Журнал прикладной химии. 2019. Т. 92. Вып. 5

КАТАЛИТИЧЕСКАЯ АКТИВНОСТЬ ВЫСОКОДИСПЕРСНЫХ ТВЕРДЫХ РАСТВОРОВ M₂O₃-Bi₂O₃-ZrO₂-CeO₂, ГДЕ М — Nd, Sm, Gd, В РЕАКЦИИ ОКИСЛЕНИЯ МОНООКСИДА УГЛЕРОДА

© Е. Ю. Либерман¹, Е. С. Подъельникова¹, Е. А. Симакина¹, Т. В. Конькова¹, Б. С. Клеусов²

¹ Российский химико-технологический университет им. Д. И. Менделеева, Москва ² АО «НИИ конструкционных материалов на основе графита «НИИ Графит», Москва E-mail: el-liberman@mail.ru

> Поступила в Редакцию 24 октября 2018 г. После доработки 13 февраля 2019 г. Принята к публикации 7 марта 2019 г.

Методом соосаждения с последующей термообработкой синтезированы высокодисперсные твердые растворы M_2O_3 – Bi_2O_3 – ZrO_2 – CeO_2 , где M– Nd, Sm, Gd. Проведены исследования элементного и фазового составов, текстурных характеристик, дисперсности и морфологии. Синтезированные образцы проявляют высокую активность в реакции окисления СО. Показано влияние природы допирующих ионов (Bi^{3+} , Nd^{3+} , Sm^{3+} , Gd^{3+}) на каталитическую активность материалов. Наибольшая каталитическая активность обнаружена для образца $Gd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2$.

Ключевые слова: *диоксид церия; твердый раствор; окисление СО* DOI: 10.1134/S0044461819050116

Развитие энергетики, промышленности и транспорта сопряжено с использованием углеводородных источников энергии, что приводит к увеличению объема токсичных веществ, к которым относятся продукты неполного сгорания — СО, углеводороды, оксиды азота, сажа и т. д. [1-3]. Для решения этой проблемы применяют метод каталитической нейтрализации, основанный на конверсии токсичных компонентов в безопасные соединения. Несмотря на значительные успехи, достигнутые в области экологического катализа, по-прежнему остается открытым вопрос о снижении количества благородных металлов (Pt, Pd, Rh) в эксплуатируемых катализаторах и дальнейшем переходе на активные композиции на основе оксидов d- и f-элементов. Особый интерес представляют катализаторы и носители на основе церийсодержащих твердых растворов. Основной компонент (диоксид церия) проявляет собственную каталитическую активность, обладает кислородонакопительной способностью благодаря наличию перехода Се³⁺ в Се⁴⁺, а также механической прочностью и устойчивостью к воздействию высоких температур.

Введение допантов в кристаллическую решетку диоксида церия приводит к образованию твердого раствора на основе кристаллической решетки диоксида церия, что сопровождается повышением кислородонакопительной емкости за счет формирования дефектной структуры и термостойкости материала, позволяющей сохранять активность при высоких температурах. Допирование диоксида церия ионами редкоземельных элементов (Gd, Sm, Nd) приводит к генерированию анионных вакансий, образованию как поверхностных, так и объемных дефектов, что способствует увеличению мобильности кислорода в кристаллической решетке и как следствие повышению каталитической активности [4, 5]. В качестве допантов перспективно использование ионов Bi³⁺, которые также применяются при создании катодных и анодных материалов для твердооксидных топливных элементов (ТОТЭ) как добавка, увеличивающая электронную проводимость [6].

Цель работы — синтез и исследование каталитических свойств M₂O₃–Bi₂O₃–ZrO₂–CeO₂, где M — Nd, Sm, Gd, в реакции окисления монооксида углерода.

