= ТЕХНОЛОГИЧЕСКОЕ ПОЛУЧЕНИЕ НОВЫХ МАТЕРИАЛОВ =

УДК 544.778.4 54-161:546.26

ИЗУЧЕНИЕ УСЛОВИЙ ФОРМИРОВАНИЯ И ХАРАКТЕРИСТИК УГЛЕРОДСОДЕРЖАЩИХ ЧАСТИЦ, ПОЛУЧАЕМЫХ ИЗ *орто*-КСИЛОЛА АЭРОЗОЛЬНЫМ ХИМИЧЕСКИМ ОСАЖДЕНИЕМ ИЗ ГАЗОВОЙ ФАЗЫ

© И. А. Тюрикова, К. С. Тюриков, С. Е. Александров, А. Л. Шахмин

Санкт-Петербургский политехнический университет Петра Великого E-mail: polatayko irina@spbstu.ru

Поступила в Редакцию 9 ноября 2018 г. После доработки 1 декабря 2018 г. Принята к публикации 10 декабря 2018 г.

Описаны некоторые закономерности процесса химического осаждения углеродсодержащих наночастиц из аэрозоля о-ксилола, включая влияние температуры пиролиза и расхода газа-носителя на размерные характеристики, строение и состав образующихся продуктов. Показано, что форма, размер и строение частиц определяются процессами, протекающими в зоне пиролиза, а ее температура является важнейшим технологическим параметром наряду с временем нахождения продуктов распада о-ксилола в реакционной зоне. Полученные результаты имеют прикладное значение и представляют собой основу для разработки технологии и оборудования для получения углеродсодержащих наночастиц из аэрозоля о-ксилола.

Ключевые слова: углеродные частицы, пиролиз аэрозолей, о-ксилол, химическое осаждение.

DOI: 10.1134/S0044461819030149

Углеродные нанопорошки представляют значительный интерес для применения в различных областях техники, включая изготовление анодов литий-ионных батарей [1], компонентов композиционных материалов [2], а также хромофоров [3], сорбционных материалов [4, 5], катализаторов [6] и др. Среди разнообразных методов получения углеродных наночастиц [7, 8], многие из которых являются высокотемпературными или технологически сложными и дорогостоящими, а поэтому экономически непривлекательными, одним из наиболее перспективных является метод аэрозольного химического осаждения, основанный на пиролизе углеродсодержащих веществ, так как не требует дорогостоящего технологического оборудования, характеризуется относительной простотой и возможностью надежного

управления размерными параметрами образующихся продуктов. Следует также отметить, что процесс аэрозольного химического осаждения порошков из газовой фазы перспективен для промышленного применения, однако для этого необходима информация о закономерностях процесса и характере влияния основных технологических параметров на состав, структурные и морфологические характеристики получаемых частиц.

К настоящему времени некоторые закономерности процессов аэрозольного постадийного формирования углеродных частиц сажеподобного типа, образующихся при пиролизе различных углеводородов, установлены лишь в общих чертах [9, 10]. Процессы, происходящие в разных зонах реакторного блока при перемещении вдоль него реакционной смеси и

существенным образом влияющие на характеристики образующихся продуктов, остаются изученными в недостаточной степени, что делает процесс получения углеродных частиц трудноконтролируемым и не всегда предсказуемым.

Целью настоящей работы являлось решение прикладной задачи, заключающейся в установлении экспериментальным путем характера влияния основных параметров процесса химического осаждения углеродсодержащих наночастиц из аэрозолей *о*-ксилола на состав и размерные характеристики образующихся частиц.

Экспериментальная часть

Углеродсодержащие частицы получали в результате пиролиза аэрозолей о-ксилола (ЗАО «Вектон», ТУ 2631-006-44493179-97, ч.д.а.) в кварцевом трубчатом реакторе внутренним диаметром 15.5 мм, оснащенном тремя последовательно расположенными нагревателями резистивного типа. Первый нагреватель использовался для перевода частиц аэрозоля о-ксилола в паровую фазу, и его температура (T_1) изменялась в интервале от 200°C до температуры второго нагревателя (T_2) , состоящего из четырех зон и применяющегося для нагрева области пиролиза от 600 до 800°C. Третий нагреватель обогревал до 200°C короткий участок реактора, расположенный далее по потоку, в котором с помощью электростатического фильтра собирались продукты осаждения. Наряду с накоплением материалов в холодной зоне во избежание процессов конденсации, имеющих место при понижении температуры, проводили осаждение углеродсодержащего порошка в конце зоны пиролиза. Точность поддержания температуры в нагреваемых зонах составляла 2°. На вход реактора подавался аэрозоль о-ксилола, создаваемый с помощью пьезоэлектрического небулайзера, работающего на частоте 2.4 МГц и мощности 13.5 Вт. Частицы аэрозоля переносились в реактор газом-носителем, подаваемым в реактор с расходом 0.1-1 л·мин $^{-1}$ (аргон, OOO «Мониторинг», ТУ 2114-005-05798345-200, ВЧ).

