Журнал прикладной химии. 2019. Т. 92. Вып. 6

УЛК 544.6

ВЛИЯНИЕ ОРГАНИЧЕСКИХ ДОБАВОК НА СВОЙСТВА ЭЛЕКТРООСАЖДЕННЫХ CdSe-ФОТОАНОДОВ

© М. Б. Дергачева¹, Д. С. Пузикова^{1,2}, Г. М. Хусурова¹

¹ Институт топлива, катализа и электрохимии им. Д. В. Сокольского, Алматы, Казахстан ² Казахский национальный университет им. Аль-Фараби, Алматы E-mail: m_dergacheva@mail.ru

Поступила в Редакцию 5 октября 2018 г. После доработки 20 марта 2019 г. Принята к публикации 20 марта 2019 г.

Тонкие пленки CdSe были получены путем электроосаждения при постоянном потенциале на проводящие подложки стекло/FTO из сернокислых электролитов (pH 2.2), содержащих сульфат кадмия, селенит натрия и добавки лигносульфоната натрия как поверхностно-активного вещества. Приготовленные пленки охарактеризованы с помощью методов PФA, рамановской спектроскопии, сканирующей электронной микроскопии, атомной силовой микроскопии, спектрофотометрии и фотоэлектрохимических измерений для изучения их структуры, состава, морфологии поверхности, электрических и оптических свойств. Установлено влияние лигносульфоната натрия на улучшение электрофизических свойств электроосажденных CdSe-фотоанодов. Работа фотоанода CdSe/FTO/стекло проверена в электрохимической ячейке с электролитом, содержащим редокс-пару Fe^{2+/3+}, с различными источниками освещения.

Ключевые слова: селенид кадмия; фотоанод; фотоэлектрохимический преобразователь DOI: 10.1134/S0044461819060112

Важность селенида кадмия как фотовольтаического материала обусловлена его высоким коэффициентом абсорбции и оптимальной шириной запрещенной зоны (1.7 эВ), способствующими эффективной абсорбции и преобразованию солнечного излучения. Этот полупроводник представляет значительный интерес в качестве активного элемента фотовольтаических устройств и может быть использован как перспективный материал для преобразования солнечной энергии, создания оптоэлектронных приборов [1, 2]. Электроосаждение кадмия и селена широко используется при электрохимическом синтезе селенида кадмия [2-13]. Многие исследования сосредоточены на электрохимическом синтезе селенида кадмия в виде тонких пленок на твердых подложках [1, 3, 4, 14–18], 2D-структур [19], наноструктур [19–23] и характеризации свойств полученных покрытий. Чаще всего катодное соосаждение кадмия и селена проводится из водных растворов, содержащих в качестве прекурсоров растворимые соли кадмия (сульфат, хлорид, нитрат), селенистую кислоту (H₂SeO₃), селениты (Na₂SeO₃) либо селеносульфат (Na₂SeSO₃) [6-8,

10, 11, 14]. Основными требованиями к пленочному CdSe-фотоаноду являются высокая поглощающая способность в достаточно большом диапазоне солнечного спектра, высокая адгезия к материалу подложки и сохранение достаточной стабильности во времени в соответствующих электролитах.

Применение поверхностно-активных веществ для улучшения свойств осадков CdSe до сих пор мало изучено. Авторами [20] установлено, что органические ионы солей (L-глютамат-анион и катион холина) являются потенциальными абсорберами на поверхности CdSe-осадков и способствуют появлению кристаллических дефектов, что приводит к изменению электрических свойств конечных продуктов. Это может влиять на увеличение эффективности преобразования солнечного излучения.

В данной работе исследовано влияние поверхностно-активного анионного вещества лигносульфаната натрия на свойства электроосажденных CdSефотоанодов, в частности на адгезию, однородность поверхности осаждаемых пленок, фототок. Для исследования полупроводника CdSe в качестве фотоа-

788 Дергачева М. Б. и др.

нода n-типа в фотоэлектрохимической ячейке выбрана редокс-система пары $Fe(CN)_6^{4-/3-}$, стандартный потенциал которой составляет +0.36 В (н.в.э.).

