Журнал прикладной химии. 2019. Т. 92. Вып. 2

УЛК 534-13+536.71+54-135

О ПРИМЕНЕНИИ МОДЕЛИ PC-SAFT ДЛЯ ОЦЕНКИ СКОРОСТИ ЗВУКА В СИНТЕТИЧЕСКИХ И ПРИРОДНЫХ НЕФТЕГАЗОВЫХ СМЕСЯХ

© И. В. Приходько, А. А. Самаров, А. М. Тойкка

Санкт-Петербургский государственный университет, Институт химии E-mail: i.prikhodko@spbu.ru

> Поступила в Редакцию 31 июля 2018 г. После доработки 25 октября 2018 г. Принята к публикации 29 ноября 2018 г.

Рассмотрены возможности применения модели PC-SAFT (Perturbed Chain-Statistical Association Fluid Theory) для оценки и расчета величин скорости звука в природном газе. Приведены примеры прогнозирования плотности и скорости звука для пяти многокомпонентных газовых смесей, содержащих алканы, изоалканы, азот, диоксид углерода, в широком интервале температур и давлений (250-450 К и 0.5-60 МПа). Результаты расчетов сопоставлены с литературными экспериментальными данными. Показано, что модель с высокой точностью воспроизводит экспериментальные значения плотности и скорости звука.

Ключевые слова: термодинамические свойства, скорость звука, моделирование, уравнение состояния, PC-SAFT, нефтегазовые смеси, природный газ.

DOI: 10.1134/S0044461819020142

Скорость звука — важная термофизическая величина, которая широко используется в практических целях для характеристики гомогенных и гетерогенных смесей, для оценки плотности пластовых флюидов в скважинах в широком диапазоне внешних условий [1, 2]. Наряду с температурой и давлением скорость звука — один из легко определяемых в эксперименте параметров, который можно применять для нахождения молекулярной массы и плотности газовой смеси, а также оценки величины потребления природного газа на газораспределительных станциях [3, 4]. Термодинамическая скорость звука представляет большой интерес для исследователей, проверяющих возможности уравнений состояния для ее точного описания (эта величина связана с адиабатической сжимаемостью вещества и выражается через производную второго порядка энергии Гельмгольца по объему). Расчет скорости звука и основан на знании термодинамических величин, таких как общий объем V (или плотность), изобарная C_P и изохорная теплоемкости C_V, а также производная давления по общему объему при заданных значениях температуры и общего числа молей системы $\left(\frac{\partial P}{\partial V}\right)_T$ согласно

известной формуле

 $u = \sqrt{-\frac{V^2}{M_{\rm w}} \frac{C_{\rm P}}{C_{\rm V}} \left(\frac{\partial P}{\partial V}\right)_{T_{\rm m}}},$

где $M_{\rm w} = \sum_i n_i M_{W_i}$ — молекулярная масса системы с учетом числа молей и молекулярных масс компонентов і.

Среди современных уравнений состояния, которые в последние 5-7 лет тестируются разными исследователями на предмет улучшения количественного описания скорости звука в чистых и смешанных флюидах различной природы, выделяются уравнения семейства SAFT (Statistical Associating Fluid Theory) [5-7]. Одно из таких уравнений состояния — уравнение состояния на основе статистической теории ассоциирующего флюида с возмущенной цепью (Perturbed Chain-SAFT) — было предложено Гроссом и Садовски [8]. Оно представляет собой модифицированный вариант известной и популярной в последнее время в инженерных расчетах молекулярно-статистической модели SAFT и опирается на результаты теории возмущений и численного эксперимента для флюида, образованного цепочками твердых сфер. Молекулярная модель, заложенная в уравнение

PC–SAFT, учитывает эффекты образования цепочек твердых сфер, дисперсионное взаимодействие, которое описывается с помощью теории возмущений Баркера–Хендерсона [9], а также ассоциацию; предполагается наличие контактных участков на поверхности молекулы, способных к специфическим взаимодействиям с контактными участками других молекул.