Анализ размера получаемых частиц проводили по изображениям осадков, полученным с помощью электронного микроскопа Zeiss SUPRA 55VP. Состав продуктов был изучен с помощью рентгеновской фотоэлектронной спектроскопии на платформе ЭСХА комплексной установки Нанофаб-25. Шкала энергий ЭСХА спектрометра была откалибрована по линии золота 4f7/2, энергия связи которой устанавливалась равной 84.00 эВ. В эксперименте использовалось излучение Mg_{K_B} . Учет эффекта зарядки проводили

по линии углерода, соответствующей С-Н-связям, при этом наблюдалось хорошее соответствие положений линий остальных элементов в образце с их ожидаемым химическим состоянием. Статистический анализ размерных характеристик синтезированных частиц проводили путем обработки изображений с использованием программного пакета Digimizer по не менее чем 200 измерениям. Рентгенофазовый анализ осуществлялся с помощью рентгеновского дифрактометра Bruker D8 Advance. Для определения характера химических связей в осаждаемом продукте и качественной оценки состава реакционной газовой среды применялась ИК-Фурье-спектроскопия (ИК-Фурьеспектрометр ФСМ-1201). Для изучения газовой фазы на выходе из реактора закрепляли газовую кювету с оптической длиной 10 см. Для регистрации спектров в диапазоне 400-750 см-1 использовались окна из КВг, а для диапазона 700–4000 см⁻¹ — из NaCl.

Обсуждение результатов

Результаты предварительных экспериментов по пиролизу o-ксилола, выполненных при температуре первой зоны 250° С, температуре второй зоны 700° С и расходе газа-носителя $0.3~\pi$ мин $^{-1}$, показали, что образуются частицы черного цвета сферической формы, 95% которых имеют диаметральный размер порядка 50—300 нм (рис. 1).

С помощью просвечивающей ИК-спектрометрии был оценен состав полученного порошка. На рис. 2 приведен ИК-спектр полученного образца порошка и справочный спектр o-ксилола.

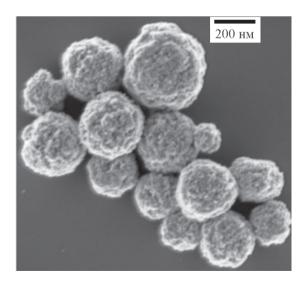


Рис. 1. РЭМ-изображение углеродсодержащих частиц, полученных при $T_1 = 250$ °C, $T_2 = 700$ °C, расход газа-носителя $0.3 \text{ л} \cdot \text{мин}^{-1}$.

Тюрикова И. А. и др.

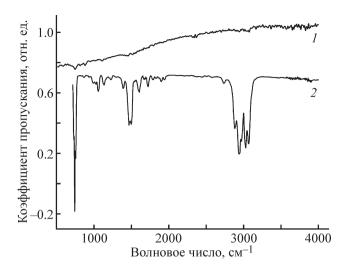


Рис. 2. ИК-спектр образца порошка, полученного в ходе предварительного эксперимента (1), и справочный спектр o-ксилола (2).

Видно, что поглощение ИК-излучения образцом порошка весьма незначительное, сравнивая спектр образца со справочным спектром о-ксилола, можно предположить, что в составе полученного черного порошка присутствуют лишь примеси неразложившегося реагента. Обнаружено слабое поглощение в области около 740 см-1, связанное с деформационными колебаниями связи С-Н в метильной группе о-ксилола, также можно выделить крайне слабое поглощение в области около 1500 см-1, вызванное колебаниями углерод-углеродной связи в бензольном кольце, и поглощение около 3000 см⁻¹, определяемое колебаниями связи С-Н в бензольном кольце (см. таблицу). Вероятнее всего, в полученном порошке присутствуют также неидентифицируемые побочные углеводородные продукты пиролиза, однако в целом отсутствие значительного поглощения в исследованной ИК-области спектра позволяет предположить, что порошок состоит из чистого углерода, обнаружить который методом ИК-спектроскопии невозможно.