Экспериментальная часть

Электроосаждение тонких пленок селенида кадмия проводили в потенциостатическом режиме с использованием трехэлектродной термостатированной кварцевой ячейки, представляющей собой герметичный сосуд с разделенными анодным и катодным пространствами. Катодом служили стеклянные пластины, покрытые слоем фторированного оксида олова [Fluorine-doped Tin Oxide (FTO) Glass, Sigma-Aldrich, далее FTO/стекло]. В качестве противоэлектрода использовали платиновую спираль с площадью поверхности порядка 1.5 см². Электроосаждение вели в сернокислом электролите (рН 2.2), содержащем соли кадмия и селена в соотношении ионов Cd:Se = 45:1. В качестве поверхностно-активной добавки в электролит использовали лигносульфонат натрия $(9 \, \Gamma \cdot \pi^{-1})$ [6, 7]. Электроосаждение проводили при постоянном потенциале –0.7 В относительно электрода сравнения Ag/AgCl в насыщенном растворе KCl. Поддерживали температуру электролита $50 \pm 1^{\circ}$ С, регулируя ее с помощью термостата LOIP. Характеризация электроосажденных пленок осуществлялась методом сканирующей электронной микроскопии (SEM) с проведением энергодисперсионного рентгеновского анализа (EDAX) [микроскоп JSM-6610 LV (JEOL, Japan)], XRD (ДРОН-4 с Со-источником), рамановской спектроскопии (Solver Spectrum, NT-MDT, Russia), атомной силовой микроскопии (JSPM-5200, JEOL, Japan). Для регистрации спектров пропускания и фотометрических измерений использовали спектрофотометр СФ-256 УВИ.

Фотоэлектрохимические характеристики CdSe/FTO-фотоанода исследовали методом фотоэлектрохимических ячеек (PEC) по трехэлектродной схеме с электродом сравнения Ag/AgCl (нас. KCl) в электролите 0.3 М Na₂SO₃. С помощью приборов потенциостат-гальваностат P-8 (фирмы Elins) и потенциостат-гальваностат GillAC (фирмы ACM Instruments) были получены фотополяризационные кривые, характеризующие процессы фотопреобразования, протекающие в системе, в режиме темнота/ освещение.

Освещение осуществляли с помощью монохроматического света (длина волны 530 и 465 нм, $J=1.2 \text{ мBt}\cdot\text{cm}^{-2}$) и полихроматического (галогенная лампа 75 Вт, мощность освещения фотоанода 80 мВт·см⁻²).

Фотоэлектрохимическая ячейка представляла собой кварцевый сосуд с плоским окном для прямого освещения фотоанода. Фотоанод [CdSe/FTO/стекло] с рабочей площадью $1~\text{cm}^2$ освещался с поверхности CdSe, в качестве катода использовали платиновую пластину с площадью поверхности $2~\text{cm}^2$. Объем электролита 50~m. Исследования проводили в электролите с редокс-парой $K_3[\text{Fe}(\text{CN})_6]/K_4[\text{Fe}(\text{CN})_6]$.

Обсуждение результатов

Оптимальными условиями для электроосаждения фотоанодов CdSe/FTO/стекло выбрано осаждение при 50°C в течение 20 мин на поверхности FTO/стекло площадью 1.5 см² при перемешивании электролита магнитной мешалкой [6, 7]. Метод позволяет получать плотные покрытия, с хорошей адгезией к подложке и отсутствием трещин напряжения на поверхности, которая обеспечивается добавками в электролит лигносульфоната натрия. Сформированные по такому способу пленки гомогенные и однородные. Размер зерен составляет 100–450 нм. В режиме cross-section методом SEM определена толщина пленок, которая колеблется в пределах 680–820 нм. Разность в толщине покрытия для параллельных экспериментов составляла ±75 нм.

Энергетическая диаграмма, полученная методом EDAX, свидетельствует о наличии в осадке кадмия и селена (рис. 1, *a*). Пленки достаточно тонкие, поэтому на диаграмме обнаруживается небольшая примесь олова как составная часть подложки.

Результаты энергодисперсионного рентгеновского анализа пленок CdSe, осажденных на FTO/стекло, показывают соотношение содержания Cd и Se 1:1, или 50.3:49.7 ат% соответственно. Отклонение от стехиометрии для различных точек на поверхности образца составляет до ± 0.2 ат%.

При анализе спектров комбинационного рассеяния электроосажденных образцов CdSe/FTO/стекло (рис. $1, \delta$) установлено, что пик при 200 см^{-1} соответствует основной колебательной (продольной) моде LO колебаний CdSe-структуры. Пик в области $\sim 400 \text{ см}^{-1}$ соответствует второму порядку данной моды 2LO. Широкий пик в области 1600 см^{-1} соответствует аморфному углероду. Структура полученных осадков отвечает фазе CdSe.

