мас% (рис. 2).

Определено, что при получении системы различными способами с увеличением количества ПЦ от 0 до 3 мас% в составе снижались температуры завершения термических процессов, идущих с изменением массы (рис. 2, табл. 1). Введение выгорающей добавки 1–3 мас% способствовало снижению температуры получения порошков шихты на $112^{\circ}C/57^{\circ}C-113^{\circ}C/159^{\circ}C$, полученных способами 1 и 2 соответственно, что позволит обеспечить снижение энергозатрат при получении катализаторов.

Фазовый состав образцов системы, обожженных при различных температурах, полученных способами 1 и 2, представлен гематитом Fe₂O₃ ICSD 71194, церианитом CeO₂ ICSD 72155, молибдатом калия K_2MoO_4 ICSD 16154, моноферритом калия KFeO₂ ICSD 200255 и гексаферритом калия KFe₁₁O₁₇ ICSD 83285. Согласно данным рентгенофазового анализа (РФА) и расчетам с использованием программы Powder Cell, подтверждающим результаты ДСК, в образце K1–1, обожженном в интервале температур 700–750°C, фазовый состав был представлен одновременно KFeO₂ и KFe₁₁O₁₇. Фаза KFeO₂ формировалась в образце K1–1 в интервале температур 600–650°C, и ее содержание увеличивалось в образцах при повышении температуры до 800°C (рис. 3),

Рис. 3. Рентгенограммы образцов К1–1, обожженных при различных температурах в интервале 500–800°С. *1* — α-Fe₂O₃, *2* — CeO₂, *3* — K₂MoO₄, *4* — KFeO₂, *5* — KFe₁₁O₁₇.

что согласуется с результатами работы [9], но на 100° выше данных, полученных автором работы [5].

В образце K2–1, обожженном при температуре 800°С, наряду с фазой KFeO₂ присутствовала фаза KFe₁₁O₁₇, которая, вероятно, образовалась при более низкой температуре или одновременно с фазой KFeO₂, что согласуется с данными [6, 7] (рис. 4, 5). На рис. 4 показано влияние введения ПЦ в шихту на фазообразование ферритов при способах 1 и 2 получения шихты. Введение 1 мас% ПЦ в систему привело к увеличению интенсивности рефлексов, отвечающих фазам α -Fe₂O₃, CeO₂, K₂MoO₄, KFeO₂ и KFe₁₁O₁₇, по сравнению с образцами, полученными без ПЦ.

В интервале температур 900–1200°С уменьшение интенсивности или исчезновение рефлексов, отвечающих фазе K_2MoO_4 , обусловлено, вероятно, испарением указанной фазы [32]. Автор работы [34] также связывает этот факт с высокой летучестью K_2O и плавлением K_2MoO_4 в интервале температур 926–930°С. Полученные результаты РФА согласовались с литературными данными [31, 34] и подтвердили результаты ТГ-ДСК. Таким образом, в изученной системе, полученной без добавки ПЦ, температура плавления K_2MoO_4 находилась в интервале 961–964°С/949–999°С и с увеличением количества вводимой ПЦ до 3 мас% снизилась до 911–938°С/906–952°С (табл. 1).

В интервале температур 1000-1100°С (рис. 5) уменьшение интенсивности или исчезновение рефлексов, отвечающих фазе KFeO₂, связано с ее переходом в KFe₁₁O₁₇. Повышение температуры до 1200°С привело к уменьшению интенсивности или исчезновению рефлексов фазы KFe₁₁O₁₇, что свидетельствовало о ее испарении [8, 9] и подтверждено данными ТГ-анализа (рис. 2).

Таким образом, установлено, что введение ПЦ в количестве 1–3 мас% в многокомпонентную систему при одинаковом мольном соотношении остальных компонентов и варьирование способа получения шихты позволяют регулировать соотношение фаз KFeO₂ и KFe₁₁O₁₇ в конечном продукте.