Расшифровка спектра о-ксилола

Волновое число, cm^{-1}	Тип колебания
Около 740	С-Н метильная группа, деформационное
960–1260	С-Н ароматическое деформационное
1320-2000	С-С ароматическое валентное
2780–3200	С-Н ароматическое валентное

С целью более детального изучения процесса исследовано влияние условий процесса осаждения (температуры, скорости потока) на характеристики получаемых порошков (состав и размерные характеристики).

Влияние температуры первой зоны. Результаты исследования состава образцов, полученных при различных температурах зоны предварительного нагрева в интервале 200-800°C (температура второй зоны составляла 700°С) и осажденных в порошкообразном виде, методом просвечивающей ИК-спектрометрии показали, что варьирование температуры зоны предварительного нагрева в исследованном интервале не приводит к значительному изменению их состава, так как характер спектров образцов не изменяется (рис. 3). На спектрах различимы полосы поглощения, соответствующие колебаниям С-Н-связей метильного радикала (около 740 см-1), колебаниям С-С-связей в бензольном кольце $(1400-1620 \text{ и } 1700-2000 \text{ см}^{-1})$. Количество получаемого порошка при варьировании температуры первой зоны оставалось неизменным, поэтому во всех последующих экспериментах она была равна 200°С.

Влияние температуры второй зоны. Посредством ЭСХА выполнена оценка содержания С–Н-связей в общем составе и установлена тенденция к их уменьшению с увеличением температуры во второй зоне. Исследованы образцы, полученные при температурах 700°С и выше, так как при более низких температурах наблюдался значительно более низкий выход углеродсодержащего порошка, при этом с увеличени-

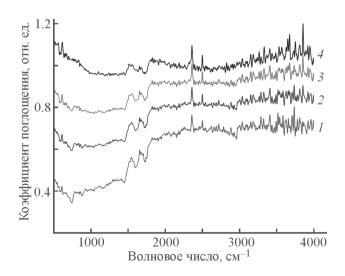


Рис. 3. ИК-спектры образцов порошка, полученные при различных температурах первой зоны.

$$T_1$$
 (°C): $1 - 200$, $2 - 400$, $3 - 600$, $4 - 800$.

ем температуры отмечалось уменьшение доли С-Н-связей от 16 до примерно 9%.

По результатам рентгеновской фотоэлектронной спектроскопии образца, полученного при 750° С, в соответствии с обзорным спектром в составе образца выявлено содержание (ат%): О — 7.5, С — 79.6, Si — 12.6.

Линия кремния 2*p* состоит из двух компонент: меньшая (25% от общей площади Si) соответствует поверхностному оксиду кремния и большая (75% от общей площади Si) — кремнию со степенью окисления 0. Исходя из того, что кремний, из которого сделана подложка, составляет 12.6% атомного состава анализируемой приповерхностной области, следует, что кислорода в связи с кремнием должно быть примерно 6.3%, и только 1.2% кислорода остается на связь кислорода с углеродом. Действительно, разложение линии кислорода включает две компоненты: 86% приходится на связь кислорода с кремнием и 14% — с углеродом (1.2 ат% от 7.5 ат% для кислорода = 16%).

Разложение линии углерода C1s выявило наличие четырех компонент, основная из которых (85% от всего количества углерода) имеет энергию связи 284.6 эВ, что соответствует углерод-углеродным связям в графитоподобных материалах [11, 12]. Следующая компонента с энергией 285.0 эВ соответствует углеводородным связям и составляет 12.7%. Компоненты с энергиями 286.5 и 287.8 эВ — связи С—О и О—С—О (или С=О) составляют соответственно 1.7 и 0.5% от

количества углерода, или $(2.2/79.6)\cdot 100\% = 2.7$ ат%, что с учетом наличия углерод-кислородных связей разного типа составляет величину, близкую по значению к количеству кислорода, выраженного в атомных процентах, связанного с углеродом. Поскольку перед анализом образец некоторое время находился на воздухе, определенное количество загрязнений, содержащих углеводороды и С-О-связи, адсорбировалось на его поверхности.