Отметим, что апробация модели PC-SAFT была успешно проведена иранскими коллегами при расчетах термодинамических характеристик смесей природного газа [10], которые являются объектом рассмотрения настоящей работы. Модель PC-SAFT интенсивно развивается, и уже на ее основе создаются новые варианты уравнений состояния, направленные, в частности, на более точное описание скорости звука [11–19], с сохранением при этом надежного описания Р-V-Т свойств изучаемых систем, в том числе плотности жидкости и давления насыщенного пара. В работе [12] предложен подход, улучшающий точность описания скорости звука с помощью уравнения состояния PC-SAFT на примере н-алканов различной длины углеродной цепи; была сделана апробация двух приближений: использования величины скорости звука как исходного термодинамического свойства для определения модельных параметров чистых компонентов и ее использования при получении универсальных констант при оценке дисперсионной составляющей энергии Гельмгольца и параметров модели. Авторами работы [13] детально сопоставлялись возможности моделей SAFT и PC-SAFT для предсказания термодинамических свойств неполярных и ассоциирующих веществ, однако, несмотря на приемлемое описание скорости звука, при прогнозировании изохорной теплоемкости наблюдались значительные расхождения с экспериментальными данными. В работе [14] рассмотрен вариант уравнения состояния PC-SAFT на основе метода «групповых вкладов — group-contribution» для описания термодинамических свойств чистых углеводородов разных классов в широком интервале изменения температур и давлений. Апробация модификации уравнения состояния PC-SAFT, дающей более точную оценку скорости звука в различных системах, проводилась в работах Полишука и др. [11, 15–19]. Авторами были преодолены некоторые недостатки оригинальной версии PC-SAFT (неточности предсказания скорости звука в жидкой фазе, завышенные значения критических констант чистых компонентов, некорректное описание теплоемкостей при очень высоких давлениях) и введены незначительные уточнения для выражений вкладов в «остаточную» энергию Гельмгольца для улучшения описания термодинамических свойств чистых веществ и бинарных смесей в широком интервале условий, включая однофазные и двухфазные состояния, околокритическую область.

В данной работе мы применили этот вариант модели PC–SAFT для оценки и прогнозирования скорости звука для ряда многокомпонентных систем, содержащих нефтегазовые флюиды. Проведенные модельные расчеты дают хорошие результаты, достаточные для практических оценок и контроля величин скорости звука (и плотностей) в рассматриваемых флюидных смесях. Детальное описание модели CP–PC–SAFT (Critical Point-based Perturbed Chain– Statistical Association Fluid Theory) и методика расчета с помощью этого уравнения состояния приводятся в работах [15, 16], поэтому мы ограничимся лишь кратким рассмотрением.

Моделирование

Согласно модели СР–РС–SAFT выражение для «остаточного» (обусловленного межмолекулярным взаимодействием) вклада в энергию Гельмгольца в случае отсутствия в системе ассоциирующих и полярных компонентов может быть записано следующим образом (аналогично модели PC–SAFT):

$$A_{\rm oct} = A^{\rm hc} + A^{\rm disp},\tag{1}$$

где первое слагаемое относится к вкладу образования цепочек из твердых сфер, а второе — к дисперсионной составляющей энергии Гельмгольца, которая отвечает за взаимодействия, связанные с притяжением.

Формулы для расчетов составляющих суммы (1) приведены в работах [8, 15, 16]; полезные выражения для расчетов термодинамических величин, связанных с производными первого и второго порядка энергии Гельмгольца по объему (плотности), можно найти также в статье [10]. Выражение для уравнения состояния, записанное через фактор сжимаемости или давление, может быть легко получено из (1) с помощью известных формул термодинамики. Применяя модель для смесей, используют комбинационные правила Лоренца–Бертло, причем вводится только один подгоночный параметр бинарного взаимодействия k_{ij} , который подправляет дисперсионную составляющую взаимодействий в уравнении СР–РС– SAFT:

$$\sigma_{ij} = \frac{1}{2}(\sigma_i + \sigma_j), \qquad (2)$$

$$\varepsilon_{ij} = \sqrt{\varepsilon_i \varepsilon_j} (1 - k_{ij}), \qquad (3)$$

где индексы *i* и *j* относятся к различным сегментам системы, σ_i — диаметр сегмента *i*, ε_i — энергия взаимодействия сегментов сорта *i*, k_{ij} — параметр бинарного взаимодействия разноименных сегментов *i* и *j* молекул-цепочек компонентов.

Для описания чистого неполярного вещества в рамках модели СР-РС-SAFT і требуется четыре параметра: число сегментов *m_i*, образующих молекулу-цепь, диаметр сегмента о, энергия взаимодействия сегментов ε_i/k (*k* — постоянная Больцмана). Дополнительно требуется знать параметр бу_с, отвечающий за смещение критического объема (отношение вычисленного по модели критического объема к его экспериментальному значению). Значения параметров уравнения состояния СР-РС-SAFT для многих нефтегазовых компонентов приведены в литературе [15]; список параметров расширяется и включает полярные и ассоциирующие компоненты [16–19]. Дополнительно переоцениваются величины универсальных параметров (констант) оригинальной модели PC-SAFT, требующихся для оценки дисперсионной составляющей «остаточной» энергии Гельмгольца. Процедура расчета на основании численного решения для нахождения параметров уравнения состояния приводится в работе [15] и отлична от метода оценки (подгонки) параметров модели PC-SAFT. Идея используемого подхода состоит в том, что параметры уравнения CP-PC-SAFT определяются в экспериментальных критических точках чистых компонентов (для заданных значений критических констант) и данных о плотности жидкости в тройной точке (из баз термодинамических данных). Параметры бинарного взаимодействия k_{ii} для описания бинарных и многокомпонентных систем приняты равными нулю, поэтому представленные в настоящей работе результаты расчетов скорости звука и плотности можно считать предсказанием.