Используемая ПЦ характеризуется удельной площадью поверхности (S_{yg}) 6.00 м²·г⁻¹, общим объемом пор ($V_{пор}$) 0.007 см³·г⁻¹, диаметром пор ($d_{пор}$) 4.8 нм, средним диаметром частиц (d_{cp}) 2.5 мкм. Размер частиц используемой ПЦ меньше размера частиц МКЦ [18], следовательно, можно ожидать более гомогенного распределения частиц ПЦ в шихте, а также получения керамики с меньшим размером пор.

Рис. 4. Рентгенограммы образцов К1–0, К1–1, К2–0 и К2–1, обожженных при температуре 800°С. *1* — α-Fe₂O₃, *2* — CeO₂, *3* — K₂MoO₄, *4* — KFeO₂, *5* — KFe₁₁O₁₇.

Рис. 5. Рентгенограммы образцов К2–1, обожженных при различных температурах в интервале 800–1200°С. *1* — α-Fe₂O₃, *2* — CeO₂, *3* — K₂MoO₄, *4* — KFeO₂, *5* — KFe₁₁O₁₇.

Изучена зависимость текстурных характеристик и среднего размера частиц образцов, полученных способами 1 и 2 с содержанием ПЦ 1–3 мас% при различных условиях обжига, по сравнению с коммерческими аналогами.

Образцы, полученные в режиме А, характеризовались низкими значениями S_{yg} , $V_{пор}$ и $d_{пор}$. Далее сопоставлены текстурные характеристики образцов, полученных в режимах В и С.

При введении в шихту 1–3 мас% ПЦ значения площади удельной поверхности образцов сопоставимы со значениями площади удельной поверхности аналогов независимо от способа получения и режима обжига (рис. 6, *a*). При обжиге образцов образование пор происходит вследствие удаления структурной воды и CO₂.

Установлено, что диаметр пор с увеличением содержания ПЦ в шихте увеличился независимо от способа и режима обжига, что, вероятно, связано с увеличением количества выделяющихся продуктов термодеструкции ПЦ. Диаметр пор образцов, синтезированных способами 1 и 2 в режиме С, примерно в 2–3 раза выше средних значений для образцов, синтезированных способами 1 и 2 в режиме В (рис. 6, δ). Диаметр пор образцов, полученных обоими способами, обожженных при различных режимах, выше

Таблица 2

Характеристики аналогов и образцов, полученных при введении 1–3 мас% порошковой целлюлозы в шихту методом 1 и обожженых в режиме В

Образец	Температура обжига <i>T</i> , °C	Удельная поверхность $S_{\rm yg}$, м $^2 \cdot \Gamma^{-1}$	Общий объем пор V _{пор} , см ³ ·г ^{−1}	Диаметр пор <i>d</i> _{пор} , нм	Средний диаметр частиц d _{cp} , мкм
ЖКД [5]	650 750	5.64 4.86	0.043 0.037	23 21	13 28
STYROMAX9 [27]	600	2.00-6.70	0.22-0.32	20–38	
K1-1_B	700	5.22 ± 0.04	0.003 ± 0.001	52 ± 1	0.74 ± 0.01
K1-3_B	700	5.13 ± 0.04	0.007 ± 0.001	50 ± 1	1.07 ± 0.01

Рис. 6. Зависимости характеристик удельной поверхности образцов (*a*), диаметра пор (*б*), объема пор образцов (*в*) и среднего диаметра частиц (*г*) от содержания порошковой целлюлозы в шихте. *1* — K1 B, *2* — K2 B, *3* — K1 C, *4* — K2 C.

средних значений аналогов. Образцы, полученные с применением 1–3 мас% ПЦ обоими способами, являются мезопористыми, за исключением образца K1_C* {104 нм (рис. 6, δ , кривая 3), значение, которое незначительно превышает значение, определяющее размер мезопор по классификации М. М. Дубинина [35]}. Мезопористая текстура образцов, как правило, оказывает благоприятное влияние на протекание каталитических реакций в ферритных системах [5].

