Журнал прикладной химии. 2019. Т. 92. Вып. 4

УДК 661.66.4+662.747

ВЛИЯНИЕ ПРИРОДЫ КОМПОНЕНТОВ НА СТРУКТУРУ И УСТОЙЧИВОСТЬ К ТЕРМИЧЕСКИМ И МЕХАНИЧЕСКИМ ВОЗДЕЙСТВИЯМ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ АЭРОГЕЛЬНОГО ТИПА ПОЛИВИНИЛОВЫЙ СПИРТ/ТЕХНИЧЕСКИЙ УГЛЕРОД

© О. А. Кохановская, В. А. Лихолобов

Институт проблем переработки углеводородов СО РАН, Омск E-mail: kokolga@yandex.ru

> Поступила в Редакцию 13 июня 2018 г. После доработки 18 января 2019 г. Принята к публикации 28 января 2019 г.

Изучена пористая структура, а также термические свойства и упругость композиционных материалов аэрогельного типа состава поливиниловый спирт/технический углерод, полученных методом криообработки вспененным воздухом суспензии технического углерода в водном растворе поливинилового спирта. Установлено влияние размера первичных частиц технического углерода на размер макропор композиционных материалов. Отмечено, что термическая стабильность этих материалов возрастает при внедрении в их структуру водных суспензий термостойкого фторопласта. При увеличении дисперсности технического углерода и концентрации функциональных групп на его поверхности наблюдается увеличение модуля упругости композиционных материалов аэрогельного типа.

Ключевые слова: композиционный материал; технический углерод; поливиниловый спирт; термостойкость; модуль упругости

DOI: 10.1134/S0044461819040078

Интересными материалами, перспективными для использования в качестве теплоизоляторов и адсорбентов [1, 2], являются композиционные аэрогели, содержащие в своем составе одновременно углеродный компонент и полимерное связующее, в роли которого нередко выступает поливиниловый спирт (ПВС) [3–7]. Это связано прежде всего с возможностью уменьшить хрупкость аэрогелевых структур за счет участия молекул полимера в связывании наночастиц углерода в «гелевый скелет» при сохранении других важных физико-химических свойств [8].

Известно, что термическая стабильность структур, содержащих в своем составе ПВС, колеблется в интервале 250–290°С и зависит как от марки используемого ПВС, так и от типа углеродного компонента [углеродные нанотрубки, технический углерод (ТУ), оксид графена и т. д.] или других добавок (глины [5], целлюлозы [7] и др.).

Упругость аэрогелей находится в прямой зависимости от их плотности, возрастая с ее увеличением [7, 9, 10]. Компонентный состав аэрогелей также оказывает влияние на их модуль упругости даже при равных значениях плотности.

Структуры таких материалов разнообразны и зависят как от способа синтеза [11, 12], так и от свойств компонентов, входящих в состав материалов. Для аэрогелей, содержащих ПВС, чаще всего характерны хаотичные сетчатые структуры [6].

Синтезированный нами ранее композиционный материал аэрогельного типа состава поливиниловый спирт/технический углерод (АКМ ПВС/ТУ), рекомендованный для использования в качестве теплоизолятора, имел термостойкость не более 280°С и представлял собой хаотично пористый материал с плотностью около 230 кг·м⁻³ [13].

В настоящей работе представлены более подробный анализ термических свойств и упругости АКМ ПВС/ТУ, описанных в [13], а также результаты исследования изменения их структуры при варьировании компонентного состава материала (тип технического углерода). Цель работы — изучение структуры, термических свойств и упругости композиционных материалов аэрогельного типа состава поливиниловый спирт/ технический углерод и влияния на эти свойства физико-химических характеристик технического углерода.

Экспериментальная часть

В качестве объектов исследования выступали композиционные материалы аэрогельного типа состава поливиниловый спирт/технический углерод с объемной плотностью 230 кг м-3. Для синтеза этих материалов в качестве матричного полимера использовали поливиниловый спирт Сандиол 1399М (MM = 75 000), в качестве углеродного наполнителя был взят технический углерод трех марок: высокодисперсный П 399-Э, изготовленный по техническим требованиям ТУ 38 41582-86, высокодисперсный N 121, изготовленный по техническим требованиям ASTM D1765, и низкодисперсный технический углерод марки П 701, изготовленный по техническим требованиям ГОСТ 7885-86. С целью изучения влияния содержания функциональных групп на упругость АКМ ПВС/ТУ образец технического углерода марки N 121 модифицировали путем окисления 30%-ным водным раствором пероксида водорода при комнатной температуре в течение 15 мин при соотношении фаз т:ж = 1:2 до достижения значения рН водной суспензии образца (N 121 окисл.) ~3.

