Журнал прикладной химии. 2019. Т. 92. Вып. 4

СИНТЕЗ И МАГНИТНЫЕ ХАРАКТЕРИСТИКИ НАНОПОРОШКОВ ФЕРРИТА НЕОДИМА СО СТРУКТУРОЙ ПЕРОВСКИТА

© А. Т. Нгуен^{1,2}, М. В. Бережная³*, Л. Т. Фам⁴, В. О. Миттова⁵, К. М. Во⁶, Т. Ч. Л. Нгуен⁴, Ч. Х. До⁷, И. Я. Миттова³, Е. Л. Вирютина³

¹ Department for Management of Science and Technology Development, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam
² Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam
³ Bopoнежский государственный университет
⁴ Ho Chi Minh City University of Education, 280 ADV, Ward 4, District 5, Ho Chi Minh City, Vietnam
⁵ Bopoнежский государственный медицинский университет им. Н. Н. Бурденко
⁶ Sai Gon University, 273 ADV, Ward 3, District 5, Ho Chi Minh City, Vietnam
⁷ Thai Nguyen University of Education, Thai Nguyen University, Vietnam E-mail: nguyenanhtien@tdtu.edu.vn, cnurova2010@yandex.ru

> Поступила в Редакцию 15 ноября 2018 г. После доработки 21 декабря 2018 г. Принята к публикации 28 января 2019 г.

Синтезированы нанопорошки феррита неодима со структурой перовскита методом совместного осаждения через гидролиз катионов железа(III) и неодима(III) в кипящей воде с добавлением 5%-ного водного раствора аммиака. Нанопорошки NdFeO₃, образованные после отжига осадков при температуре от 600 до 950°C в течение 1 ч, имеют размер частиц от 20 до 70 нм соответственно (ПЭМ). Повышение температуры отжига от 600 до 950°C приводит к увеличению среднего размера кристалов от 18 до 27 нм (РФА). Синтезированные образцы являются магнитножесткими материалами.

Ключевые слова: нанопорошки; наночастицы; феррит неодима; совместное осаждение; магнитные материалы

DOI: 10.1134/S0044461819040054

Синтезу и исследованию характеристик нанокристаллов в настоящее время уделяется большое внимание. Это связано, в частности, с тем, что наноразмерные частицы имеют комплекс новых свойств по сравнению со своими макроразмерными аналогами [1, 2]. Большой интерес представляет получение наноматериалов на основе ортоферритов редкоземельных элементов LnFeO₃ (Ln = P3Э) со структурой перовскита, обладающих широким набором свойств [3–12], важных для применения, особенно электрических и магнитных свойств с высокой чувствительностью к уменьшению размера частиц до нанометровых значений [13–17]. В работе [18] золь-гель методом с использованием крахмала (отжиг при 1600 K) получен феррит неодима с размером частиц 200–1100 нм (СЭМ), коэрцитивной силой $H_c = 900 \text{ кA} \cdot \text{м}^{-1}$ и намагниченностью $M_s = 1.5 \text{ A} \cdot \text{м}^2 \cdot \text{кr}^{-1}$. Эти свойства феррита неодима можно применять для изготовления устройств, работающих в высоком магнитном поле. Однако для достижения намагниченности насыщения при высоком приложенном поле большая часть частиц феррита неодима должна находиться в суперпарамагнитном состоянии (в нанометровом состоянии), что является интересной задачей в настояшее время.

Для синтеза нанокристаллических ортоферритов разработано большое разнообразие методик, например, механохимический, гидротермальный синтез, золь-гель технологии и др. [18–26]. Особое место занимает золь-гель метод, позволяющий получать нанопорошки с узким распределением частиц по размерам при относительно низких температурах. Однако процесс синтеза ортоферритов требует соблюдения целого ряда факторов, влияющих на формирование однофазных продуктов, например, температура образования геля, температура и время отжига, значение pH среды, мольное соотношение гелеобразующего вещества и катионов [4, 6, 12, 18]. В работе [19] были получены нанопорошки NdFeO₃ методом совместного осаждения с добавлением октановой кислоты в качестве поверхностно-активного вещества (ПАВ). Наночастицы феррита неодима, сформированные после отжига при 800°С в течение 4 ч, имеют средний размер частиц 58 нм (СЭМ), средний размер кристаллитов 67 нм (РФА).