Обсуждение результатов

В работе проведена апробация уравнения состояния СР–РС–SAFT и проверка работоспособности предложенной методики Полишука и сотрудников при оценке скорости звука для многокомпонентных систем, содержащих компоненты природного газа с различным содержанием метана (74–97 мол%). Выбранные для расчетов синтетическая газовая смесь и природные газовые смеси разных месторождений, а также их составы представлены в табл. 1 (для этих же составов известны экспериментальные значения скорости звука в широком интервале давлений для ряда температур) [20, 21]. Сравнение результатов, даваемых моделью СР– РС–SAFT, и экспериментальных данных (см. рисунок) оценивалось по значениям средней абсолютной ошибки в процентах (MAPE — Mean Absolute Percentage Error) и приведено в табл. 2:

MAPE =
$$\frac{100\%}{N} \sum_{i=1}^{N} \left| \frac{W^{pacy}}{W^{3\kappa c \pi}} - 1 \right|,$$

где W — термодинамическое свойство, $W^{\text{расч}}$ — рассчитанные по уравнению состояния величины плотности газовой фазы или скорости звука, $W^{3\text{ксп}}$ — экспериментальные значения плотности или скорости звука, N — число экспериментальных точек.

Как видно из данных табл. 2, средняя абсолютная ошибка полученных значений скорости звука во всех рассматриваемых системах не превышает 2.0%, что свидетельствует о высокой точности, характеризующей свойства изученных газовых смесей. Согласно литературным данным [20] результаты предсказания скорости звука и плотности для синтетической газовой смеси с помощью модели CP-PC-SAFT несколько уступают в точности, даваемой многопараметрическим корреляционным уравнением состояния GERG-2008 [22] (0.1%), которое рекомендовано и популярно в инженерных расчетах для нефтяной и газовой промышленности. Отметим, что уравнение GERG-2008 имеет преимущественно эмпирическое обоснование в отличие от уравнения состояния РС-SAFT и его аналогов (модифицированных вариантов).

Зависимость скорости звука в природном газе от давления при различных температурах.

Символы — экспериментальные данные; линии — расчет по уравнению состояния СР-РС-SAFT.

Таблица 1

Составы нефтегазовых смесей, используемые для расчетов плотности и скорости звука

	Концентрация, мол. доля							
Компонент	синтетическая газовая смесь [20]	природная нефтегазовая смесь (Gulf Coast) [21]	природная нефтегазовая смесь (Amarillo) [21]	природная нефтегазовая смесь (Statoil Dry Gas) [21]	природная нефтегазовая смесь (Statoil Statvordgass) [21]			
CH ₄	0.879427	0.96561	0.90708	0.83980	0.74348			
C_2H_6	0.060000	0.01829	0.04491	0.13475	0.12005			
C_3H_8	0.020430	0.00410	0.00815	0.00943	0.08251			
n-C ₄ H ₁₀	0.002998	0.00098	0.00141	0.00067	0.03026			
i-C ₄ H ₁₀	0.001995	0.00098	0.00106	0.00040				
n-C ₅ H ₁₂		0.00032	0.00065	0.00008	0.00575			
i-C ₅ H ₁₂		0.00046	0.00027	0.00013				
n-C ₆ H ₁₄		0.00067	0.00034		0.002 30			
N ₂	0.015020	0.00262	0.03113	0.00718	0.00537			
CO ₂	0.020130	0.00597	0.00500	0.00756	0.01028			

Таблица 2

Результаты расчетов плотности и скорости звука в рассматриваемых системах

Газовая смесь или месторождение	Число экспериментальных точек	Температура, К	Интервал давлений, МПа	МАРЕ для плотности, %	МАРЕ для скорости звука, %	Литературный источник
Синтетическая	22	323.31	4.86-56.69	1.30	1.14	[20]
газовая смесь	22	346.48	5.11-56.69	1.25	1.11	
	24	369.41	4.79–56.90	1.16	1.12	
	18	392.34	6.12-56.86	1.08	1.27	
	18	415.45	6.90–58.37	0.85	1.36	
Gulf Coast	12	250.00	0.59-10.41		0.95	[21]
	13	275.00	0.50-10.33		0.38	
	14	300.00	0.47-10.31		0.38	
	17	325.00	0.54-10.38		0.36	
	14	350.00	0.63-10.40		0.32	
Amarillo	11	250.00	0.67-10.88		1.20	[21]
	10	275.00	0.65-10.47		0.43	
	6	298.00	6.89–23.39		1.71	
	11	300.00	0.56-10.43		0.38	
	19	325.00	0.69–10.43		0.37	
	15	350.00	0.86-10.64		0.30	
Statoil Dry Gas	18	250.00	0.80-10.34		2.51	[21]
-	11	275.00	0.52-10.42		0.65	
	18	300.00	0.53-10.30		0.41	
	17	325.00	0.47-10.40		0.42	
Statoil Statvord-	12	300.00	1.86-10.38		1.37	[21]
gass	14	325.00	0.42–9.89		0.79	
	16	350.00	0.64–10.44		0.86	

