# МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ГОРЕНИЯ ДИБОРИДА АЛЮМИНИЯ В ВОЗДУШНОМ ПОТОКЕ

# © К. Ю. Арефьев<sup>1,2,3</sup>, Л. С. Яновский<sup>1</sup>, Д. А. Ягодников<sup>2</sup>

<sup>1</sup> Центральный институт авиационного моторостроения им. П. И. Баранова, Москва <sup>2</sup> Московский государственный технический университет им. Н. Э. Баумана <sup>3</sup> Московский физико-технический институт E-mail: kyarefev@ciam.ru

> Поступила в Редакцию 2 марта 2019 г. После доработки 12 марта 2019 г. Принята к публикации 25 мая 2019 г.

Представлены математическая модель и результаты расчетов процессов воспламенения и горения энергетических конденсированных систем на основе моно- и полидисперсных частиц диборида алюминия в воздушных потоках в каналах постоянного сечения. Кинетические характеристики взаимодействия образующихся в результате газификации энергетических конденсированных систем одиночных частиц диборида алюминия в высокотемпературной окислительной среде определялись с использованием зависимостей периода индукции воспламенения и времени горения от температуры воздуха, диаметра и начальной температуры частицы, рассчитанных на основе модели параллельных химических реакций. Рассмотрен диапазон условий горения, соответствующих начальным температурам воздуха от 300 до 2000 К, числам Маха в канале от 0.1 до 1.5. Показано влияние дисперсности частиц диборида алюминия, скорости и начальной температуры воздушного потока на эффективность горения. Получены закономерности изменения коэффициента полноты сгорания частиц диборида алюминия в зависимости от начальных параметров воздушного потока и продуктов газификации энергетических конденсированных систем при различных соотношениях компонентов топливной смеси, соответствующих диффузионному и кинетическому режимам горения. Установлены условия перехода от одного режима к другому.

Ключевые слова: энергетическая конденсированная система; диборид алюминия; воздушный поток; воспламенение; горение; конденсированная фаза; диаметр частиц; температура; скорость потока DOI: 10.1134/S0044461819070168

Использование бора и его соединений в качестве горючих компонентов энергетических конденсированных систем (ЭКС) является перспективным направлением улучшения массогабаритных характеристик атмосферных энергосиловых установок (ЭСУ) [1–5] за счет более высоких значений объемной  $H_v$  и массовой  $H_u$  теплот сгорания по сравнению с углеводородными, алюминий- и магнийсодержащими горючими [4, 5].

Одним из наиболее доступных борсодержащих соединений [5] является диборид алюминия AlB<sub>2</sub>, обладающий объемной теплотой сгорания 132.6 ГДж·м<sup>3</sup>, которая близка к объемной теплоте сгорания чистого бора. Массовая теплота сгорания AlB<sub>2</sub> при этом составляет 41.8 МДж·кг<sup>-1</sup>. Кроме того, эксплуатационные свойства и макрокинетические характеристики  $AlB_2$ , в том числе меньшие значения периода индукции воспламенения и времени горения [6, 7], обеспечивают возможность его применения в ЭКС различного назначения.

Практическое использование ЭКС, содержащих AlB<sub>2</sub>, как правило, приводит к необходимости разделения рабочего процесса в ЭСУ на две стадии [4]. На первой стадии осуществляется горение (газификация) ЭКС в газогенераторе, а на второй стадии происходит физико-химическое взаимодействие образующихся продуктов газификации ЭКС с воздушным потоком в камере дожигания. Следует отметить, что при газификации ЭКС образуется несущий газ (смесь паров воды, углекислого газа, азотсодержащих



Рис. 1. Схема однозонной камеры дожигания. 1 — подача воздуха, 2 — подача продуктов газификации, 3 — зона горения, 4 — газовоздушная смесь.

и хлорсодержащих соединений), который позволяет транспортировать частицы  $AlB_2$  в камере дожигания. Наиболее простая схема однозонной камеры дожигания представлена на рис. 1 [4]. Такая камера дожигания выполнена в форме цилиндрического канала, имеет локальные зоны подвода воздуха *1* и продуктов газификации *2*. В результате химических реакций продуктов газификации с воздухом в зоне горения *3* камеры дожигания образуется газовоздушная смесь *4*, которая является рабочим телом энергосиловой установки.

Исходный состав ЭКС содержит в основном горючие элементы, причем массовая доля конденсированной фазы в продуктах газификации может превышать 50%, и в ней содержится значительная часть химической энергии. Поэтому общая энергетическая эффективность использования ЭКС зависит от интенсивности процессов воспламенения и горения частиц конденсированной фазы, содержащихся в продуктах газификации.