В ряде работ [27-31] описаны особенности формирования нанопорошков ортоферритов LnFeO3 (Ln — La, Y) и допированных катионами металлов (например, Са, Ва, Со) простым методом совместного осаждения через гидролиз катионов в кипящей воде с последующим добавлением соответствующих осадителей без добавления ПАВ. По данным литературных источников, NdFeO3 в виде нанопорошков аналогичным способом не получали. Кроме того, в ряде работ [4, 6, 12, 15, 18, 19] были показаны условия синтеза, исследование кристаллической структуры, намагниченности насыщения при температуре ниже 0°С (1.9, 50, 125 К) и магнитный переход при $T_{\rm N}$, а определение магнитных характеристик (избыточной намагниченности, намагниченности при максимальном поле, коэрцитивной силы и полевой зависимости намагниченности) нанопорошков NdFeO₃ при комнатной температуре не проводили.

Цель данной работы — синтез и исследование структурных и магнитных характеристик нанопорошков ортоферрита неодима, сформированных методом соосаждения.

Экспериментальная часть

Методика синтеза нанопорошков феррита неодима основана на способе, разработанном авторами [30]. К 500 мл кипящей воды при перемешивании магнитной мешалкой прибавляли 50 мл эквимолярной смеси растворов Nd(NO₃)₃ 0.01 M и Fe(NO₃)₃ 0.01 M. Полученный золь охлаждали до комнатной температуры, при этом он приобретал красно-коричневый цвет, сохраняющийся при охлаждении. К нему при перемешивании магнитной мешалкой (со скоростью 4000 об мин⁻¹) по каплям добавляли 5%-ный водный раствор аммиака в качестве осадителя в количестве, необходимом для полного осаждения катионов Nd³⁺ и Fe³⁺. Полученный осадок перемешивали в течение 30 мин магнитной мешалкой. После отделения на вакуум-фильтре его промывали дистиллированной водой и высушивали при комнатной температуре до постоянной массы, а затем измельчали и подвергали комплексному термическому анализу (Labsys Evo TG-DSC 1600°C) со скоростью нагревания 10 град·мин⁻¹ в атмосфере азота до 1000°C с целью установления оптимального режима отжига, обеспечивающего формирование однофазного NdFeO₃.

Для комплексного исследования фазового состава, кристаллической структуры, размера частиц и магнитных свойств синтезированных нанопорошков применяли следующие методы: фазовый состав метод рентгеновской дифракции (РФА; дифрактометр D8-ADVANCE) с излучением $Cu_{K_{\alpha}}$; количественный элементный состав — локальный рентгеноспектральный микроанализ (ЛРСМА; растровый электронный микроскоп FESEM S-4800); размер частиц просвечивающая электронная микроскопия (ПЭМ; JEOL-1400), средний размер кристаллов (по формуле Шеррера); параметры *a*, *b*, *c* и объем кристаллической ячейки определяли по данным дифрактометрии с помощью метода Ритвельда, реализованного в программном комплексе X'pert High Score Plus 2.2b; намагниченность при максимальном поле, избыточная намагниченность и коэрцитивная сила — магнитометр VSM MICROSENE EV11.