Физико-химические свойства образцов углеродного наполнителя представлены в табл. 1.

Синтез АКМ ПВС/ТУ осуществляли методом криообразования водной суспензии ТУ + ПВС при ее

насыщении воздухом по методике [14] в две стадии. На первой стадии технический углерод диспергировали в воде с добавкой неионного поверхностно-активного вещества ОП-10 концентрацией $5 \cdot 10^{-5}$ моль·м⁻³ в течение 1 ч с помощью ультразвука частотой 35 кГц. ОП-10 — полиэтиленовый эфир диалкилфенола (алкильный остаток содержит 8–10 атомов углерода) с 10–12 молями оксида этилена изготовлен по ГОСТ 8433–81.

На второй стадии смешивали полученную суспензию технического углерода с водным раствором поливинилового спирта концентрацией 10 мас% и вспенивали полученную смесь воздухом через фильтр Шотта со скоростью 16 м³·мин⁻¹ в течение 30 мин до достижения пены, не оседающей в течение 30 мин. Полученную пену подвергали двум циклам замораживания–размораживания в криостате FP 45 HP (температура замораживания –8°С, температура размораживания +20°С, время выдерживания в замороженном состоянии 24 ч). Полученные материалы высушивали при комнатной температуре до постоянной массы.

Все образцы АКМ ПВС/ТУ синтезировали при нейтральном pH среды. Для ряда образцов на стадии изготовления композиционного гидрогеля вводили в виде суспензии в воде фторопласт 4ПН-40, изготовленный по ТУ 2213-021-13693708–2005. Концентрация технического углерода в готовом АКМ ПВС/ТУ составляла 5 мас%, концентрация фторопласта 4ПН-40 варьировалась в пределах 0–0.5 мас%.

Пористую структуру полученных материалов исследовали с помощью сканирующего микроскопа JSM-6610LV с предварительно нанесенным

Показатель	П 399-Э	П 701	N 121	N 121 окисл.
Удельная площадь поверхности по многоточечной адсорбции азота <i>S</i> _{NSA} по ASTM D 6556, м ² ·г ⁻¹	716	32	117	118
Удельная внешняя площадь поверхности по статистической толщине слоя S _{STSA} по ASTM D 6556, м ² ·г ^{−1}	500	30	105	106
Насыпная плотность по ГОСТ 25699.14, г•см ⁻³	0.22	0.47	0.32	0.32
Среднеарифметический диаметр первичных частиц d _{ca} по ASTM D 3849, нм	38	61	20	20
Суммарное содержание функциональных групп по Бему <i>с</i> _{ФГ} , мкг-экв·г ⁻¹	0.220	0.195	0.230	0.603

Таблица 1

あ	~	~		
$(\mathbf{D}_{\mathbf{U}})$	CDOMCTDO	OODSTILLE	VERENATUOEO	изполнителя
Ψ NSNKO-ANMNACCKNC	CDUNCIDA	UUUUUUUUU	VIJICDUZHULU	паполнители
			J · · · · · · · ·	

Pt-напылением и с помощью просвечивающего микроскопа JEM-2100 с энергодисперсионным анализатором Inca-250, предварительно измельчив материал до порошкообразного состояния с нанесением на стандартные микроскопические никелевые сетки.

Термическую стабильность образцов измеряли с помощью дифференциально-термического анализатора DTG-60H в потоке аргона (70 мл·мин⁻¹) при нагреве со скоростью 10 град·мин⁻¹.

Упругость материалов исследовали путем сжатия цилиндрических образцов высотой 11 мм и диаметром поперечного сечения 10 мм на лабораторном прессе P-5, получая кривые зависимости воздействия нагрузки P (кг) при сжатии образца от его деформации h (мм). Из полученных зависимостей при степени сжатия материала 50% определяли модули упругости образцов E (МПа) по формуле

$$E = \frac{P}{S_0 - \varepsilon},$$

где P — нагрузка (кг); S_0 — начальная площадь сечения образца (м²); ε — относительная деформация сжатия,

$$\varepsilon = 1 - \frac{h}{h_0},$$

h — высота сжатого образца (м), h_0 — первоначальная высота образца (м).