Экспериментальная часть

Синтез твердого раствора M_2O_3 -Bi₂O₃-ZrO₂-CeO₂, где M — Nd, Sm, Gd, проводили методом соосаждения. Исходные растворы нитратов редкоземельных элементов и висмута, хлорида цирконила (концентрация 0.5 моль·л⁻¹) квалификации х.ч. смешивали в заданном стехиометрическом соотношении. Осаждение проводили путем добавления концентрированного раствора гидроксида аммония марки х.ч. до pH 10–11. Полученный осадок отфильтровывали, промывали водно-спиртовым раствором (H₂O/C₂H₅OH = 9 об.), сушили при 100°C в течение 20 ч и прокаливали при температуре 600°C в течение 2 ч (скорость подъема температуры составляла 5 град·мин⁻¹).

Исследование элементного состава образцов проводили рентгенофлуоресцентным методом с помощью прибора X-MAXINCA ENERGY (Oxford Instruments, Великобритания) в Центре коллективного пользования им. Д. И. Менделеева.

Фазовый состав катализаторов изучали методом рентгеновской дифракции на установке Bruker D8 Advance (Bruker, Германия) с монохроматическим $Cu_{K_{\alpha}}$ -излучением ($\lambda = 1.5418$ Å) с шагом 0.01° и временем накопления 0.3 с/шаг. Расчет кристаллографических характеристик проводился методом полнопрофильного анализа с применением программного обеспечения дифрактометра Тораs R. Расчет размеров кристаллитов проводили по уравнению Селякова– Шеррера.

Удельную поверхность и общую пористость катализаторов определяли методом низкотемпературной адсорбции азота на установке NOVA 1200е (Quantachrome, США). Дегазацию образцов выполняли при температуре 200°С в течение 4 ч.

Электронно-микроскопические исследования образцов проводили на электронном микроскопе Carl Zeiss LEO (Германия) при ускоряющем напряжении 100 кВ (разрешение 0.3 нм). Для устранения агломерации частиц проводили предварительное ультразвуковое диспергирование материалов в изопропиловом спирте.

Для определения каталитической активности полученных образцов в реакции окисления СО использовали реактор проточного типа. В U-образный кварцевый реактор загружали 0.3 г катализатора. Эксперименты проводили при объемной скорости газовой смеси 1 мл·с⁻¹ в интервале температур 20– 400°С. Температуру в реакционной зоне реактора определяли с помощью хромель-копелевой термопары, расположенной в центре каталитического слоя. Модельная смесь (производство ОАО «Линде Газ Рус») на основе газов квалификации ос.ч. имела следующий состав (об%): СО — 1.2, О₂ — 10.0, N₂ баланс. Для измерения концентрации газов на выходе применялся газовый хроматограф Chrom-5 (набивная колонка, длина 5 м, внутренний диаметр 4 мм, фаза — молекулярные сита 13Х, газ-носитель —гелий, детектор — катарометр). Регенерация колонки при температуре 160°С проводилась в течение 90 мин. Обработку хроматографических пиков выполняли с помощью программы Экохром.

Конверсию оксида углерода(II) *X* рассчитывали, используя следующее соотношение:

$$X = \frac{[\text{CO}]_{\text{HCX}} - [\text{CO}]_{\text{TEK}}}{[\text{CO}]_{\text{HCX}}} \cdot 100\%$$

где [CO]_{исх} — начальная концентрация СО в исходной газовой смеси (об%), [CO]_{тек} — текущая концентрация СО (об%).

Обсуждение результатов

Согласно данным рентгенофлуоресцентного анализа содержание компонентов в синтезированных образцах соответствует номинальному составу (рис. 1). Набор рефлексов 20, присутствующих на дифрактограммах: 28.5, 33.1, 47.5, 56.3, 59.1, 69.4, 76.7 и 79.1°, — соответствует граням (111), (200), (220), (311), (222), (400), (331) и (420) кристаллической решетки диоксида церия (JSPDS # 81-0792). При этом не наблюдается дифракционных максимумов, относящихся к соединениям Zr, Gd, Bi, Nd, Sm. Наблюдаемый монофазный состав полученных соединений обусловлен формированием твердых растворов замещения на основе кубической решетки диоксида церия.