Обсуждение результатов

Комплексный термический анализ образца NdFeO₃, полученного соосаждением гидроксидов неодима(III) и железа(III), показал, что потеря массы составила 16.44%, что соответствует результату расчета (17.875%) по уравнению реакции

$$Nd(OH)_3 + Fe(OH)_3 \rightarrow NdFeO_3 + 3H_2O.$$
 (1)

Наиболее значительная потеря массы (около 13%) наблюдается в интервале 100÷600–700°С. Процессы, протекающие при нагревании образца, сопровождаются двумя эндотермическими тепловыми эффектами в интервале температур 150–400°С (рис. 1, пики a, δ), что характерно для реакций разложения гидроксидов железа(III) и неодима(III). Разложение гидроксидов железа(III) и неодима(III) с потерей массы продолжается вплоть до температуры около 800°С. Отсутствие на термограмме эндотермических эффектов в этой области связано с тем, что наблюдаемый процесс по температурному диапазону совпадает с более значительным по величине экзотермическим

Рис. 1. Комплексный термический анализ образца NdFeO₃.

процессом кристаллизации наночастиц феррита неодима (NdFeO₃) до 570°С. Это предположение подтверждает дифрактограмма образца после отжига при 600°С, представляющего собой однофазный продукт со структурой ортоферрита неодима. В интервале 570–730°С наблюдается экзотермический тепловой эффект (рис. 1, пик *в*), соответствующий формированию перовскита NdFeO₃.

На основании результатов термического анализа отжиг нанопорошков NdFeO₃ осуществляли при температурах 600, 750, 850 и 950°С в течение 1 ч со скоростью нагревания 10 град мин⁻¹. По результатам рентгенофазового анализа установлено, что все синтезированные образцы представляют собой однофазный продукт со структурой ортоферрита неодима NdFeO₃ (номер карты 01-0741473*) (рис. 2). Степень кристалличности нанопорошков увеличивается по мере повышения температуры отжига, так как уровень шума и площадь пиков понижаются.

Определение средних размеров кристаллитов (области когерентного рассеяния) нанопорошков NdFeO₃ по формуле Шеррера показало увеличение $D_{\rm cp}$ от 18 до 27 нм при повышении температуры отжига от 600 до 950°С (табл. 1). Как показано в работах [19, 30], достоверная оценка размеров кристаллитов по уширению дифракционных пиков возможна лишь в сочетании с дополнительными структурными данными, например, с результатами электронной микроскопии.

На рис. 3 представлены электронные микрофотографии нанопорошков NdFeO₃ после термообработки при 600, 750 и 950°С.

Из рис. 3 видно, что наночастицы NdFeO₃ после отжига при 600 и 750°С изометричны, а их размер составляет 20–30 и 30–50 нм соответственно. Для образца NdFeO₃ после отжига при 950°С наблюдаются частицы с сильной агломерированностью, размер которых ~100 нм. Различия в значениях среднего диаметра по формуле Шеррера и по данным просвечивающей электронной микроскопии обусловлены особенностями самих методов: первый позволяет определить средний размер кристаллов во всем образце, а электронная микроскопия — локальный визуальный метод, отражающий лишь часть частиц, представляющих собой совокупность отдельных кристаллов.

Расчет параметров элементарной ячейки по данным дифрактометрии показал, что повышение температуры отжига приводит к незначительному увеличению объема ячейки (табл. 1), как наблюдалось в работе [30].

Согласно результатам локального рентгеноспектрального микроанализа, в состав образца NdFeO₃ входят только три элемента — Nd, Fe и O (табл. 2). Из данных табл. 2 следует, что реальное содержание каждого элемента в полученном образце довольно близко к номинальному составу. Выход продукта $(m_{\rm эксп}/m_{\rm pacy})$ составляет от 95 до 97%.

Исследование образцов на вибрационном магнитометре при комнатной температуре в максимальном поле 15000 кА·м⁻¹ показало, что все определенные магнитные характеристики (в частности, избыточная

^{*} JCPDC PCPDFWIN: A Windows Retrieval/Display program for Accessing the ICDD PDF-2 Data base, International Centre for Diffraction Data, 1997.