Таким образом, основную долю образца составляют неупорядоченные наноразмерные кластеры графитоподобного углерода, строение которых можно оценить из особенностей спектра потерь энергии фотоэлектронов, эмитированных с 1s уровней атомов углерода (рис. 4). Спектр линии углерода, полученный в интервале 40 эВ от линии C1s, выявляет несколько особенностей, соответствующих возбуждению плазмонов фотоэлектронами (рис. 4). Это, во-первых, особенность при 290.6 эВ (энергия плазмона 6 эВ), соответствующая возбуждению коллективных колебаний π -электронов, а также особенности при 303 и 308 эВ (энергии 18.4 и 24.4 эВ), соответствующие поверхностным и объемным п-о-плазмонам [13-15]. Особенность при 308 эВ может быть интерпретирована как суперпозиция нескольких линий с различной энергией связи. Согласно [13] возможно существование плазмонов как в графитовых плоскостях, так и между ними, причем последние имеют наибольшую энергию, при этом существует достаточ-

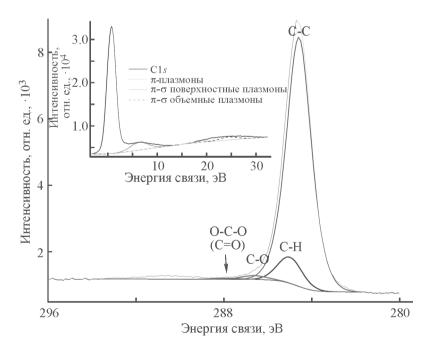


Рис. 4. Результат разложения пика углерода, полученного с помощью ЭСХА образца, осажденного при температуре 750° C.

Тюрикова И. А. и др.

но ярко выраженная дисперсия плазмонов по энергиям в зависимости от направления в кристаллической решетке. Дисперсия объемных плазмонов по результатам проведенного анализа приходится на интервал 18-29 эВ, и, поскольку фотоэлектроны регистрировались в широком телесном угле, на спектре отражена суперпозиция плазмонов с различными направлениями импульса. Разложение широкого максимума, соответствующего объемным плазмонам, дает следующие энергии плазмонов: 20.4, 24.4 и 27.5 эВ. Вместе с тем, согласно [13], плазмон с энергией 18.4 эВ относится к объемным, а поверхностный плазмон (13–15 эВ) практически не наблюдается. Также не наблюдаются и плазмоны с энергиями более 30 эВ, соответствующие коллективным электронным возбуждениям в межплоскостном пространстве графита. Отсюда можно предположить, что структура образца представлена набором разупорядоченных графитоподобных частиц малого размера, что приводит к минимизации вкладов поверхностных и межплоскостных объемных плазмонов.

С помощью ИК-Фурье-спектрометрии исследованы составы осаждаемых в нижней части горячей (реакционной зоны) области углеродсодержащих порошков при различных температурах пиролиза o-ксилола в интервале 600–800°C. На рис. 5 приведены ИК-спектры пропускания порошков, осажденных в интервале температур 600-800°C, также на рис. 5 приведен справочный ИК-спектр o-ксилола.

Из представленных на рис. 5 ИК-спектров видно, что в составе порошков присутствует неразложив-

Рис. 5. Справочный спектр o-ксилола (1) и ИК-спектры образцов порошка, полученные при различных температурах второй зоны ($T_1 = 200$ °C).

$$T_2$$
 (°C): 2 — 600, 3 — 650, 4 — 700, 5 — 750, 6 — 800.

шийся *о*-ксилол (расшифровка спектров приведена в таблице) и продукты его неполного пиролиза, однако с увеличением температуры зоны пиролиза содержание в порошках побочных продуктов пиролиза, таких как различные углеводородные радикалы, значительно снижается, и при температуре пиролиза 750°C примеси в составе порошка практически отсутствуют.

Влияние расхода газа на состав. Проведена экспериментальная оценка влияния расхода газа-носителя аэрозоля на состав формируемого углеродсодержащего порошка методом ИК-Фурье-спектрометрии в интервале расходов 0.1-1 л·мин $^{-1}$. На рис. 6 приведены ИК-спектры полученных при данных расходах порошков. При расходах 0.5-1 л·мин $^{-1}$ время пребывания реагента в зоне пиролиза недостаточно для полного пиролиза o-ксилола, так как в осаждаемых порошках присутствует значительное количество С-H-групп. При расходах 0.2-0.3 л·мин $^{-1}$ время нахождения аэрозоля в зоне пиролиза составляет около 0.5-1 мин, что достаточно для реализации процесса пиролиза o-ксилола в данных условиях.