Согласно данным РФА (рис. 2, \mathfrak{s}) электроосажденные CdSe-пленки являются поликристаллическими по своей природе с кубической структурой и предпочтительной ориентацией вдоль плоскостей (111). Следы SnO₂ соответствуют покрытию подложки и появляются на дифракционных диаграммах, когда

Рис. 1. Диаграмма энергодисперсионного рентгеновского анализа (a), спектр рамановской спектроскопии (δ), РФА-спектр тонких пленок CdSe, приготовленных электроосаждением при -0.7 В (Ag/AgCl) в присутствии лигносульфоната натрия (a).

толщина пленок, нанесенных на $FSnO_2$ /стекло, меньше 1 мкм.

Данные, полученные при исследовании пленок CdSe методами атомно-силовой микроскопии, свидетельствуют о равномерности покрытия и фазовой однородности (рис. 2). При анализе изображений поверхности пленки CdSe, сделанных в режиме «топо» (рис. 2, *a*), при котором фиксируются изменения положения зонда при прохождении над поверхностью образца, отмечается, что максимальная высота зерен над поверхностью составила 293 нм.

В свою очередь гистограмма плотности распределения высот характеризовалась хорошо выраженным

максимумом, соответствующим области развитой поверхности, и демонстрировала морфологически однородное покрытие с незначительной долей микрошероховатости. Средняя арифметическая шероховатость поверхности имела величину 13.3 нм, средняя квадратичная шероховатость 20.8 нм.

Исследования этого же участка пленки CdSe в режиме «фаза», при котором фиксируются изменения фазы колебаний при прохождении зонда над участками с различным фазовым составом, показали, что фазовый состав пленок однороден и включения иных фаз не наблюдается.

Рис. 2. ACM-изображения поверхности тонких пленок CdSe 6×6 мкм: в режиме «топо» (a), в режиме «фаза» (б).

790 Дергачева М. Б. и др.

Рис. 3. Зависимость коэффициента пропускания от энергии волны.

Ширина запрещенной зоны, рассчитанная из данных спектроскопии пропускания и зависимости коэффициента пропускания света от энергии волны, составила 2.05–2.10 эВ (рис. 3).

Фотополяризационные кривые для CdSефотоанода получены в электролите 0.3 М Na₂SO₃. Наблюдается анодный тип тока, что подтверждает n-тип проводимости электроосажденного CdSe. Плотность тока при прямом освещении (i^{осв}) электроосажденной пленки резко возрастает по сравнению с темновыми значениями (i^{темн}), а значение фототока (i^{ph} = i^{осв} – i^{темн}) увеличивается с ростом электродного потенциала (рис. 4, a).

Квантовую эффективность (Y) определяли по формуле

$$Y = \frac{i^{\text{ph}} \cdot 1240}{\lambda \omega \cdot 0.92},\tag{1}$$

где i^{ph} — плотность фототока (мк $A \cdot cm^{-2}$); λ — длина волны (нм); ω — мощность источника; 0.92 — коэффициент, учитывающий потери при прохождении света через стенки ячейки.

Максимальная квантовая эффективность преобразования достигнута при прямом освещении фотоанода CdSe/FTO/стекло со стороны пленки при длине волны 365 нм (рис. 4, δ). По мере роста длины волны эта величина падает почти до нуля при 700 нм. Эффективность преобразования при фронтальном освещении длиной волны 365 нм составляет около 60%.

На рис. 5 сопоставлены значения фототока, полученного методом РЕС в электролите 0.3 M Na₂SO₃ при освещении галогеновой лампой и мощности освещения 80 мВт·см⁻² для тонких пленок CdSe, осажденных по вышеописанной методике (рис. 5, кривая 3), результаты авторов [20], которые демонстрируют фототок в тех же условиях для CdSeпленок, осажденных из электролита с добавками глутамата (кривая 2), и значения фототока для пленок CdSe, осажденных без добавок лигносульфоната натрия в электролит (кривая 1). Для CdSe-пленок, осажденных без добавок в электролит, получены наименьшие значения плотности фототока ($\sim 2 \text{ мA} \cdot \text{см}^{-2}$), тогда как для CdSe /FTO-пленок, полученных при введении добавок лигносульфоната натрия в электролит, значения плотности фототока в 10 раз выше и составили 20 м $A \cdot cm^{-2}$ (кривая 3). Эти результаты подтверждают гипотезу авторов [20], что ионы органических солей являются потенциальными абсорберами, локализованными на поверхности CdSe-осадка, которые способствуют образованию кристаллических дефектов,

Рис. 4. Фотополяризационная кривая в режиме темнота/освещение при $\lambda = 530$ нм (*a*) и зависимость квантового выхода от длины волны при прямом освещении CdSe-фотоанода (δ).

Рис. 5. Зависимость плотности фототока от приложенного потенциала для фотоанода CdSe/FTO/стекло.