Рис. 2. Рентгеновские дифрактограммы порошков NdFeO₃ после отжига при разных температурах в течение 60 мин (*a* — красным отмечены пики эталона NdFeO₃).

намагниченность $M_{\rm r}$, намагниченность при максимальном поле M и коэрцитивная сила $H_{\rm c}$) монотонно снижаются с ростом температуры отжига (рис. 4, табл. 1). Это связано с тем, что увеличение $T_{\rm отж}$ приводит к формированию более крупных частиц

NdFeO₃. Подобные закономерности наблюдались в работах [2, 26].

Синтезированные кристаллиты NdFeO₃ характеризуются более высокими значениями магнитных характеристик (M_r , M и H_c) по сравнению с нано-

Рис. 3. ПЭМ-изображения порошков NdFeO3 после отжига при 600, 750 и 950°C в течение 1 ч.

Панаатан	NdFeO3						
Показатель	600°C	750°C	850°C	950°C			
a, Å b, Å	5.4341 5.6109	5.4573 5.6017	5.5406 5.6016				
<i>с</i> , Å Объем, Å ³	7.7789 237.1801	7.7624 237.2978	7.7740 241.2756				
Размер кристаллитов по Шерреру, нм	18	21	26	27			
Избыточная намагниченность $M_{ m r}$, А \cdot м $^2\cdot$ кг $^{-1}$	0.036	0.019	—	_			
Намагниченность при максимальном поле <i>М</i> , А·м ² ·кг ⁻¹	0.51	0.40					
Коэрцитивная сила $H_{\rm c}$, к А·м $^{-1}$	697.13	588.49	_				

Таблица 1 Характеристики образцов NdFeO₃ после отжига при разных температурах в течение 60 мин

Таблица 2

Результаты локального рентгеноспектрального микроанализа образца NdFeO₃, синтезированного методом соосаждения, после отжига при 750°С в течение 60 мин

Элементный состав, мас%									
Ν	Id	Fe		0					
номинальный	реальный	номинальный	реальный	номинальный	реальный				
58.14	55.37	22.51	21.85	19.35	22.78				

Рис. 4. Полевая зависимость намагниченности нанопорошков NdFeO₃, синтезированных методом соосаждения с последующим отжигом при температурах 600 (*a*) и 750°С (*б*).

частицами ферритов других редкоземельных элементов, таких как LaFeO₃ и YFeO₃, полученных при аналогичных условиях [26, 27]. Ни один из исследованных образцов NdFeO₃ не достигает магнитного насыщения в магнитном поле 15000 кА·м⁻¹ (рис. 4), что свидетельствует о способности таких материалов работать в высоком магнитном поле.

Выводы

Методом соосаждения катионов Nd³⁺ и Fe³⁺ волным раствором аммиака с последующим отжигом при 600-950°С сформированы нанокристаллы NdFeO₃. С ростом температуры отжига от 600 до 750°С размер частиц увеличивается от 20 до 50 нм (по данным ПЭМ), а магнитные характеристики снижаются: М от 0.51 до 0.40 А·м²·кг⁻¹, *H*_с от 697.13 до 588.49 кА·м⁻¹. Синтезированные нанопорошки NdFeO3 характеризуются большой петлей гистерезиса, высокими значениями коэрцитивной силы и избыточной намагниченностью по сравнению с наночастицами LaFeO₃ и YFeO₃, что делает их перспективными для применения в качестве магнитожестких материалов при изготовлении постоянных магнитов, устройств магнитной записи информации. Полученные нанокристаллы NdFeO3 по сравнению с микрочастицами NdFeO₃ [19] обладают меньшим размером частиц (при $T_{\text{отж}} = 950^{\circ}\text{C} D_{\text{ср}}$ не превышает 100 нм по данным ПЭМ) и достигают магнитного насыщения при более высоком значении напряженности приложенного поля (>15 000 кА⋅м-1).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Нгуен Ань Тьен, к.х.н., доцент, ORCID: http://orcid. org/0000-0002-4396-0349