Отметим, что в настоящее время для большинства камер дожигания энерговыделение при горении борсодержащих соединений не превышает 80% от их теплотворной способности [8, 9]. Такая относительно невысокая эффективность горения связана с малым временем пребывания в камере дожигания вследствие высокой скорости течения газа и с ограниченными размерами камеры дожигания, а также с относительно низкой скоростью горения частиц [10-12]. Более высокая эффективность может быть реализована в камере дожигания большего удлинения. Это препятствует реализации энергетических преимуществ борсодержащих ЭКС по сравнению с другими химическими соединениями. В частности, при горении углеводородных горючих могут реализоваться режимы, при которых их действительная эффективность становится выше, чем у борсодержащих соединений.

В связи с вышеизложенным важной задачей является повышение полноты сгорания частиц борсодержащих горючих, в частности AlB<sub>2</sub>. Для определения условий, обеспечивающих наиболее эффективное горение конденсированной фазы, без проведения большого количества огневых испытаний ЭСУ требуется выполнить параметрические исследования рабочего процесса в камере дожигания постоянного сечения для широкого диапазона режимных параметров.

Целью настоящей работы являлось выявление факторов, лимитирующих процессы воспламенения и горения в камере дожигания с оценкой их влияния на полноту сгорания частиц конденсированной фазы. В работе рассмотрены следующие факторы: диаметр частиц AlB<sub>2</sub>, соотношение компонентов топливной смеси в камере дожигания, а также скорость и температура воздуха на входе. Практическая значимость исследования определяется возможностью использования полученных результатов для разработки рекомендаций по применению AlB<sub>2</sub>.

#### Экспериментальная часть

Математическая модель, использованная в работе, основана на решении уравнений двухфазной газовой динамики в одномерной постановке, которая подробно представлена в работе [8]. Несмотря на наличие в большинстве камер дожигания некоторых пространственных особенностей течения [9, 13, 14], выполненная в работе [8] апробация показала возможность применения одномерной модели для оценки эффективности горения частиц конденсированной фазы в высокоскоростных воздушных потоках при условии минимального осаждения частиц на стенках и незначительных обратно-вихревых течений.

Рассмотрим расчетную схему проточного тракта однозонной камеры дожигания (рис. 2). Площадь поперечного сечения F проточного тракта камеры дожигания принята постоянной, длина канала равна  $x_{\rm K}$ . Стенки камеры дожигания приняты теплоизолированными. Подача продуктов газификации I осуществляется через входное сечение 2. В этом же сечении подается воздух 3 с массовым расходом  $m_{\rm B}$ .

При анализе рабочего процесса в проточном тракте камеры дожигания одним из наиболее важных режимных параметров является коэффициент избытка воздуха  $\alpha = m_{\rm B}/(K_{m0}m_{\rm Hr})$ , где  $K_{m0}$  — стехио-



Рис. 2. Расчетная схема камеры дожигания. 1 — подача продуктов газификации, 2 — входное сечение, 3 — подача воздуха, 4 — выходное сечение.

метрическое соотношение для топливной смеси;  $m_{\rm B}$ ,  $m_{\rm IIF}$  — массовые расходы воздуха и продуктов газификации соответственно. Предполагая, что продукты газификации состоят из газообразных и конденсированных горючих элементов, в частности частиц AlB<sub>2</sub>, введем  $K_{m0\kappa}$  и  $K_{m0\Gamma}$  — массовые стехиометрические соотношения для конденсированных и газообразных горючих соответственно. Тогда справедливо соотношение:  $K_{m0} = (1 - z_{\Gamma\Gamma})K_{m0\Gamma} + z_{\Gamma\Gamma}K_{m0\kappa}$ , где  $z_{\Gamma\Gamma}$  — массовая доля конденсированных горючих в продуктах газификации.

Для описания рабочего процесса используется схема [8], в каждом сечении канала рабочее тело представляет собой смесь воздуха, газовой и конденсированной фаз продуктов газификации ЭКС, а также продуктов их сгорания с воздухом. С учетом того что газовая фаза продуктов газификации достаточно интенсивно реагирует с воздушным потоком, ее содержание на большей части тракта пренебрежимо мало. Это допущение справедливо в случае высокой скорости горения газовой фазы, реализуемой в рассматриваемых условиях [15].