Выводы

Установлено, что результаты расчетов скорости звука и плотности в системах, образованных нефтегазовыми компонентами, свидетельствуют о перспективности дальнейшего использования модели PC–SAFT для оценки термодинамических и термофизических свойств природного газа для практических целей.

Авторы выражают благодарность проф. И. Полишуку (Ариэльский университет, Израиль) за предоставление программного кода модели СР–РС–SAFT и помощь в расчетах.

Работа выполнена при финансовой поддержке РФФИ (грант РФФИ 17-58-560018).

Список литературы

- [1] Meng G. T., Jaworski A. J., White N. M. // Chem. Eng. Process. 2006. V. 45. P. 383–391.
- [2] Machefer S., Schnitzlein K. // Chem. Eng. Technol. 2007. V. 30. N 10. P. 1381–1390.
- [3] Farzaneh-Gord M., Arabkoohsar A., Koury R. N. N. // J. Nat. Gas Sci. Eng. 2016. V. 30. P. 195–204.
- [4] Farzaneh-Gord M., Rahbari H. R. // J. Eng. Thermophys. 2012. V. 21. N 4. P. 213–234.
- [5] Chapman W. G., Gubbins K. E., Jackson G., Radosz M. // Ind. Eng. Chem. Res. 1990. V. 29. P. 1709–1721.
- [6] Huang S. H., Radosz M. // Ind. Eng. Chem. Res. 1990.
 V. 29. P. 2284–2294.
- [7] Huang S. H., Radosz M. // Ind. Eng. Chem. Res. 1991.
 V. 30. P. 1994–2005.
- [8] Gross J., Sadowski G. // Ind. Eng. Chem. Res. 2001. V. 40. P. 1244–1260.

- [9] Barker J. A., Henderson D. // J. Chem. Phys. 1967.
 V. 47. P. 2856–2861.
- [10] Фарзанех Горд М., Рузбахани М., Рахбари Х. Р., Хагхигхат Хоссейни С. Д. // ЖПХ. 2013. Т. 86.
 № 6. С. 926–937 [Farzaneh Gord M., Roozbahani M., Rahbari H. R., Haghighat Hosseini S. J. // Russ. J. Appl. Chem. 2013. V. 86. N 6. P. 867–878].
- [11] Polishuk I., Katz M., Levi Yu., Lubarsky H. // Fluid Phase Equilib. 2012. V. 316. P. 66–73.
- [12] Liang X., Maribo-Mogensen B., Thomsen K., Yan W., Kontogeorgis G. M. // Ind. Eng. Chem. Res. 2012.
 V. 51. P. 14903–14914.
- [13] de Villiers A. J., Schwarz C. E., Burger A. J., Kontogeorgis G. M. // Fluid Phase Equilib. 2013. V. 338.
 P. 1–15.
- [14] Burgess W. A., Tapriyal D., Gamwo I. K., Wu Y., McHugh M. A., Enick R. M. // Ind. Eng. Chem. Res. 2014. V. 53. P. 2520–2528.
- [15] Polishuk I. // Ind. Eng. Chem. Res. 2014. V. 53.
 P. 14127–14141.
- [16] Lubarsky H., Polishuk I. // J. Supercritical Fluids. 2015. V. 97. P. 133–144.
- [17] Polishuk I., Sidik Y., NguyenHuynh D. // Am. Inst. Chem. Eng. J. 2017. V. 63. N 9. P. 4124–4135.
- [18] Polishuk I., Lubarsky H., NguyenHuynh D. // Am. Inst. Chem. Eng. J. 2017. V. 63. N 11. P. 5064–5075.
- [19] Melent'ev V. V., Postnikov E. B., Polishuk I. // Ind. Eng. Chem. Res. 2018. V. 57. P. 5142–5150.
- [20] Ahmadi P., Chapoy A., Tohidi B. // J. Nat. Gas Sci. Eng. 2017. V. 40. P. 249–266.
- [21] Younglove B., Frederick N., McCarty R. Speed of sound data and related models for mixtures of natural gas constituents. NIST Monograph 178. Washington, U.S. Government Printing Office, 1993. P. 1–97.
- [22] Kunz O., Wagner W. // J. Chem. Eng. Data. 2012.
 V. 57. P. 3032–3091.