Зависимость размера частиц от температуры пиролиза. Установлено, что помимо состава температура зоны пиролиза оказывает влияние на размерные характеристики получаемых частиц. При 700°С наблюдается образование углеродных частиц с широким распределением по размерам в интервале 50—300 нм (рис. 7). С увеличением температуры до 750°С средний размер частиц снижается до 150—200 нм, и при дальнейшем повышении температуры размеры остаются в том же интервале значений.

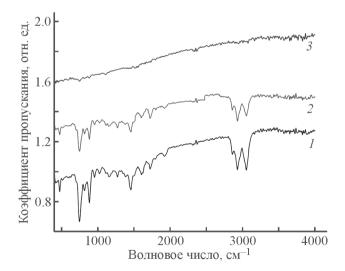


Рис. 6. ИК-Фурье-спектры углеродсодержащих порошков, полученных при различных расходах газа-носителя.

Расход (л·мин $^{-1}$): 1 - 1, 2 - 0.5, 3 - 0.25.

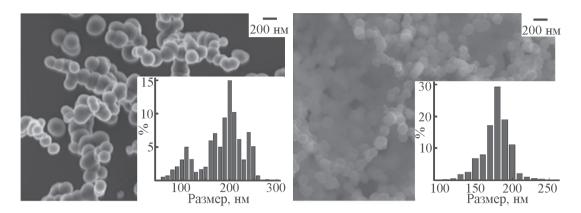


Рис. 7. Углеродные частицы, полученные при 700 (слева) и 800°C (справа), и их распределение по размерам.

Для более детального изучения роли описанных параметров процесса было изучено их влияние на состав реакционной газовой фазы. На рис. 8 приведены ИК-спектры газовой фазы на выходе из реакционного объема, полученные при различных температурах пиролиза. Области поглощения 1200-1400 и 2850-3180 см-1 соответствуют деформационным колебаниям молекулы метана. Видно, что с увеличением температуры пиролиза увеличивается содержание метана в газовой фазе, причем интенсивность поглощения излучения молекулами метана одинакова при 750 и 800°С. Вероятнее всего, увеличение содержания в газовой фазе метана, являющегося побочным продуктом пиролиза, связано с более полным пиролизом реагентов или промежуточных продуктов, в связи с чем снижается содержание С-Н-групп в составе осаждаемых порошков.

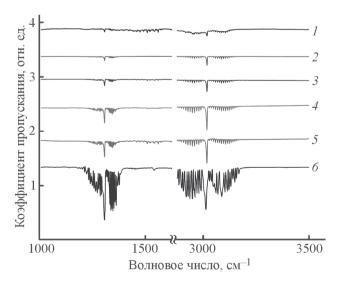


Рис. 8. ИК-спектры газовой фазы на выходе из реакционного объема при температурах пиролиза 600 (1), 650 (2), 700 (3), 750 (4), 800°C (5) и справочный спектр метана (6).

Присутствие неразложившегося метана в газовой фазе связано со значительно более высокими температурами его пиролиза (крекинг метана происходит при 1000°С и выше [16]), в связи с этим дальнейшее увеличение выхода углерода возможно лишь при разложении метана, для чего необходимо значительное увеличение температуры до 1000°С. Таким образом, в исследуемом интервале температура 750°С является минимально достаточной для реализации процесса химического осаждения углеродных частиц из газовой фазы с применением в качестве реагента о-ксилола.

Результаты исследования газовой фазы и образцов порошков позволяют сделать некоторые предположения о модели формирования углеродного порошка. На начальной стадии термического разложения, вероятнее всего, за счет разрыва наиболее слабых С-С-связей образуются свободные метильные радикалы, способные отбирать атомы водорода от молекулы о-ксилола с образованием новых свободных радикалов, отрыв третичного атома водорода от метильной группы с образованием бензил-радикала также вероятен [17]. В результате в реакционной газовой смеси, перемещающейся вдоль зоны пиролиза, помимо исходного вещества возможно присутствие циклических радикалов и метиленовых углеводородов. Впоследствии возможен процесс формирования ацетилена путем рекомбинации радикалов [18]. Ацетилен, как известно, пиролизуется с образованием свободного углерода, что приводит к формированию углеродных наночастиц [19].

Наиболее вероятно, рост углеродных частиц обеспечивается преимущественно наличием в газовой среде молекул ацетилена, отрыв водородных атомов от которых способствует образованию эпицентров роста углеродсодержащего зародыша (активных центров) с возможностью присоединения присутствующих в газовой фазе радикалов. Отщепление атома

392 Тюрикова И. А. и др.