Применительно к процессу горения полидисперсных частиц конденсированной фазы коэффициент полноты сгорания  $\eta_{\kappa}$  может быть определен по следующему уравнению:

$$\eta_{\kappa} = 1 - \int_{0}^{\infty} y_i M_i \mathrm{d}D_{0i}, \qquad (1)$$

где  $y_i$  — относительная массовая доля частиц с начальным диаметром  $D_{0i}$ ;  $M_i$  — функция потери относительной массы частиц с начальным диаметром  $D_{0i}$ , которая может быть определена следующим образом:

$$M_i = \left(1 - \frac{\int\limits_0^x \frac{2u_q}{w} \mathrm{d}x}{D_{0i}}\right)^3, \qquad (2)$$

 $u_{\rm q}$  — линейная скорость горения частиц, x — осевая координата, w — средняя по сечению канала осевая скорость потока.

В данной работе исследовался процесс горения в воздухе частиц AlB<sub>2</sub>, стехиометрический коэффициент для которого равен  $K_{m0\kappa} = 6.397$ . Массовая доля конденсированной фазы в продуктах газификации ЭКС принята равной  $z_{\Gamma\Gamma} = 0.6$ . При этом среднее значение массовой доли конденсированной фазы в камере дожигания не превышает 4%.

Примем, что процесс воспламенения частиц  $AlB_2$  завершается на дистанции  $x_u$  от места подачи и соответствует периоду индукции воспламенения частиц  $\tau_u$ . Тогда координата  $x_u$  может быть определена по интегральному выражению

$$x_i = \int_0^{\tau_i} u_{\mathbf{q}} \, \mathrm{d}t. \tag{3}$$

По разработанной в [16] математической модели воспламенения и горения одиночных частиц AlB<sub>2</sub> в высокотемпературной окислительной среде на основе теории параллельных химических реакций окисления алюминия (4Al + 3O<sub>2</sub>  $\rightarrow$  2Al<sub>2</sub>O<sub>3</sub>) и бора (4B + 3O<sub>2</sub>  $\rightarrow$  2B<sub>2</sub>O<sub>3</sub>) проведены параметрические расчеты горения для температур окружающего частицы воздуха *T* = 2400–3300 K, начального диаметра частицы  $D_{0i} = 10$ –40 мкм, начальной температуры частицы AlB<sub>2</sub>  $T_{0i} = 300$ –1200 K, изменения относительной концентрации кислорода вблизи частиц  $n_{O2} = 0.1$ –0.23. В соответствии с работой [16] при моделировании предполагалось следующее:

— частица AlB<sub>2</sub> представляет собой равномерно перемешанный сплав бора и алюминия,

 параллельные химические реакции протекают на доле поверхности частицы в соответствии с массовой долей бора и алюминия,

 оксидные пленки бора и алюминия покрывают всю поверхность частицы,

 физико-химические процессы протекают в тонком слое вблизи частицы,

 — фазовый состав AlB<sub>2</sub> не изменяется при горении,

— температура частицы одинакова по всему объему,

– газ вблизи частицы оптически прозрачен.

В результате были получены аппроксимирующие зависимости:

— время индукции воспламенения (в мс):

$$\tau_{\rm H} = 6.652 \cdot 10^{10} T^{-3.566} D_{0i}^{1.685} T_{0i}^{-0.245}, \tag{4}$$

где T — температура окружающего частицы воздуха (К),  $D_{0i}$  — начальный диаметр частиц (мкм),  $T_{0i}$  — начальная температура частиц (К);

— время горения (в мс):

$$\tau_{\rm rop} = 0.834 \cdot 10^{-3} T^{-0.032} D_{0i}^{1.476} g_{\rm B}^{-1.145}, \tag{5}$$

где размерность *Т* подставляется в К, *D*<sub>0*i*</sub> — в мкм.

Дифференцируя зависимость (5), можно получить выражение для расчета скорости изменения диаметра частицы  $AlB_2$  в зависимости от режимных параметров горения, что соответствует изменению условий ее взаимодействия с высокотемпературным высокоскоростным потоком по траекториям движения каждой отдельной частицы в камере дожигания:

$$u_{\rm q} = \begin{cases} 0 \text{ при } x < x_{\rm H}; \\ k T^a g_{\rm B}^{1.145} \left( \frac{D_i \cdot 10^6}{2} \right)^{0.476} \text{ при } x \ge x_{\rm H}, \end{cases}$$
(6)

где  $x_{\mu}$  — осевая координата, соответствующая окончанию индукции воспламенения; T — температура газа вблизи частицы;  $D_i$  — текущий диаметр частицы; k, a — эмпирические коэффициент и степенной показатель соответственно. Значения k и a для различных температур приведены в табл. 1.

Сопоставление скоростей горения частиц, рассчитанных с помощью выражения (6), с данными, полученными в результате анализа экспериментов [8, 13, 17–21], показывает, что различия не превышают 17%.