Обсуждение результатов

Исследование пористой структуры тонких срезов АКМ ПВС/ТУ с помощью сканирующего микроскопа показало, что материалы имеют хаотичную сетчатую структуру и обладают иерархичной пористостью с макропорами диаметром до 1100 мкм, что связано с размером пузырьков газа, получаемых при газонасыщении композиционного гидрогеля. Стенки макропор композита пронизаны более мелкими порами размером 0.5–10 мкм (рис. 1).

Исследование пористой структуры тонких срезов АКМ ПВС/ТУ с помощью просвечивающего микроскопа показало, что в композите наблюдаются включения, похожие на агрегаты технического углерода. При более высоком увеличении различима глобулярная форма, характерная для технического углерода, и разрешаются углеродные слои (рис. 2).

Из рис. 1 видно, что увеличение дисперсности технического углерода приводило к уменьшению среднего размера макропор композита. Введение фторопласта не оказывало существенного влияния на макропористую структуру композита.

Изучены физико-химические свойства полученных материалов. Термогравиметрический анализ (рис. 3) показал, что небольшая потеря массы Δm , наблюдаемая при температуре около 100°С, связана с десорбцией воды, при этом химическая природа поливинилового спирта не претерпевает заметных изменений. Основная потеря массы, обнаруженная в интервале температур 260–400°С, связана с дегидратацией ПВС [14]. Выше 400°С происходит разрушение макромолекул ПВС с выделением продуктов термоокислительной деструкции (альдегидов, кетонов, ароматических соединений) [14].

Материалы аэрогельного типа на основе поливинилового спирта термически устойчивы до температуры разложения матричного полимера (примерно 260–290°С). Под термической стабильностью материалов понимают температуру разложения образцов при убыли 10% их массы T_{d10} (табл. 2). Увеличение концентрации технического углерода

Таблица 2

Данные термического анализа композиционных материалов аэрогельного типа поливиниловый спирт/технический углерод*

Hanonueren, ofrazua AKM IIBC//TV	<i>T</i> _{d10}	T _{dмax}		
	°C			
П 399-Э	267	297	5.4	
П 701	271	309	5.2	
П 399-Э + фторопласт	290	369	6.5	

* T_{d10} — температура разложения образцов при убыли их массы 10%, T_{dmax} — температура разложения образцов при максимальной скорости убыли их массы (соответствует пику на термогравиметрической кривой), остаток — доля несгорающего остатка (технического углерода) при температуре 600°С.

Рис. 1. Изображения структуры АКМ ПВС/ТУ, наполненных техническим углеродом марок: П 701 (1), N 121 (2), П 399-Э (3), П 399-Э с фторопластом (4).

способствует росту массы несгорающего остатка (технического углерода). Введение термостойкого полимера фторопласта повысило термическую стойкость АКМ ПВС/ТУ примерно на 8% с 267 до 290°С. Композиционные материалы аэрогельного типа состава ПВС/технический углерод по термостабильности практически не отличалась от композитов ПВС/ глина, приготовленных аналогичным способом [6].

На рис. 4 представлены кривые зависимости воздействия нагрузки при сжатии образца АКМ ПВС/ТУ от его деформации, характерные для упругих материалов.

С увеличением дисперсности технического углерода наблюдалось увеличение упругости АКМ

ПВС/ТУ (рис. 5). Повышение концентрации функциональных групп поверхности технического углерода в 2.5 раза привело к росту модуля упругости АКМ ПВС/ТУ в 2 раза, что, вероятно, связано с образованием большего числа связей между компонентами АКМ ПВС/ТУ за счет взаимодействия гидроксильных групп ПВС и дополнительных функциональных групп поверхности технического углерода (рис. 6).

В табл. 3 приведены плотности и модули упругости материалов аэрогельного типа на основе ПВС с разными наполнителями.

Известно, что чем ниже плотность материала, тем ниже и его модуль упругости [7, 9, 10]. Видно, что полученный АКМ ПВС/ТУ с окисленным техническим

Рис. 2. Изображения агрегата технического углерода (1), первичной частицы технического углерода в матрице АКМ ПВС/ТУ (2).

Рис. 3. Дифференциальные термогравиметрические кривые АКМ разного состава.

углеродом марки N 121 с учетом его плотности имеет модуль упругости в том же диапазоне значений, что и аэрогельные материалы с другими наполнителями, полученные другими исследователями.

Рис. 4. Кривые сжатия АКМ ПВС/ТУ разного состава.

Рис. 5. Зависимость модуля упругости АКМ ПВС/ТУ от среднеарифметического диаметра первичных частиц ТУ.

