= ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ И МАТЕРИАЛЫ НА ИХ ОСНОВЕ =

УДК 544.77.03+544.77.052.22

ФЛОКУЛИРУЮЩИЕ И ГИДРОДИНАМИЧЕСКИЕ СВОЙСТВА СОЛЕВЫХ РАСТВОРОВ АКРИЛАМИДНЫХ ПОЛИМЕРОВ

Д. Н. Давлюд, Е. В. Воробьева, Е. В. Лаевская, Д. В. Чередниченко, П. Д. Воробьев

Институт общей и неорганической химии НАН Беларуси, 220000, Беларусь, г. Минск, ул. Сурганова, д. 9/1 E-mail: davlud.d@tut.by

> Поступила в Редакцию 19 ноября 2018 г. После доработки 17 июня 2019 г. Принята к публикации 24 июня 2019 г.

Описаны особенности флокуляции солевых (хлориды калия и натрия) дисперсий глины полиакриламидом и анионными сополимерами акриламида, включая влияние способа растворения полимеров в воде или солевом растворе на скорость осаждения и плотность флокул и гидродинамические свойства полимеров. Показано, что использование солевых растворов флокулянтов приводит к повышению флокулирующего эффекта. Наиболее эффективным флокулянтом для солевых дисперсий глины является полиакриламид, приготовленный в солевом растворе, что обусловлено большей гибкостью полимерной цепи. Полученные результаты представляют практический интерес в связи с возможностью увеличения эффективности флокуляции солевых дисперсий глины в процессах обогащения калийных руд.

Ключевые слова: *полиакриламид; солевой раствор; флокуляция; гибкость цепи; плотность флокул* DOI: 10.1134/S0044461819080127

Одним из наиболее эффективных и экономичных способов очистки природных и сточных вод от взвешенных частиц, а также сгущения и обезвоживания промышленных суспензий является флокуляция с применением высокомолекулярных соединений. Флокулянты на основе полиакриламида (ПА) и сополимеров акриламида находят широкое применение в современных технологиях обесшламливания на предприятиях калийной промышленности, где выделение дисперсной фазы (глинистых шламов) осуществляется из насыщенного солевого раствора хлоридов калия и натрия [1].

Высокая концентрация соли в глинистой дисперсии приводит к сжатию двойного электрического слоя частиц, а также к изменению конформационного состояния макромолекул флокулянтов. Ионы электролита нейтрализуют поверхностный заряд ионогенных макромолекул и усиливают гидрофобные взаимодействия неполярных фрагментов полимерной цепи. Флокуляция в таких системах происходит преимущественно посредством механизма мостикообразования [2–4].

Флокулянты вводят в дисперсную систему обычно в виде разбавленных водных растворов. Для солевых дисперсий глины более целесообразным является использование солевых растворов флокулянтов. Для внедрения использования солевых растворов флокулянтов в технологические процессы необходимо изучить процесс растворения полимеров в солевом растворе, состав которого соответствует составу дисперсионной среды, т. е. в концентрированном растворе хлоридов калия и натрия. В литературе практически нет данных о растворении акриламидных полимеров в концентрированных растворах солей и о том, как влияет состав растворителя на их конформационное состояние, гидродинамические свойства и флокулирующую способность в отношении солевых дисперсий глины. В целом процессы флокуляции глины, происходящие в концентрированных солевых средах с участием высокомолекулярных флокулянтов, остаются малоизученными и представляют интерес как с теоретической, так и с практической точки зрения.

В настоящей статье представлены результаты исследования флокуляции солевых дисперсий глины полиакриламидом и анионными сополимерами акриламида, растворенными в концентрированных солевых растворах хлоридов калия и натрия.

Экспериментальная часть

Характеристики использованных в работе полимеров — полиакриламида и анионных сополимеров акриламида с акрилатом натрия (AC) марки Praestol (Solenis, США) — приведены в табл. 1.

Для растворения полимеров использовали водные растворы хлоридов калия (KCl) и натрия (NaCl) концентрацией 3.4 моль · л⁻¹. Полимеры растворяли в воде и солевом растворе в одинаковых условиях (температура, время и скорость перемешивания). Растворы флокулянтов (концентрация 0.5 мас%) использовали свежеприготовленными. При обсуждении результатов эксперимента полимеры, приготовленные в солевом и водном растворах, обозначали индексом «с» и «в» соответственно (например, ПА_с, ПА_в).

Обменная емкость ионогенных сополимеров, определенная в соответствии с [5], в солевом растворе составляет для AC20 и AC40 1.9 и 4.1 мг-экв гг⁻¹ соответственно; ионогенные группы AC находятся в карбоксилатной форме.