Для определения параметров потока в произвольном сечении камеры дожигания с осевой координатой *x* решается адаптированная система уравнений [22], включающая уравнения сохранения энергии, количества движения, массового расхода и уравнение состояния. Решение системы уравнений осуществлялось итерационным способом с применением неявного

### Таблица 1

Значения эмпирических коэффициента *k* и степенного показателя *a* для различных температур

| <i>Т</i> , К | k         | а     |
|--------------|-----------|-------|
| 1000–2400    | 3.15.10-6 | 0.752 |
| 2400-3300    | 0.85.10-3 | 0.032 |

метода Рунге-Кутта, реализованного в авторском программном коде.

В представленной постановке задачи стенки канала приняты адиабатическими. Импульс потока Р в сечениях канала принимался постоянным, что справедливо в случае незначительных потерь на трение. Принимается, что газовая фаза находится в равновесии. Такое допущение справедливо, так как в рассматриваемых условиях (при высоких температурах и наличии окисленного слоя на поверхности частиц AlB<sub>2</sub>) скорость протекания гомогенных химических реакций (в том числе горения, диссоциации и рекомбинации) превышает скорость горения частиц. Для определения термодинамических параметров каждой из компонент газовой фазы и смеси в целом использовался программный комплекс TERRA (разработанный в МГТУ им. Н. Э. Баумана проф. Б. Г. Трусовым), позволяющий провести расчет для химически равновесного состава.

В качестве граничных условий задавались массовые расходы воздуха  $m_{\rm B}$  и продуктов газификации  $m_{\rm III}$ , полные энтальпии воздуха  $H_{\rm B}^*$  и продуктов газификации  $H_{\rm III}^*$ , а также число Маха  $M_{\rm BX} = w_0/a_0$  во входном сечении камеры дожигания ( $w_0$  — начальная скорость потока,  $a_0$  —скорость звука во входном сечении).

В работе проведены параметрические исследования эффективности рабочего процесса в интервале коэффициента избытка воздуха  $\alpha = 1-3$ , имеющего температуру на входе  $T_{\rm B0} = 300-2000$  К. Рабочий процесс моделируется при расходонапряженности в камере дожигания  $\Omega = (G_{\rm B} + G_{\rm nr})/F = 100-1000$  кг·м<sup>-2</sup> и числах Маха  $M_{\rm Bx} = 0.1-1.5$ . Относительная длина камеры дожигания принята равной  $\frac{x_{\rm K}}{\sqrt{4F/\pi}} = 15$ . Указанные значения параметров соответствуют области практического применения результатов расчетов [1–5].

Отличительная особенность математической модели и алгоритма расчета заключается в возможности проведения параметрического исследования без использования ресурсозатратных программных комплексов и вычислительных кластеров, а результаты расчетов позволяют оперативно определить основные закономерности и оценить влияние режимных параметров и геометрии камеры дожигания на характеристики рабочего процесса.

#### Обсуждение результатов

Наиболее важными параметрами, определяющими эффективность горения частиц конденсированной фазы, как известно, являются температура воздуха  $T_{\rm B0}$  на входе в камеру дожигания, соотношение компонен-



Рис. 3. Распределения параметров θ (*a*) и g<sub>в</sub> (*б*) по длине камеры дожигания. *T*<sub>в0</sub> (K): *1* — 300, *2* — 1000, *3* — 1500, *4* — 2000.

тов и диаметр частиц. Примеры распределения температуры газа T и массовой доли воздуха  $g_{\rm B}$  по длине камеры дожигания для различных начальных значений температур воздуха  $T_{\rm B0}$  при  $\alpha = 2$  для монодисперсных частиц с начальным диаметром  $D_{0i} = 40$  мкм показаны на рис. 3. Значения температуры представлены в безразмерном виде  $\theta = (T - T_{\rm B0})/(T^* - T_{\rm B0})$ , где  $T_{\rm B0}$  — начальная температура воздуха,  $T^*$  — термодинамически равновесная температура продуктов сгорания ЭКС в камере дожигания при заданном значении  $\alpha$ .

Зависимости на рис. З характеризуются тем, что по мере движения частиц в канале происходит их горение с выделением тепловой энергии, что сопровождается повышением температуры (рис. 3, *a*) и одновременно снижением концентрации окислителя (рис. 3,  $\delta$ ). При этом с повышением начальной температуры воздуха с 300 до 2000 К интенсифицируется выгорание частиц AlB<sub>2</sub> за счет сокращения периода индукции воспламенения и увеличения скорости горения частиц AlB<sub>2</sub> при прочих равных условиях.