Предыдущие работы показали перспективность применения АКМ ПВС/ТУ в роли теплоизоляторов, контактирующих с агрессивными органическими средами [13]. Полученные в результате данного исследования пористые материалы с повышенной упругостью и термической стабильностью можно рекомендовать для теплоизоляции оборудования, работающего при повышенных температурах.

Рис. 6. Зависимость модуля упругости АКМ ПВС/ТУ от суммарной концентрации кислородсодержащих функциональных групп поверхности технического углерода.

Наполнитель	Плотность АКМ, кг·м ⁻³	Модуль упругости АКМ, МПа
ТУ N 121 окисл. (настоящая работа)	230	26.8
Целлюлоза [7]	11	0.38
Глина [10]	50	1.93
Глина [6]	122	3.2
Глина [9]	166	11.3
		1

Значения модуля упругости и плотности материалов аэрогельного типа на основе ПВС с разными наполнителями

Таблица 3

Выводы

Композиционные материалы аэрогельного типа состава поливиниловый спирт/технический углерод, имеют хаотичную сетчатую структуру с порами диаметром от 10 до 1100 мкм. Снижение размера первичных частиц технического углерода в 3 раза приводит к уменьшению среднего размера макропор композиционного материала на 30%. Обнаружено, что термическая стабильность материалов не зависит от свойств технического углерода, но возрастает на 8% при введении фторопласта. Выявлено, что снижение размера первичных частиц технического углерода в 3 раза приводит к росту модуля упругости композиционного материала в 3 раза. Увеличение концентрации поверхностных функциональных групп технического углерода в 2.5 раза приводит к росту модуля упругости композиционного материала в 2 раза.

Финансирование работы

Работа выполнена в рамках государственного задания Института проблем переработки углеводородов СО РАН в соответствии с Программой фундаментальных научных исследований государственных академий наук на 2013-2020 годы по направлению V.49, проект № V.49.1.6 (номер госрегистрации в системе ЕГИСУ НИОКТР АААА-А17-117021450100-2).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Лихолобов Владимир Александрович, д.х.н., чл.-корр. РАН, ORCID: https://orcid.org/0000-0002-6433-6756 *Кохановская Ольга Андреевна*, к.х.н., ORCID: https://orcid.org/0000-0001-5696-7294

Список литературы

- [1] Fricke J., Tillotson T. // Thin Solid Films. 1997. N 297.
 P. 212–223.
- [2] Zou J., Liu J., Karakoti A. S. // ACSNano. 2010. V. 4. N 12. P. 7293–7302.
- [3] Bryning M. B., Milkie D. E., Islam M. F., Hough L. A., Kikkawa J. M., Yodh A. G. // Advanced Mater. 2007. N 19. P. 661–664.
- [4] Pat. US 8871821B2 (publ. 2010). Graphene and graphene oxide aerogels.
- [5] Schiraldi D. A., Bandi S. A., Gawryl M. D. // Polym. Prepr. 2006. V. 2. N 47. P. 313–314.
- [6] Chen Hong-Bing, Wang Yu-Zhong, Schiraldi D. A. // ACS Appl. Mater. Interfaces. 2014. V. 9. N 6. P. 6790– 6796.
- [7] Zheng Qifeng, Cai Zhiyong, Shaoqin Gong // J. Mater. Chem. A. 2014. N 2. P. 3110–3118.
- [8] Haiyan Sun, Zhen Xu, Chao Gao // Advanced Mater. 2013. V. 25. P. 2554–2560.
- [9] Chen Hong-Bing, Hollinger Erin, Wang Yu-Zhong, Schiraldi David A. // Polymer. 2014. N 55. P. 380–384.
- [10] Finlay K. A., Gawryla M. D., Schiraldi D. A. // Materials. 2015. N 8. P. 5440–5451.
- [11] Pat. FR 2910458A1 (publ. 2012). Producing a carbon aerogel, e.g. useful as a separatory material, comprises foaming an aqueous dispersion of carbon nanotubes and freeze drying the foam.
- [12] Pat. CN 102774824A (publ. 2006). Method for preparing graphene crosslinked type organic aerogel and carbon aerogel by normal-pressure drying.
- [13] Кохановская О. А., Лихолобов В. А. // ЖПХ. 2018. Т. 91. № 1. С. 86–89 [Kokhanovskaya O. A., Likholobov V. A. // Russ. J. Appl. Chem. 2018. V. 91. N 1. P. 78–81].
- [14] Kokhanovskaya O. A., Razdyakonova G. I., Likholobov V. A. // Proc. Eng. 2015. V. 113. P. 103–107.