Так, введение в состав кристаллической решетки диоксида церия ионов Zr^{4+} протекает с образованием твердого раствора $Zr_{0.2}Ce_{0.8}O_2$, что обусловлено

Рис. 1. Рентгенограммы синтезированных материалов. $1 - Zr_{0.2}Ce_{0.8}O_2, 2 - Gd_{0.1}Zr_{0.18}Ce_{0.72}O_2, 3 - Md_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2, 4 - Sm_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2, 5 - Gd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2.$

кристаллографические параметры и дисперсность синтезированных материалов						
Образец	Параметр решетки <i>a</i> , Å Размер кристаллитов <i>l</i> , нм		Размер частиц по данным ПЭМ <i>L</i> , нм			
$Zr_{0.2}Ce_{0.8}O_2$	5.3915 ± 0.0001	19	10–14			
$Gd_{0.10}Zr_{0.18}Ce_{0.72}O_2$	5.4173 ± 0.0003	19	8–10			
$Gd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2$	5.4163 ± 0.0002	18	8–10			
$Sm_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2$	5.4201 ± 0.0001	15	8–10			
$Nd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2$	5.4293 ± 0.0002	17	8-12			

Таблица 1 Кристаллографические параметры и дисперсность синтезированных материалов

близостью ионных радиусов Ce⁴⁺ и Zr⁴⁺ (88 и 86 пм по Бокию соответственно). При дальнейшем допировании раствора Zr_{0.2}Ce_{0.8}O₂ трехвалентными ионами редкоземельных металлов (Nd³⁺, Sm³⁺, Gd³⁺) и Bi³⁺ происходит небольшое увеличение параметра кристаллической решетки синтезированных образцов. Введение ионов допантов большего размера (Gd³⁺ — 94 пм, Sm³⁺ — 97 пм, Nd³⁺ — 99 пм, Bi³⁺ — 102 пм) приводит к перестройке кристаллической структуры, образованию ионов Се³⁺ (102 пм), генерированию анионных вакансий, что сопровождается увеличением межплоскостного расстояния и как следствие параметра решетки (табл. 1) [7]. Расчет размеров кристаллитов, проведенный по формуле Селякова-Шеррера, показал, что размер кристаллитов синтезированных материалов составляет 15-19 нм.

Исследования, проведенные методом просвечивающей электронной микроскопии, подтверждают вышесказанное. Для синтезированных материалов характерна агломерированная структура мозаичного типа (рис. 2). Частицы имеют форму, близкую к прямоугольной. Средний размер частиц Zr_{0.2}Ce_{0.8}O₂ составляет 15–20 нм, многокомпонентных твердых растворов — 8–10 нм.

Синтезированные материалы относятся к мезопористым структурам, о чем свидетельствует наличие капиллярно-конденсационного гистерезиса на изотермах адсорбции–десорбции азота (рис. 3). При допировании твердого раствора ионами редкоземельных металлов происходит формирование более дефектной структуры, о чем свидетельствует увеличение удельной поверхности и развитие пористости (табл. 2). Так, удельная поверхность для твердого раствора CeO₂–ZrO₂ составляет 63 м²·г⁻¹, общая пористость — 0.101 см³·г⁻¹. При введении ионов Nd³⁺, Sm³⁺, Gd³⁺ и Bi³⁺ удельная поверхность возрастает до 82–85 м²·г⁻¹, а пористость остается практически неизменной — 0.106–0.108 см³·г⁻¹.

Синтезированные материалы проявляют высокую активность в реакции окисления монооксида углерода.

а 20 нм

Рис. 2. ПЭМ-снимок образцов Zr_{0.2}Ce_{0.8}O₂ (*a*), Gd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O₂ (*б*).

 $\begin{array}{c} 1 - Zr_{0.2}Ce_{0.8}O_2, 2 - Gd_{0.1}Zr_{0.18}Ce_{0.72}O_2, 3 - \\ Nd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2, 4 - Gd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2. \end{array}$