Влияние начальной температуры воздуха. С увеличением температуры  $T_{\rm B0}$  коэффициент полноты сгорания частиц возрастает, поскольку, согласно зависимостям (4) и (5), при этом уменьшаются как период индукции воспламенения, так и время горения частиц (рис. 4).

Расчетные и экспериментальные данные [8, 13, 17] показывают, что при относительно низких температурах и достаточном содержании окислителя ( $\alpha > 1$ ) интенсивность процесса горения частиц лимитируется кинетикой гетерогенной реакции. При этом с повышением начальной температуры воздуха от 300 до 2000 К коэффициент полноты сгорания (при прочих равных условиях) может быть увеличен в 1.7–1.9 раза. Сравнение расчетных и экспериментальных данных свидетельствует об их удовлетворительном совпадении (различия не превышают 9%), что подтверждает адекватность математической модели и корректность принятых допущений.

Отметим, что согласно расчетам для организации эффективного процесса горения частиц  $AlB_2$  в камере дожигания требуется достичь температуры продуктов сгорания на уровне  $T_{\rm Kg} = 2400$  K (рис. 5). При меньших значениях температуры скорость горения



Рис. 4. Зависимость коэффициента полноты сгорания частиц от температуры воздуха на входе в камеру дожигания для монодисперсной аэровзвеси,  $D_{0i} = 40$  мкм. Линии — расчет, точки — эксперимент (I — [8], II — [13], III — [17]). α: I — 1, 2 — 1.5, 3 — 2.

частиц недостаточна для обеспечения высоких значений коэффициента полноты сгорания  $\eta_{\rm K}$  на заданной длине камеры дожигания. При более высоких температурах в камере дожигания, несмотря на высокую скорость горения частиц и соответственно высокий  $\eta_{\rm K}$ , происходит интенсивная диссоциация продуктов сгорания борсодержащих соединений [17, 23], которая приводит к потерям тепловой энергии (более 30% от теплоты сгорания AlB<sub>2</sub>), что выражается в снижении коэффициента  $\eta_{\rm A}$ , учитывающего потери на диссоциацию. В связи с этим суммарный коэффициент использования химической энергии, запасенной в единице AlB<sub>2</sub>,  $\eta_{\Sigma} = \eta_{\rm K}\eta_{\rm A}$  имеет максимум в области  $T_{\rm KA} = 2400$  K.

По мере роста начальной температуры воздуха увеличивается роль диффузии кислорода вблизи частицы, зависящая также и от величины  $g_{\rm B}$ . В результате лимитирующим фактором горения частицы становится соотношение компонентов, определяющее действительную температуру продуктов сгорания в конкретном сечении камеры дожигания.

Влияние коэффициента избытка окислителя. С ростом значений  $\alpha$  величина  $\eta_{\kappa}$  в интервале коэффициента избытка окислителя  $\alpha = 1-3$  изменяется немонотонно (рис. 6). Это связано с комплексным влиянием как температуры газа, так и содержания в газе воздуха. В общем случае повышение температуры, как изложено выше, приводит к росту коэффициента полноты сгорания.

С целью разделения режимов горения примем, что при отрицательном значении производной  $\partial \eta_{\kappa} / \partial \alpha$  реализуется «кинетический» режим. В области, для которой  $\partial \eta_{\kappa} / \partial \alpha > 0$ , примем наиболее вероятным «диффузионный» режим взаимодействия AlB<sub>2</sub> с окислителем. В случае наличия локального максимума, характеризуемого равенством нулю







Рис. 6. Зависимость коэффициента полноты сгорания от коэффициента избытка воздуха.

 $T_{\rm b0}$  (K): 1 — 300, 2 — 700, 3 — 1000, 4 — 1500, 5 — 2000.

производной  $\partial \eta_{\kappa} / \partial \alpha = 0$ , режим горения будем условно называть «диффузионно-кинетическим». Для обобщения данных охарактеризуем режим горения с помощью числа Дамкелера: Da =  $\tau_{np}/(\tau_{u} + \tau_{r})$ , где τ<sub>пр</sub> — время пребывания частиц в камере дожигания; т<sub>г</sub> — время полного сгорания частицы в воздухе при температуре воздуха, равной Тво. Расчеты показывают, что для используемой модели горения при Da ≤ 0.5 реализуется «кинетический» режим горения, при 0.5 < Da ≤ 1— «диффузионно-кинетический», а при Da > 1 — «диффузионный». Наличие экстремума можно объяснить превалирующим влиянием, с одной стороны, увеличения концентрации кислорода, с другой — уменьшением равновесной температуры продуктов сгорания и, следовательно, захолаживанием аэровзвеси, причем с ростом Тво положение этого экстремума смещается в область больших значений α.