Определено, что с введением ПЦ в шихту до 3 мас% объем пор образцов, синтезированных способом 2 в режиме С, примерно в 2 раза выше значений $V_{\text{пор}}$ образцов, синтезированных способом 1 (рис. 6, e). Это может быть обусловлено различиями в фазовом составе образцов, синтезированных способами 1 и 2 при различных режимах обжига. Согласно литературным данным [2], при высоких скоростях нагрева на воздухе преимущественно образуются полиферриты калия, а при низких — моноферриты. С увеличением содержания ПЦ от 0 до 3 мас% в составе системы средний диаметр частиц увеличился независимо от метода получения, но на порядок меньше размеров частиц коммерческих аналогов, что объясняется особенностями способов, использованных для получения шихты (рис. 6, ϵ).

Согласно результатам ТГ-ДСК, РФА и изучения текстурных характеристик, наибольшее количество моноферрита железа как более активного компонента катализатора, чем полиферрит калия [6, 7], образуется при введении незначительного количества (1–3 мас%) ПЦ в систему способом 1. В табл. 2 представлены характеристики коммерческих аналогов и образцов, которые получены при введении 1 и 3 мас% ПЦ в шихту методом 1 и обожжены в режиме В.

Для обоснования выбора способа получения шихты и режима обжига образцов системы необходимо изучить каталитическую активность образцов многокомпонентной системы.

Выводы

В результате изучения фазовых переходов соединений железа в многокомпонентной системе [Fe₂O₃-K2O-MoO3-CeO2-CaO-TiO2-MgO-SiO2]-порошковая целлюлоза в условиях термического нагрева на воздухе определено, что выделяющаяся при термодеструкции выгорающей добавки энергия способствует протеканию экзотермических процессов: окисления магнетита до маггемита и трансформации маггемита в гематит. Введение в шихту порошковой целлюлозы также приводит к снижению энергии активации фазового перехода маггемита в гематит с 70 для исходной системы до 65 и −5 кДж моль-1 для систем, содержащих 1 и 3 мас% порошковой целлюлозы соответственно. Вклад в значение энтальпии экзотермических процессов при добавке 1 мас% порошковой целлюлозы составляет 17%, при добавке 3 мас% — 30%. В свою очередь оксиды металлов, образующиеся при разложении продуктов гидролиза солей, оказывают каталитическое влияние и ускоряют процесс окислительной термодеструкции целлюлозы.

На температурный интервал эндотермических процессов, протекающих в системе, преимущественно влияет способ получения шихты, а температурный интервал экзотермических процессов зависит от количества исходной порошковой целлюлозы, введенной в систему.

Введение небольшого количества (1–3 мас%) порошковой целлюлозы в многокомпонентную систему [Fe₂O₃–K₂O–MoO₃–CeO₂–CaO–TiO₂–MgO–SiO₂]–порошковая целлюлоза достаточно для варьирования ее фазового состава и температурного режима, обеспечивающего завершение термических процессов, идущих с изменением массы.

Результатом выполненных исследований является разработка схемы синтеза образцов железо-калиевооксидного материала с заданным фазовым составом и текстурными характеристиками, которые необходимы для дальнейшего изучения его каталитической активности.

Благодарности

Выражаем благодарность Е. В. Тропникову (Институт геологии Федерального исследовательского центра «Коми научный центр Уральского отделения РАН») за измерения текстурных характеристик образцов.

Финансирование работы

Работа выполнена при частичной поддержке проекта Уральского отделения РАН 18-3-3-31 с ис-

пользованием оборудования Центров коллективного пользования «Химия» Института химии и «Геонаука» Института геологии Федерального исследовательского центра «Коми научный центр Уральского отделения Российской академии наук».

Конфликт интересов

Авторы работы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Бугаева Анна Юлиановна, к.х.н., с.н.с., ORCID: https://orcid.org/0000-0002-3412-2888

Лоухина Инна Владимировна, к.х.н., н.с., ORCID: https://orcid.org/0000-0002-7994-1924

Назарова Людмила Юрьевна, к.г.-м.н., н.с, ORCID: https://orcid.org/0000-0003-2884-4056

Казакова Елена Геннадиевна, м.н.с., ORCID: https://orcid.org/0000-0003-3144-6163

Рябков Юрий Иванович, д.х.н., с.н.с., доцент, заместитель директора: ORCID: https://orcid.org/0000-0002-5669-9063