Результаты проведенных экспериментов свидетельствуют о положительном влиянии допирования на каталитическую активность образцов (рис. 4). Так, температура 50%-ного окисления твердого раствора $Zr_{0.2}Ce_{0.8}O_2$ составляет 328°C, а для Gd_{0.1}Zr_{0.18}Ce_{0.72}O₂ — 272°С (рис. 3, кривые 1, 2). Наблюдаемое повышение каталитической активности, по-видимому, обусловлено следующими факторами. При допировании Zr_{0.2}Ce_{0.8}O₂ ионом Gd³⁺, имеющим более низкий заряд, происходит образование анионных вакансий и Се³⁺, что способствует повышению каталитической активности. Также свой вклад вносит и усиление искажений кристаллической решетки, возникающих при допировании ионами Gd³⁺, имеющими значительно больший ионный радиус по сравнению с ионами Ce⁴⁺ и Zr⁴⁺. Аналогичный эффект был отмечен авторами [8-10] при исследо-

Рис. 4. Зависимость конверсии CO от температуры реакции на образцах Zr_{0.2}Ce_{0.8}O₂ (1), Gd_{0.1}Zr_{0.18}Ce_{0.72}O₂ (2), Gd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O₂ (3).

вании влияния природы допанта на каталитические свойства $M_{0.1}Zr_{0.18}Ce_{0.72}O_2$, где М — редкоземельный элемент ряда Pr–Lu.

Также к увеличению каталитической активности приводит применение в качестве допирующей добавки смеси ионов Gd³⁺ и Bi³⁺ при мольном соотношении 1:1. В данном случае температура 50%-ного окисления образца Gd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O₂ значительно ниже и составляет 160°С по сравнению с аналогичным параметром для Gd_{0.1}Zr_{0.18}Ce_{0.72}O₂ (рис. 4, кривая 3). По-видимому, рост каталитической активности обусловлен увеличением разупорядоченности кристаллической решетки вследствие значительного различия ионных радиусов Gd³⁺ (94 пм) и Bi³⁺ (102 пм), также за счет протекающего редокс-превращения: Bi³⁺ \rightleftharpoons Bi⁵⁺, что в свою очередь положительным образом сказывается на каталитической активности [10].

Исследование влияния природы редкоземельного допанта на каталитические свойства синтезирован-

Образец	Удельная поверхность <i>S</i> уд, м ² ·г ^{−1}	Общая пористость V _Σ , см ³ ·г ⁻¹	Температура 50%-ной конверсии <i>T</i> ₅₀ , °С	Температура 90%-ной конверсии <i>T</i> 90, °С
Zr _{0.2} Ce _{0.8} O ₂	63	0.101	295	362
$Gd_{0.10}Zr_{0.18}Ce_{0.72}O_2$	78	0.106	272	326
$Gd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2$	85	0.107	152	182
$Sm_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2$	83	0.108	256	343
$Nd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_{2}$	82	0.108	327	385

Таблица 2 Текстурные характеристики и каталитическая активность синтезированных образцов

Рис. 5. Зависимость конверсии CO от температуры реакции на образцах $Nd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2$ (1), $Sm_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2$ (2), $Gd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2$ (3).

Рис. 6. Зависимость температуры 50%-ной конверсии от радиуса иона-допанта для многокомпонентного твердого раствора $M_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2$, где M — Nd, Sm, Gd.

ных материалов М_{0.05}Ві_{0.05}Zr_{0.18}Се_{0.72}О₂, где М — Nd, Sm, Gd, показало, что наиболее активным является образец, допированный ионами Gd³⁺ (рис. 5). Температура 50%-ной конверсии составляет 150°С, в то время как для Nd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O₂ температура 50%-ной конверсии значительно выше (332°С). По-видимому, в данном случае наблюдается корреляция между ионным радиусом допанта и температурой 50% конверсии, т. е. чем меньше радиус иона допанта, тем выше каталитическая активность (рис. 6). Вероятно, что в случае совместного допирования ионами Bi³⁺ и Gd³⁺ происходит формирование наиболее дефектной структуры, которая в свою очередь способствует снижению энергетического барьера десорбции кислорода и как следствие повышению каталитической активности.

Выводы

Синтезированы высокодисперсные твердые растворы M₂O₃-Bi₂O₃-ZrO₂-CeO₂, где M — Nd, Sm, Gd, на основе кристаллической решетки диоксида церия, что подтверждено исследованиями, проведенными методом рентгеновской дифракции. Средний размер кристаллитов, рассчитанный по уравнению Селякова-Шеррера, составляет 15–19 нм. Согласно электронно-микроскопическим исследованиям образцы имеют агломерированную структуру мозаичного типа. Частицы имеют форму, близкую к сферической. Средний размер составляет 8–10 нм.