В соответствии с вышеизложенным при относительно невысоких температурах (300-800 К) реализуется горение частиц в «кинетическом» режиме, когда с увеличением α происходит монотонное снижение коэффициента полноты сгорания. Это определяется низкой предельной скоростью горения частиц в области входа в камеру дожигания. По мере роста *T*<sub>в0</sub> закономерности горения частиц изменяются. При близком к стехиометрическому соотношению компонентов и при начальной температуре воздуха 800–1800 К зависимость  $\eta_{\kappa} = f(\alpha)$  может иметь локальные максимумы, связанные с наиболее высокими скоростями горения частиц. С дальнейшим повышением начальной температуры воздуха происходит переход от «кинетического» режима горения к «диффузионному», когда увеличение α в интервале 1-2.2



Рис. 7. Зависимость коэффициента полноты сгорания частиц от  $D_{0i}$ .

 $T_{\rm B0}$  (K): 1 — 300, 2 — 1000, 3 — 2000.

приводит к росту значений коэффициента полноты сгорания  $\eta_{\kappa}$ .

Влияние диаметра частиц. Рассмотрим влияние начального диаметра частиц на их полноту сгорания. Расчеты выполнены для стехиометрического соотношения компонентов при диаметрах монодисперсных частиц от 5 до 80 мкм, а также для полидисперсных частиц от 5 до 80 мкм, а также для полидисперсного распределения частиц, аналогичного приведенному в работе [24]. На рис. 7 данные представлены для начальной температуры воздуха 300, 1000 и 2000 К. Для более наглядного сравнения результатов расчетов представим коэффициент полноты сгорания частиц в безразмерном виде  $\eta_{\kappa}/\eta_{\kappa40}$ , где  $\eta_{\kappa40}$  — коэффициент полноты сгорания частиц ный при прочих равных условиях.

Отметим, что для частиц с начальным диаметром  $D_{0i} = 5$  мкм полнота их сгорания в рассматриваемом канале больше в 1.2–1.8 раза, что обусловлено значительным ростом поверхности горения на единицу массы частиц, а также снижением периода индукции воспламенения (4) и времени горения (5) при уменьшении начального диаметра частиц.

С увеличением начальной температуры воздуха влияние дисперсного состава конденсированной фа-

зы на эффективность горения нивелируется. Таким образом, при  $T_{\rm B0} = 300$  К изменение диаметра частиц от 80 до 5 мкм приводит к трех кратному увеличению коэффициента полноты сгорания, а при температуре  $T_{\rm B0} = 2000$  К — увеличение коэффициента полноты сгорания составляет около 45%.

Установлено, что горение полидисперсных частиц AlB<sub>2</sub> со средним поверхностным диаметром (диаметром Заутера)  $D_{32} \approx 40$  мкм по величине  $\eta_{\rm K}$  сопоставимо с горением эквивалентной системы монодисперсного порошка того же начального диаметра (различия не превышают 11%). Относительные значения коэффициента полноты сгорания  $|1 - \eta_{\rm KM}/\eta_{\rm KR}| \cdot 100\%$  при различных величинах  $T_{\rm B0}$  и  $\alpha$  представлены в табл. 2. Здесь  $\eta_{\rm KM}$  и  $\eta_{\rm KR}$  — коэффициенты полноты сгорания монодисперсных и полидисперсных частиц соответственно при одинаковых  $D_{32}$ . Полидисперсное распределение соответствует данным [24].

Отметим, что для полидисперсного распределения диаметров частиц наблюдаются более высокие значения коэффициента полноты сгорания, что обусловлено интенсивным сгоранием мелких частиц на начальном участке камеры дожигания с соответствующим ростом температуры и повышением скорости горения крупных частиц.

Влияние скорости потока во входном сечении. Увеличение числа Маха потока во входном сечении  $M_{\rm BX}$  приводит к уменьшению времени пребывания частиц конденсированной фазы в камере дожигания, вследствие чего происходит снижение  $\eta_{\rm K}$  (рис. 8). Значения коэффициентов полноты сгорания частиц получены для монофракции с диаметром частиц  $D_{0i} = 40$  мкм и представлены в относительном виде  $\eta_{\rm K}/\eta_{\rm K0.3}$ , где  $\eta_{\rm K0.3}$  — расчетное значение, полученное для камеры дожигания с  $M_{\rm BX} = 0.3$ .