Список литературы

- [1] Петров А. Ю., Синицин С. А., Козырева Н. А., Нефёдова Н. В., Михайличенко А. И. Каталитическая детоксикация отходящих газов промышленности // Успехи химии и хим. технологии. 2013. Т. 27. № 7 (147). С. 127–132.
- [2] Гильманов Х. Х., Ламберов А. А., Дементьева Е. В., Щатохина Е. В., Иванова А. В., Губайдуллина А. М. Влияние условий термообработки железооксидного катализатора дегидрирования на образование полиферритных фаз // Неорган. материалы. 2008. Т. 44. № 1. С. 95–101 [Gil'manov K. H., Lamberov A. A., Dement¢eva E. V., Shatokhina E. V., Ivanova A. V., Gubaidullina A. M. Effect of heat-treatment conditions on the formation of polyferrite phases from an ironoxide-based dehydrogenation catalyst // Inorg. Mater. 2008. N 1. P. 89–94. DOI: 10.1007/s10789-008-1015-9].
- [3] Kotarba A., Rozek W., Serafin I., Sojka Z. Reverse effect of doping on stability of principal components of styrene catalyst: KFeO₂ and K₂Fe₂₂O₃₄ // J. Catal. 2007. V. 247. N 2. P. 238–244. https://doi.org/10.1016/j. jcat.2007.02.009
- [4] Воронин В. И., Блатов В. А., Шехтман Г. Ш. Особенности кристаллической структуры полиморфных модификаций KFeO₂ и их связь с ионной проводимостью // ФТТ. 2013. Т. 55. № 5. С. 968–974 [Voronin V. I., Blatov V. A., Shekhtman G. S. Specific features of the crystal structure of polymorphous modifications of

 $KFeO_2$ and their correlation with ionic conductivity // Phys. Solid State. 2013. V. 55. N 5. P. 1050–1056. DOI: 10.1134/S1063783413050351].

- [5] Ламберов А. А., Дементьева Е. В., Кузьмина О. В., Гильманов Х. Х., Гильмуллин Р. Р. Опытнопромышленные испытания нового отечественного катализатора ЖКД дегидрирования изоамиленов в изопрен // Катализ в пром-сти. 2012. № 3. С. 76–83 [Lamberov A. A., Dementeva E. V., Kuzmina O. V., Gilmanov Kh. Kh., Gilmullinb R. R. Pilot tests of a new domestic ZHKD catalyst for the dehydrogenation of isoamilenes into isoprene // Catal. Industry. 2012. V. 4. N 3. P. 195–201. DOI: 10.1134/S2070050412030063].
- [6] Качалов Д. В., Степанов Е. Г., Котельников Г. Р. Исследование процессов образования каталитически активных ферритов щелочных металлов // Изв. вузов. Химия и хим. технология. 2008. Т. 51. № 7. С. 45–47.
- [7] Ламберов А. А., Гильманов Х. Х., Дементьева Е. В., Кузьмина О. В. Исследования механизма влияния добавок церия на свойства железокалиевой системы — активного компонента катализаторов дегидрирования углеводородов // Катализ в пром-сти. 2012. № 6. С. 60–68.
- [8] Дворецкий Н. В., Степанов Е. Г., Юн В. В., Котельников Г. Р. Фазовый состав промотированных железооксидных катализаторов в условиях реакции дегидрирования // Изв. вузов. Химия и хим. технология. 1990. Т. 33. № 8. С. 3–9.
- [9] Киселев А. Е., Кудин Л. С., Ильин А. П. Исследование железооксидного катализатора К₂О // Изв. вузов. Химия и хим. технология. 2014. Т. 57. № 3. С. 12–15.
- [10] *Newman R*. Styren catalyst developments // Hydrocarbon Eng. 2004. V. 9. N 11. P. 47–50.
- [11] Аниканова Л. Г., Дворецкий Н. В. Стабилизация щелочных промоторов в структуре железооксидных катализаторов дегидрирования // Катализ в промсти. 2016. Т. 16. № 1. С. 29–36 [Anikanova L. G., Dvoretskii N. V. Stabilization of Alkali Promoters in Structure of the Iron Oxide Dehydrogenation Catalysts // Catalysis in Industry. 2016. V. 16. N 1. P. 29–36. https://doi.org/10.18412/1816-0387-2016-1-29-36].
- [12] Аниканова Л. Г., Дворецкий Н. В., Малышева З. Г. Катионная проводимость в смешанных полиферритах // Изв. вузов. Химия и хим. технология. 2016. Т. 59. Вып. 1. С. 23–26.
- [13] Комаров В. С., Бесараб С. В. Синтез бипористых металлосиликатных адсорбентов и катализаторов // Весці нац. акадэміі навук Беларусі. Серыя хім. навук. 2013. № 1. С. 36–39.
- [14] Панченко Л. А., Можаев А. П., Зверькова И. И., Фадеева В. И., Третьяков Ю. Д. Субструктура и спекаемость измельченных ферритовых порошков // Порошковая металлургия. Киев, 1979.