Синтезированные материалы M_2O_3 – Bi_2O_3 – ZrO_2 – CeO₂, где M — Nd, Sm, Gd, обладают высокой удельной поверхностью (82–85 м²·г⁻¹) и развитой пористой структурой (0.106–0.108 см³·г⁻¹). Показано, что допирование твердого раствора $Zr_{0.2}Ce_{0.8}O_2$ ионами редкоземельных металлов и Bi³⁺ приводит к увеличению удельной поверхности вследствие формирования более дефектной структуры.

Синтезированные материалы проявляют высокую активность в реакции окисления моноксида углерода. Допирование твердого раствора $Zr_{0.2}Ce_{0.8}O_2$ ионами Bi^{3+} , Nd^{3+} , Sm^{3+} и Gd^{3+} приводит к увеличению каталитической активности вследствие повышения дефектности кристаллической структуры. Установлена зависимость каталитической активности материалов $M_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2$, где M — Nd, Sm, Gd, от природы иона редкоземельного металла. Показано, что наибольшая каталитическая активность характерна для образца $Gd_{0.05}Bi_{0.05}Zr_{0.18}Ce_{0.72}O_2$, что, вероятно, является следствием формирования высокодефектной структуры.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Либерман Елена Юрьевна, к.х.н., доцент, ORCID: https://orcid.org/0000-0002-3387-9248

Подъельникова Екатерина Сергеевна, магистрант 2 года, ORCID: https://orcid.org/0000-0002-3387-9248

Симакина Екатерина Александровна, аспирант 1 года, ORCID: https://orcid.org/0000-0003+1248-202X

Конькова Татьяна Владимировна, д.т.н., доцент, ORCID: https://orcid.org/0000-0002-7151-6317

Клеусов Борис Сергеевич, научный сотрудник, ORCID: https://orcid.org/0000-0003-3924-2616

- [1] Попова Н. М. Катализаторы очистки газовых выбросов промышленных производств. Алма-Ата: Наука КазССР, 1991. 176 с.
- [2] Остроушко А. А. Технология изготовления катализаторов. Термокаталитическая очистка отходящих газов в промышленности, энергетике, на транспорте. Екатеринбург: УрГУ, 2002. 26 с.
- [3] Крылов О. В., Миначев Х. М., Панчишный В. И. // Успехи химии. 1991. Т. 60. Вып. 3. С. 634–648.
- [4] Иванов В. К., Щербаков А. Б., Баранчиков А. Е., Козик В. В. Нанокристаллический диоксид церия: свойства, получение, применение. Томск: Том. ун-т. 2013. 284 с.
- [5] Остроушко А. А., Русских О В., Порсин А. В., Пивченко С. В. // ЖПХ. 2011. Т. 84. № 3. С. 380–384

[Ostroushko A. A., Russkikh O. V., Porsin A. V., Pivchenko S. V. // Russ. J. Appl. Chem. 2011. V. 84. N 3. P. 372–376].

- [6] Zagainov I. V., Fedorov S. V., Konovalov A. A., Antonova O. S. // Mater. Lett. 2017. V. 203. P. 9–12.
- [7] *Lei C., Changiun N., Zhongshan Y. , Shudong W. //* Catal. Commun. 2009. N 10. P. 1192–1195.
- [8] Кузнецова Т. Г., Садыков В. А. // Кинетика и катализ. 2008. Т. 49. № 6. С. 886–905 [Kuznetsova T. G., Sadykov V. A. // Kinet. Catal. 2008. V. 49. N 6. P. 840– 858].
- [9] Малютин А. В., Либерман Е. Ю., Михайличенко А. И., Аветисов И. Х., Кошкин А. Г., Конькова Т. В. // Катализ в пром-сти. 2013. № 3. С. 54–59.
- [10] Zagainov I. V. // Appl. Nanosci. 2017. V. 2017. N 8. P. 871–874.