Как видно из рис. 8, снижение числа Маха  $M_{\rm BX}$  приводит к увеличению коэффициента полноты сгорания, что является следствием повышения как времени пребывания частиц в камере дожигания, так и статической температуры газа.

| α   | $T_{\rm B0} = 300 {\rm K}$ | $T_{\rm B0} = 1000 {\rm ~K}$ | $T_{\rm B0} = 1500 {\rm ~K}$ | $T_{\rm B0} = 2000 \ {\rm K}$ |  |
|-----|----------------------------|------------------------------|------------------------------|-------------------------------|--|
| 1.0 | 10.7                       | 8.7                          | 8.1                          | 6.3                           |  |
| 1.5 | 7.7                        | 6.3                          | 5.9                          | 4.6                           |  |
| 2.0 | 5.6                        | 4.6                          | 4.3                          | 3.3                           |  |
| 2.5 | 4.0                        | 3.3                          | 3.1                          | 2.4                           |  |

**Таблица 2** Значения |1 – n.../n....|·100%





$$T_{\rm B0}$$
 (K): 1 — 300, 2 — 1000, 3 — 2000.

## Выводы

Исследование горения частиц диборида алюминия в воздушном потоке с использованием одномерной математической модели позволило установить следующие закономерности.

1. При температуре воздуха на входе в камеру дожигания 300 К и стехиометрическом соотношении AlB<sub>2</sub> с воздухом для частиц с диаметром  $D_{0i} = 5$  мкм полнота их сгорания в рассматриваемом канале может достигать 0.81. С увеличением диаметра полнота сгорания частиц уменьшается и при  $D_{0i} = 80$  мкм составляет около 0.32. Эффективности горения полидисперсных и монодисперсных частиц в рассматриваемой постановке задачи практически совпадают при равенстве их средних поверхностных диаметров.

2. Повышение температуры воздуха на входе в камеру дожигания от 300 до 2000 К приводит к увеличению коэффициента полноты сгорания (при прочих равных условиях) в 1.7–1.9 раза для частиц с  $D_{0i} = 5$  мкм и в 1.2–1.3 раза для частиц с  $D_{0i} = 80$  мкм. Увеличение числа Маха на входе с 0.3 до 1.5 приводит к снижению коэффициента полноты сгорания в 2.9–3.1 раза.

3. Температура воздуха на входе в камеру дожигания влияет на режим горения: при низких температурах (числа Дамкеллера Da  $\leq$  0.5) реализуется горение частиц в «кинетическом» режиме, когда с увеличением а происходит монотонное снижение коэффициента полноты сгорания. Повышение температуры приводит к постепенному переходу в «диффузионный» режим горения частиц, который реализуется при числе Da > 1. Для реализации эффективного горения частиц  $AlB_2$  требуется обеспечить температуру продуктов сгорания в камере дожигания около 2400 К. При значениях температуры менее 2400 К скорость горения частиц будет низкая, а при более высоких имеет место интенсивная диссоциация продуктов сгорания.

# Финансирование работы

Работа выполнена при поддержке Российского научного фонда (проект № 19-49-02031).

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов, требующих раскрытия в данной статье.

#### Информация об авторах

Константин Юрьевич Арефьев, к.т.н., начальник отдела «Аэрокосмические двигатели» ФГУП «ЦИАМ им. П. И. Баранова», доцент кафедры «Ракетные двигатели» МГТУ им. Н. Э. Баумана, заместитель заведующего лабораторией гиперзвуковых и плазменных технологий МФТИ, ORCID: https://orcid.org/0000-0001-9770-1812

Леонид Самойлович Яновский, д.т.н., начальник отдела «Специальные авиационные двигатели и химмотология» ФГУП «ЦИАМ им. П. И. Баранова», ORCID: https://orcid.org/0000-0002-2603-6795

Дмитрий Алексеевич Ягодников, д.т.н., заведующий кафедрой «Ракетные двигатели» МГТУ им. Н. Э. Баумана, ORCID: https://orcid.org/0000-0001-9674-7499

# Список литературы

- [1] Van Wie D., D'Alessio S., White M. // Johns Hopkins APL Technical Digest. 2005. V. 26. N 4. P. 430–437.
- [2] Вареных Н. М., Шабунин А. И., Сарабьев В. И., Хрисантов М. В., Шибанов С. В., Калинин С. В. // Боеприпасы и спецхимия. 2013. № 1. С. 44–50.
- [3] Kurth G., Bauer C., Hopfe N. // 51st AIAA/SAE/ASEE Joint Propulsion Conf. Propulsion and Energy Forum. AIAA 2015-4234.
- [4] Александров В. Н., Быцкевич В. М., Верхоломов В. К., Граменицкий М. Д., Дулепов Н. П., Скибин В. А., Суриков Е. В., Хилькевич В. Я., Яновский Л. С. Интегральные прямоточные воздушно-реактивные двигатели на твердых топливах. Основы теории и расчета. М.: ИКЦ «Академкнига», 2006. 343 с.
- [5] Бакулин В. Н., Дубовкин Н. Ф., Котова В. Н., Сорокин В. А., Францкевич В. П., Яновский Л. С. Энергоемкие горючие для авиационных и ракетных дви-

гателей / Под ред. Л. С. Яновского. М.: Физматлит, 2009. 320 с.