Бережная Мария Викторовна, ORCID: http://orcid. org/0000-0002-3511-8645

Фам Лэ Тхань, ORCID: http://orcid.org/0000-0003-0632-4420

Миттова Валентина Олеговна, к.б.н., ассистент, ORCID: http://orcid.org/0000-0002-9844-8684

Во Куанг Май, к.х.н, доцент, ORCID: http://orcid. org/0000-0002-4203-2014

Нгуен Тху Чук Линь, к.т.н, ORCID: http://orcid. org/0000-0001-8579-9963 До Ча Хыонг, к.х.н, доцент, ORCID: http://orcid. org/0000-0002-4389-5436

Миттова Ирина Яковлевна, д.х.н., проф., ORCID: http://orcid.org/0000-0001-6919-1683

Вирютина Елена Леонидовна, аспирант, ORCID: http://orcid.org/0000-0003-0216-7528

Список литературы

- [1] Ремпель А. А. // Успехи химии. 2007. Т. 76. № 5.
 С. 474–500 [Rempel A. A. // Russ. Chem. Rev. 2007.
 V. 76. N 5. P. 435–461].
- [2] Soumen D., Soumen B. // J. Nanosci. Nanotechnol. 2009. V. 9. P. 5622–5626.
- [3] Bashir A., Ikram M., Kumar R., Lisboa-Filho P. N. // J. Alloys Compd. 2012. V. 251. P. 183–188.
- [4] Luu M. D., Dao N. Nh., Nguyen D. V., Pham N. C., Vu Th. N., Doan Tr. D. // Advances Natural Sci.: Nanosci. Nanotechnol. 2016. V. 7. N 2. P. 15–25.
- [5] Feng C., Ruan Sh., Li J., Zou B., Luo J., Chen W., Dong W., Wu F. // Sensors and Actuators B: Chemical. 2011. V. 155. N 1. P. 232–238.
- [6] Tugova E., Yastrebov S., Karpov O., Smith R. // J. Crystal Growth. 2017. V. 467. P. 88–92.
- [7] Downie L. J., Goff R. J., Kockelmann W., Forder S. D., Parker J. E., Morrison F. D., Lightfoot P. // J. Solid State Chem. 2012. V. 190. N 3. P. 52–60.
- [8] Shang M., Zhang Ch., Zhang T., Yuan L., Ge L., Yuan H., Feng Sh. // Appl. Phys. Lett. 2013. V. 102. P. 062903.1–4.
- [9] Acharya S., Mondal J., Ghosh S., Roy S. K., Chakrabarti P. K. // Mater. Lett. 2010. V. 64. P. 415–418.
- [10] Tugova E. A., Zvereva I. A. // Nanosystems: Physics, Chemistry, Mathematics. 2013. V. 4. N 6. P. 851–856.
- [11] Akbashev A. R., Semisalova A. S., Perov N. S., Kaul A. R.
 // Appl. Phys. Lett. 2011. V. 99. P. 122502.1–3.
- [12] Vavra M., Zentková M., Mihalik M., Mihalik Jr M., Lazúrová J., Girman V., Perovic M., Kusigerski V., Roupcova P., Jaglicic Z. // Acta Phys. Polonica A. 2017. V. 131. N 4. P. 869–871.
- [13] Федоров В. Б., Малюкова Л. В., Калашников Е. Г. // ЖФХ. 1985. Т. 59. № 7. С. 1598–1603.
- [14] Суздалев И. П., Буравцев В. Н., Максимов Ю. В., Имшенник В. К., Новичихин С. В., Матвеев В. В., Плачинда А. С. // Рос. хим. журн. 2001. Т. 45. № 3. С. 66–70.
- [15] Shanker J., Suresh M. B., Babu D. S. // Int. J. Sci. Eng. Res. (IJSER). 2014. V. 3. N 7. P. 194–197.
- [16] Popkov V. I., Almjasheva O. V., Semenova A. S., Kellerman D. G., Nevedomskiy V. N., Gusarov V. V. // J. Mater. Sci.: Mater. Electron. 2017. V. 28. N 10. P. 7163–7170.
- [17] Khetrea S. M., Jadhav H. V., Jagadale P. N., Kulal S. R., Bamane S. R. // Advances Appl. Sci. Res. 2011. V. 2. N 4. P. 503–511.