Пленки CdSe: 1 — осажденные из электролита без органических добавок, 2 — осажденные в присутствии глютамата натрия [20], 3 — осажденные из электролита с добавками лигносульфоната натрия при 50°C.

улучшающих электрические свойства электроосажденного селенида кадмия. Предполагается формирование гибридной структуры на поверхности при осаждении с органическими добавками. Действие добавления лигносульфоната натрия оказалось более выраженным, чем глютамата натрия.

Электроосажденные с лигносульфонатом натрия пленки CdSe использовали в качестве фотоанода в фотоэлектрохимической ячейке с цифровой регистрацией величины фототока. Величина плотности фототока в ячейке измерялась при различных концентрациях ферроцианида калия $K_4[Fe(CN)_6]$ (0.005, $0.01, 0.05 \text{ моль} \cdot \pi^{-1}$) и различных источниках освещения. С увеличением концентрации ферроцианида железа ток растет независимо от типа освещения (рис. 6). Наиболее высокий выход фототока до 20 мА·см⁻² наблюдался для фотоанода CdSe/FTO/ стекло, полученного электроосаждением при 50°C с добавкой в электролит лигносульфаната натрия, при освещении галогеновой лампой (80 мВт·см-2). Увеличение фототока с ростом концентрации ферроцианида в электролите связано с увеличением скорости аннигиляции положительных зарядов, генерируемых при освещении и окислением Fe^{2+} до Fe^{3+} . При этом в электролите накапливается редокс-пара $Fe(CN)_6^{4-/3-}$.

Изменение плотности тока со временем для фотоанодов при освещении синим диодом и галогеновой лампой было исследовано в электролите 0.05 М K₄Fe(CN)₆/0.05 M K₃Fe(CN)₆ в течение 120 мин. Значения плотности тока в таких растворах оставались постоянными или незначительно увеличивались со временем.

Рис. 6. Зависимость плотности фототока анода CdSe от концентрации $K_4[Fe(CN)_6]$ (a) и от времени освещения

8

Время, мин

12

16

а) 1 — CdSe-фотоанод осажден без добавок, 2 — с добавкой лигносульфоната натрия, освещение полихроматическое 80 мВт·см⁻².

б) электролит: 0.05 M K₄Fe(CN)₆/0.05 M K₃Fe(CN)₆, освещение: 1 — монохроматический свет, 465 нм, 1.2 мВт \cdot см $^{-2}$; 2 — полихроматический свет, $80 \text{ мBt} \cdot \text{см}^{-2}$.

Выводы

Выполнено электроосаждение пленок CdSe на стекло, покрытое проводящей пленкой фторированного оксида олова. Введение добавок лигносульфоната натрия в электролит при электроосаждении обеспечило получение тонких пленок, толшиной 680-820 нм с однородной поверхностью покрытия без трещин и просветов, размер зерна составил 100-450 нм. Достигнут стехиометрический состав осаждаемых пленок (ат%) (Se:Cd = 49.7:50.3).

Электроосажденные пленки соединения CdSe являются поликристаллическими по своей природе с кубической структурой и предпочтительной ориентацией вдоль плоскостей (111), демонстрируют *n*-тип проводимости. Ширина запрещенной зоны по данным спектроскопии пропускания составляет 2.05-2.10 эВ.

792 Дергачева М. Б. и др.

При использовании в качестве фотоанода в электрохимической ячейке с электролитом 0.3 М Na₂SO₃ и освещении полихроматическим светом мощностью 80 мВт·см⁻² пленки, осажденные с лигносульфонатом натрия, показали увеличение плотности фототока в 10 раз по сравнению с пленками CdSe, осажденными в аналогичных условиях без добавок лигносульфоната натрия. Это подтверждает предположение, что органические ионы солей, являясь абсорберами на поверхности CdSe-осадков, могут создавать кристаллические дефекты структуры, которые улучшают электрические свойства осажденного CdSe.

Работа полученных фотоанодов [CdSe(ЛСН)/ FTO/стекло] проверена в фотоэлектрохимической ячейке с платиновым катодом и электролитом $0.05~\rm M$ K₄Fe(CN)₆/ $0.05~\rm M$ K₃Fe(CN)₆. При освещении со стороны пленки CdSe (80 мВт·см⁻²) ячейка обеспечивает стабильный фоток в течение $2~\rm Y$ и более. Достигнут ток $90~\rm mkA\cdot cm^{-2}$.