- [6] Байков А. В., Пешкова А. В., Шиховцев А. В., Яновский Л. С. // Горение и взрыв. 2016. Т. 9. № 4. С. 126–131.
- [7] Золотко А. Н., Ушакова Н. А., Демирова М. В. // Физика аэродисперсных систем. 2010. № 47. С. 91– 99.
- [8] Арефьев К. Ю., Воронецкий А. В., Прохоров А. Н., Яновский Л. С. // Физика горения и взрыва. 2017. № 3. С. 42–52 [Arefev K. Yu., Voronetskii A. V., Prokhorov A. N., Yanovskii L. S. // Combustion, Explosion, and Shock Waves. 2017. V. 53. N 3. P. 283–292].
- [9] *Воронецкий А. В.* // Наука и образование: научное издание МГТУ им. Н. Э. Баумана. 2016. № 1. С. 10–37.
- [10] Вовчук Я. И., Золотко А. Н., Клячко Л. А., Полииук Д. И., Шевчук В. Г. // Физика горения и взрыва. 1974. № 4. С. 615–618.
- [11] Вовчук Я. И., Золотко А. Н., Клячко Л. А., Полииук Д. И. // Физика горения и взрыва. 1975. № 4. С. 556–563.
- [12] Ягодников Д. А. Горение порошкообразных металлов в газодисперсных средах. М.: Изд-во МГТУ им. Н. Э. Баумана, 2018. 444 с.
- [13] Яновский Л. С., Разносчиков В. В., Шаров М. С., Коломенцев П. А., Попова А. Б. // Вестн. Москов. авиац. ин-та. 2013. Т. 20. № 4. С. 90–98.
- [14] Ананьев А. В., Борисов Д. М., Васютичев А. С., Гидаспов В. Ю., Дегтярев С. А., Лаптев И. В., Руденко А. М. // Вестн. Москов. авиац. ин-та. 2009. Т. 16. № 2. С. 131–140.

- [15] Александров В. Ю., Кукшинов Н. В. // Физика горения и взрыва. 2016. № 3. С. 32–36 [Aleksandrov V. Yu., Kukshinov N. V. // Combustion, Explosion, and Shock Waves. 2016. V. 52. N 3. P. 281–285].
- [16] Папырин П. В., Сухов А. В., Ягодников Д. А. // Инженерный журнал: наука и инновации. 2017. № 6. С. 1–12.
- [17] Александров В. Ю., Арефьев К. Ю., Прохоров А. Н., Федотова К. В., Шаров М. С., Яновский Л. С.
  // Изв. вузов. Машиностроение. 2016. № 2. С. 65–74.
- [18] Macek A., Semple J. M. K. // Combust. Sci. and Technol. 1969. V. 1. N 3. P. 181–191.
- [19] Li S. C. // Combust. Sci. and Technol. 1991. V. 77. N 1. P. 149–169.
- [20] Yeh C. L., Kuo K. K. //Progress in Energy and Combust. Sci. 1996. V. 22. N 6. P. 511–541.
- [21] Young G., Sullivan K., Zachariah M. R., Yu K. // Combust. and Flame. 2009. V. 156. N 2. P. 322– 333.
- [22] Арефьев К. Ю., Кукшинов Н. В., Серпинский О. С. // Изв. РАН. Механика жидкости и газа. 2017. № 5. С. 90–102.
- [23] Аверьков И. С., Александров В. Ю., Арефьев К. Ю., Воронецкий А. В., Гуськов О. В., Прохоров А. Н., Яновский Л. С. // Теплофизика высоких температур. 2016. № 6. С. 939–949 [Aver'kov I. S., Aleksandrov V. Yu., Aref ev K. Yu., Voronetskii A. V., Gus'kov O. V., Prokhorov A. N., Yanovskii L. S. // High Temperature. 2016. № 6. 882–891].
- [24] Ягодников Д. А., Лапицкий В. И., Сухов А. В., Томак В. И. // Инж. вестн. 2014. № 11. С. 12.