водорода с поверхности растущей в соответствии с таким механизмом частицы происходит главным образом за счет реакций поверхностных атомов водорода с атомами водорода газовой фазы. Атомы углерода, связываясь между собой, образуют углеродные каркасы, участвующие в формировании неупорядоченных структур, различным образом смещенных относительно друг друга. Хаотично соединяясь, они образуют частицы с формой, близкой к сферической. Такая форма, вероятнее всего, является результатом постепенного наслаивания углеродного каркаса путем соединения углеродных атомов между собой.

Выводы

Экспериментально установлено, что основным технологическим параметром, определяющим состав формируемого порошка, является температура зоны пиролиза, также значительное влияние на него оказывает расход газа-носителя. Показано, что минимально достаточной для осаждения углеродных частиц является температура пиролиза 750°С, при понижении которой в составе углеродсодержащего порошка появляются побочные углеводородные продукты пиролиза. Повышение температуры пиролиза не приводит к сколько-нибудь значимому изменению состава углеродного порошка.

Список литературы

- [1] *Cao X., Chen S., Wang G.* // Electron. Mater. Lett. 2014. V. 10. N 4. P. 819–826.
- [2] *Chung D.* Carbon Composites. Composites with Carbon Fibers, Nanofibers, and Nanotubes. Second Ed. Oxford: Elsevier Inc., 2017. 682 p.
- [3] Xu J., Sahu S., Cao L., Anilkumar P., Tackett K. N., Qian H., Bunker C. E., Guliants E. A., Parenzan A., Sun Y.-P. // Chem. Phys. Chem. 2011. V. 12. P. 3604–3608.
- [4] Saeidi N., Lotfollahi M. N. // Fibers Polym. 2015.V. 16. P. 543–549.

[5] Lianqin Z., Baowei Y., Jiayan L., Sheng-Tao Y., Jianbin L. // Nanosci. Nanotechnol. Lett. 2014. V. 6. P. 87– 93.

- [6] Serp P., Machado B. Nanostructured Carbon Materials for Catalysis. London: Royal Society of Chemistry, 2015. 570 p.
- [7] Мищенко С. В., Ткачев А. Г. Углеродные наноматериалы. Производство, свойство, применение. М.: Машиностроение, 2008. 320 с.
- [8] *Liang C., Li Z., Dai S.* // Angew. Chem. Int. Ed. 2008. V. 47. P. 3696–3717.
- [9] Мансуров З. А., Приходько Н. Г., Савельев А. В. Образование ПЦАУ, фуллеренов, углеродных нанотрубок и сажи в процессах горения. Алматы: Казак университеті, 2012. 383 с.
- [10] Агафонов Г. Л., Билера И. В., Власов П. А., Колбановский Ю. А., Смирнов В. Н., Тереза А. М. // Кинетика и катализ. 2015. Т. 56. № 1. С. 15–35 [Agafonov G. L., Bilera I. V., Vlasov P. A., Kolbanovskii Yu. A., Smirnov V. N., Tereza A. M. // Kinet. Catal. 2015. V. 56. № 1. Р. 12–30].
- [11] *Moulder J. F., Strickle W. F., Sobol P. E., Bomben K. D.* Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie: Physical Electronics, Inc., 1995. 261 p.
- [12] XPS database: https://srdata.nist.gov/xps/ (дата обращения: 01.10.2018).
- [13] *Байтингер Е. М.* // ФТТ. 2006.Т. 48. № 8. С. 1380— 1384 [*Baitinger E. M.* // Phys. Solid State. 2006. V. 48. N 8. P. 1461–1465].
- [14] Calliari L., Fanchenko S., Filippi M. // Carbon. 2007.V. 45. P. 1410–1418.
- [15] Filippi M., Calliari L. // Surf. Interf. Anal. 2006. V. 38. P. 595–598.
- [16] Cantelo R. C. // J. Phys. Chem.1924. V. 28. N 10. P. 1036–1048.
- [17] Szwarc M. // J. Chem. Phys. 1948. V. 16. N 2. P. 128–136.
- [18] *Da Silva G., Moore E. E., Bozzelli J. W. //* J. Phys. Chem. A. 2009. V. 113. N 38. P. 10264–10278.
- [19] Zhong G., Hofmann S., Yan F., Telg H., Warner J. H., Eder D., Thomsen C., Milne W. I., Robertson J. // J. Phys. Chem. C. 2009. V. 113. N 40. P. 17321– 17325.