- [18] Babu R. P., Babu R. // Int. J. Chem. Tech. Res. 2016. V. 9. N 4. P. 364–369.
- [19] Khorasani-Motlagh M., Noroozifar M., Yousefi M., Jahani Sh. // Int. J. Nanosci. Nanotechnol. 2013. V. 9. N 1. P. 7–14.
- [20] Попков В. И., Альмяшева О. В. // ЖПХ. 2014. Т. 87. № 2. С. 185–189 [*Popkov V. I., Almjasheva O. V. //* Russ. J. Appl. Chem. 2014. V. 87. N 2. P. 167–171].
- [21] Köferstein R., Jäger L., Ebbinghaus S. G. // Solid State Ionics. 2013. V. 249–250. P. 1–5.
- [22] Zhang Q., Saito F. // J. Mater. Sci. 2001. V. 36. N 9. P. 2287–2290.
- [23] Нгуен А. Т., Миттова И. Я., Альмяшева О. В. // ЖПХ. 2009. Т. 82. № 11. С. 1766–1769 [Nguyen A. T., Mittova I. Ya., Almjasheva O. V. // Russ. J. Appl. Chem. 2009. V. 82. N 11. Р. 1915–1918].
- [24] Kolb E. D. // J. Appl. Phys. 1968. V. 39. N 2. P. 1362– 1364.
- [25] Bachina A., Ivanov V. A., Popkov V. I. // Nanosystems: Physics, Chemistry, Mathematics. 2017. V. 8. N 5. P. 647–653.
- [26] Nguyen A. T., Phan Ph. H. Nh., Mittova I. Ya., Knurova M. V., Mittova O. V. // Nanosystems: Physics, Chemistry, Mathematics. 2016. V. 7. N 3. P. 459–463.

- [27] Нгуен А. Т., Альмяшева О. В., Миттова И. Я., Стогней О. В., Солдатенко С. А. // Неорган. материалы. 2009. Т. 45. № 11. С. 1392–1397 [Nguyen A. T., Almjasheva O. V., Mittova I. Ya., Stognei O. V., Soldatenko S. A. // Inorg. Mater. 2009. V. 45. N 11. P. 1304–1308].
- [28] Нгуен А. Т., Миттова И. Я., Солодухин Д. О., Альмяшева О. В., Миттова В. О., Демидова С. Ю. // ЖНХ. 2014. Т. 59. № 2. С. 166–171 [Nguyen А. Т., Mittova I. Ya., Solodukhin D. O., Almjasheva O. V., Mittova V. O., Demidova S. Yu. // Russ. J. Inorg. Chem. 2014. V. 59. N 2. P. 40–45].
- [29] Бережная М. В., Альмяшева О. В., Миттова В. О., Нгуен А. Т., Миттова И. Я. // ЖОХ. 2018. Т.88.
 № 4. С. 539–544 [Berezhnaya M. V., Almjasheva O. V., Mittova V. O., Nguyen A. T., Mittova I. Ya. // Russ. J. Gen. Chem. 2018. V. 88. N 4. P. 626–631].
- [30] Nguyen A. T., Chau H. D., Nguyen T. Tr. L., Mittova V. O., Do Tr. H., Mittova I. Ya. // Nanosynstems: Physics, Chemistry, Mathematics. 2018. V. 9. N 3. P. 424–429.
- [31] Das I., Chanda S., Dutta A., Banerjee S., Sinha T. P. // J. Alloys Compd. 2013. V. 571. P. 56–62.