№ 7. C. 32–38 [Panchenko L. A., Mozhaev A. P., Zver¢kova I. I., Fadeeva V. I., Tret'yakov Y. D. Substructure and sinterstability of milled ferrite powders // Soviet powder metallurgy and metal ceramics. 1979. V. 18. N 7. P. 449–453. https://doi.org/10.1007/ BF00797246].

- [15] Legutko P, Kaspera W., Stelmachowski P, Sojka Z., Kotarba A. Boosting the catalytic activity of magnetite in soot oxidation by surface alkali promotion // Catal. Commun. 2014. V. 56. P. 139–142. http://dx.doi. org/10.1016/j.catcom.2014.07.020
- [16] Бабенко В. С., Буянов Р. А. Закономерности саморегенерации оксидных железокалиевых катализаторов в присутствии водяного пара // Кинетика и катализ. 1986. Т. 27. № 2. С. 509–513 [Babenko V. S., Buyanov R. A. Spontaneous regeneration of iron potassium oxide catalysts in the presence of water-varor // Kinet. and Catal. 1986. V. 27. N 2. P. 441–444].
- [17] Болдырев В. В., Хабибуллин Ф. Х., Косова Н. В., Аввакумов Е. Г. Гидротермальные реакции при механохимическом воздействии // Неорган. материалы. 1997. Т. 33. № 11. С. 1350–1353 1353 [Boldyrev V. V., Khabibullin A. Kh., Kosova N. V., Avvakumov E. G. Hydrothermal reactions under mechanochemical activation conditions // Inorg. Mater. V.33. N 11. P. 1144–1147].
- [18] Ратько А. И., Иванец А. И., Азаров С. М. Влияние добавок на пористую структуру керамики на основе кристаллического SiO₂ // Неорган. материалы. 2008. Т. 44. № 7. С. 883–889 [Ratko A. I., Ivanets A. I., Azarov S. M. Effect of additives on the pore structure of ceramics based on crystalline SiO₂ // Inorg. Mater. 2008. V. 44. Р. 778–784. DOI: 10.1134/ S0020168508070182].
- [19] Хакимова Ф. Х., Ковтун Т. Н., Носкова О. А. Получение целлюлозного порошка из хлопкововой и древесной целлюлозы // Изв. вузов. Лесн. журн. 2001. № 5-6. С.113-118.
- [20] Пат. РФ 2470704 (опубл. 2012). Катализатор дегидрогенизации.
- [21] Ling Y., Wang G., Reddy J., Wang C., Zhang J. Z., Ling Y. Li. The Influence of Oxygen Content on the Thermal Activation of Hematite Nanowires // Angew. Chem. Int. Ed. Engl. 2012. V. 51. N 17. P. 4074–4079. https://doi.org/10.1002/anie.201107467
- [22] Гаршин А. П., Гропянов В. М., Зайцев Г. П., Семенов С. С. Керамика для машиностроения. М.: Научтехлитиздат, 2003. С. 223–226.
- [23] Казакова Е. Г., Демин В. А. Новый способ получения микрокристаллической целлюлозы // ЖПХ. 2009. Т. 82. № 3. С. 502–505 [Kazakova E. G., Demin V. A. A new procedure for preparing microcrystal-line cellulose // Russ. J. Appl. Chem. 2009. V. 82. N 3. P. 496–499. DOI: 10.1134/S1070427209030276].