Финансирование работы

Исследование получило финансовую поддержку Министерства образования и науки Республики Казахстан (проект AP05130392 «Повышение энергоэффективности фотоэлектрохимических солнечных элементов с использованием новых полупроводниковых материалов»).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Дергачева Маргарита Борисовна, д.х.н., профессор, ORCID: http://orcid.org/0000-0002-8490-1601

Пузикова Дарья Сергеевна, докторант PhD, ORCID: https://orcid.org/0000-0001-5275-4769

Хусурова Гулинур Марсовна, магистр, ORCID: https://orcid.org/0000-0001-8700-7472

Список литературы

- [1] Luther J., Nast M., Fisch N., Christoffers D., Pfisterer F., Meissner D., Nitsch J. // Solar Technology. Ullmanns Encyclopedia of Industrial Chemistry. Wiley VCH (Electronic release). 2002. P. 235–244.
- [2] Grätzel M. // Phil. Trans. R. Soc. A. 2007. V. 365. P. 993–1005.

[3] Gudage Y. G., Deshpande N. G., Sagade A. A., Sharma R. P., Pawar S. M., Bhosale C. H. // Bull. Mater. Sci. 2007. V. 30. P. 321–327.

- [4] Gopakumar N., Anjana P. S., Vidyadharan Pillai P. K. // Mater. Sci. 2010. V. 45. P. 6653–6656.
- [5] *Im S. H., Lee Y. H., Seok S. I.* // Electrochim. Acta. 2010. V. 55. P. 5665–5669.
- [6] Дергачева М. Б., Хусурова Г. М., Пузикова Са Д. С., Немкаева Р. Р., Мить К. А. // Изв. НАН РК. Сер. Химия и хим. технология. 2016. Т. 5. С. 12–20.
- [7] Dergacheva M. B., Puzikova D. S., Khussurova G. M., Nemkaeva R. R., Mit' K. A // Materials Today: Proceedings. 2017. V. 4. P. 4572–4581.
- [8] Chowdhury R. I., Islam M. S., Sabeth F., Mustafa G., Farhad S. F. U., Saha D. K., Chowdhury F. A. // Dhaka Univ. J. Sci. 2012. V. 60 (1). P. 137–140.
- [9] Henríquez R., Badán A., Greza P., Mu^{*}noza E., Vera J., Dalchiele E.A., Marotti R.E., Gómez H. // Electrochim. Acta. 2011. V. 56. P. 4895–490.
- [10] Ragoisha G. A., Bondarenko A. S., Osipovich N. P., Streltsov E. A. // J. Electroanal. Chem. 2004. V. 565. P. 227–234.
- [11] Ragoisha G. A., Bondarenko A. S., Osipovich N. P., Streltsov E. A., Rabchynski S. M. // Electrochim. Acta. 2008. V. 53 (11). P. 3879–3888.
- [12] *Rabchynski S. M., Ivanov D. K., Streltsov E. A.* // Electrochem. Commun. 2004. V. 6 (10). P. 1051–1056.
- [13] *Сайфутяров Р. Р., Хомяков А. В., Можевити*на А. В., Аветисов И. Н. // Успехи химии и хим. технологии. 2014. V. 28 (6). Р. 28–30.
- [14] Vishiwakarna S. R., Anil Kumar, SantPrasada, Triapathi R. S. N. // Chalcogenide Lett. 2013. V. 10. N 10. P. 393–402.
- [15] Talapin D. V., Rogach A., Muller J. // Nano Lett. 2003.V. 3 (12). P. 1677–1681.
- [16] Muller J., Talapin D. V., Rogach A. // Phys. Rev. 2005. V. 72. P. 2053–2059.
- [17] Becker K., Lupton J., Muller J. // Nature Mater. 2006.V. 5. P. 777–781.
- [18] *Il'chuk H., Shapoval P., Kusnezh V. //* Chem. Solar Cells Thin-Film Technol. 2011. V. 18. P. 381–404.
- [19] Mahajan S., Meenu R., Dubey R. B., Jagrati M. // Int. J. Latest Res. Sci. Technol. 2013. V. 2. P. 457–459.
- [20] Hamilakis S., Balgis D., Mionakou-Koufoudaki K., Mitzithra C., Kollia C., Loizos Z. // Mater. Lett. 2015. V. 145. P. 11–14.
- [21] Hamilakis S., N. Gallias., Mitzithra C., Kordatos K., Kollia C., Loizos Z. // Mater. Lett. 2015. V. 143. P. 63–65.
- [22] Dzhagan V. M., Valakh M. Ya., Raevskaya A. E., Stroyuk A. L., Kuchmiy S. Ya., Zahn D. R. T // Nanotechnology. 2008. V. 19. P. 1–6.
- [23] *Robel I., Kuno M., Kamat P. V.* //J. Am. Chem. Soc. 2007. V. 129. P. 4136–4137.