- [24] Болотникова Л. С., Данилов С. Н., Самсонова Т. И. Метод определения вязкости и степени полимеризации целлюлозы // ЖПХ. 1966. Т. 39. № 1. С. 176– 180.
- [25] Казакова Е. Г., Алешина Л. А., Луговская Л. А., Демин В. А., Ипатова Е. У., Удоратина Е. В. Изучение надмолекулярной структуры порошковой целлюлозы методами ИК-спектроскопии и рентгеноструктурного анализа // Хим. волокна. 2016. № 4. С. 85–92 [Kazakova E. G., Aleshina L. A., Lugovskaya L. A., Demin V. A., Ipatova E. U., Udoratina E. V. IR Spectral Study and X-Ray Structural Analysis of the Supramolecular Structure of Cellulose Powder // Fibre Chem. 2016. V. 48. P. 342–348. https://doi. org/10.1007/s10692-017-9794-x].
- [26] Мухленов И. П., Добкина Е. И., Дерюжкина В. И. Технология катализаторов. Л.: Химия, 1989. С. 60–62.
- [27] Pat. US 6551958 (publ. 2003). Catalyst for dehydrogenating ethylbenzene to produce styrene.
- [28] Пат. РФ 2187364 (опубл. 2002). Катализатор для дегидрирования алкилароматических углеводородов.
- [29] Бугаева А. Ю., Лоухина И. В., Белый В. А., Дудкин Б. Н. Влияние диоксид церия на термические превращения микроволокон диоксида церия, полученных импрегнированием хлопкового волокна // ЖОХ. 2014. Т. 84. № 2. С.194–198 [Bugaeva A. Yu., Loukhina I. V., Belyi V. A., Dudkin B. N. Ceric oxide effect on heat-induced transformations of zirconium oxide microfibers prepared by impregnation of cotton fiber // Russ. J. Gen. Chem. 2014. V. 84. N 2. P. 190– 193. DOI: 0.1134/S1070363214020042].

- [30] Лидин Р. А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ. М.: Химия, 2000. 480 с.
- [31] Muan A., Gee C. L. Phase Equilibrium Studies in the System Iron Oxide-Al₂O₃ in Air and at 1 Atm. O₂ Pressure // J. Am. Ceram. Soc. 1956. V. 39. N 6. P. 207–214.
- [32] Herber R. H., Johnson D. Lattice dynamics and hyperfme interactions in M_2Fe0_4 (M=K⁺, Rb⁺, Cs⁺) and MFe0₄ (M=Sr²⁺, Ba²⁺) // Inorg. Chem. 1979. V. 18. N 10. P. 2786–2790.
- [33] Ламберов А. А., Дементьева Е. В., Кузьмина О. В., Хазеев Б. Р. Трансформация структуры оксида железа (III) при термическом нагреве на воздухе // Вестн. Казан. технол. ин-та. 2013. Т. 16. № 1. С. 37–41.
- [34] Гудкова И. А., Солодовникова З. А., Солодовников С. Ф., Золотова Е. С., Куратьева Н. В. Фазообразование в системах Li₂MoO₄-K₂MoO₄-MMoO₄ (M = Ca, Pb, Ba) и кристаллическая структура а KLiMoO₄ // ЖНХ. 2011. Т. 56. № 9. С. 1517–1526 [Gudkova I. A., Solodovnikova Z. A., Solodovnikov S. F., Zolotova E. S., Kuratieva N. V. Phase formation in Li₂MoO₄-Rb₂MoO₄-MMoO₂ (M = Ca, Sr, Ba, Pb) systems and the crystal structure of α-Rb₂Pb(MoO₄)₂ //J. of Structural Chem. 2011. V. 52. N 6. P. 1063–1069. DOI: 10.1134/ S0022476611060047].
- [35] *Неймарк И. Е., Шейнфайн Р. Ю.* Силикагель, его получение, свойства и применение. Киев: Наук. думка, 1973. С. 130–131.