Солевую дисперсию глины готовили с использованием каолина Sigma-Aldrich (марка 18616, Германия). Содержание частиц размером менее 1 мкм — 32%, 1–2 мкм — 35%, 2–3 мкм — 28%, плотность — 2.8 г·см⁻³, удельная поверхность по низкотемпературной адсорбции азота — 15 м²·г⁻¹. Глинистые дисперсии готовили на солевых растворах с концентрацией хлоридов натрия и калия 3.4 моль·л⁻¹. После введения каолина в солевой раствор суспензию выдерживали в течение 24 ч.

Эксперименты по флокуляции проводили в мерных цилиндрах. В солевую дисперсию глины вводили приготовленный водный или солевой раствор флокулянта. Концентрацию флокулянта в дисперсии рассчитывали по отношению к твердой фазе (глина) в интервале (0–24)·10⁻⁴ мас%. После введения раствора флокулянта дисперсию десятикратно перемешивали дисковой мешалкой с отверстиями. Скорость осаждения определяли по времени изменения границы раздела между осветленной и концентрированной

Структурная формула	Обозначение	Содержание ионогенных звеньев <i>m</i> , мол%	MM, <i>D</i> ·10 ⁻⁶				
$\begin{bmatrix} CH_2 & CH \\ I \\ C \equiv O \\ NH_2 \end{bmatrix}_n$	ПА		10				
$ \begin{array}{c c} CH_2 & CH \\ & I \\ C \equiv O \\ & I \\ & NH_2 \end{array} $ $ \begin{array}{c c} CH_2 & CH \\ & I \\ C \equiv O \\ & I \\ & O \\ & Na \end{array} $	AC20	20	14				
$ \begin{array}{c c} CH_2 & CH \\ I \\ C = O \\ I \\ NH_2 \end{array} \begin{bmatrix} CH_2 & CH \\ I \\ C = O \\ I \\ O \\ Na \end{bmatrix}_{m} $	AC40	40	14				

Таблица 1 Характеристика флокулянтов

фазами дисперсии. На основании результатов эксперимента по седиментации рассчитывали флокулирующий эффект *D* [2]:

$$D = \frac{V - V_0}{V},\tag{1}$$

где V — скорость осаждения суспензии каолина с добавлением флокулянта, V_0 — скорость осаждения суспензии без добавления флокулянта.

Измерение размеров флокул проводили в разбавленных суспензиях с низким содержанием дисперсной фазы (0.5 мас%) при концентрации флокулянта 0.2% [6].

Вязкость растворов полимеров измеряли в стеклянном вискозиметре Оствальда–Пинкевича (d == 1.5 мм) при $T = 25 \pm 0.2$ °C с точностью до 0.2 с. Первую серию растворов флокулянтов (0.5 мас%) готовили в солевых растворах хлоридов калия и натрия (3.4 моль · л⁻¹) и далее разбавляли до нужной концентрации соответствующим солевым раствором. Вторую серию растворов флокулянтов готовили на дистиллированной воде (0.5 мас%) и затем проводили разбавление солевыми растворами (3.4 моль·л⁻¹). По экспериментальным данным рассчитывали относительную, удельную, приведенную вязкость, определяли характеристическую вязкость $[\eta]$, по формуле (2) — константу Хаггинса (K_x), по формуле (3) — эффективный объем макромолекул полимеров ($V_{3\phi}$), по формуле (4) — сегмент Куна (*L*_c), по формуле (5) — гидродинамический радиус. Параметры *L*_с и *V*_{эф} рассчитывали для концентраций флокулянтов ниже концентрации кроссовера (c^*), т. е. для случая, когда макромолекулы в растворе движутся независимо друг от друга [7]:

$$\frac{\eta_{y\pi}}{c} = [\eta] + K_{x}[\eta]^{2}c, \qquad (2)$$

где K_x — константа Хаггинса, η_{yg} — удельная вязкость раствора, c — концентрация полимера (г·дл⁻¹), [η] — характеристическая вязкость (дл·г⁻¹).

$$V_{_{3\phi}} = \frac{0.74 \,\eta_{y\pi} \,M}{(2.5 + \eta_{y\pi}) c N_{\rm A}},\tag{3}$$

где $V_{3\phi}$ — эффективный объем макромолекулы в растворе (дм³); *с* — концентрация полимера (г·дм⁻³); *М* — молекулярная масса; 2.5 — коэффициент, учитывающий взаимодействие жесткой сферической частицы со средой; N_A — число Авогадро (моль⁻¹).

$$L_{\rm c} = \frac{0.33\mu}{b\Phi\sin(\frac{\phi}{2})} \frac{[\eta]}{V_{\rm k}^{1/3}},$$
 (4)

где L_c — сегмент Куна (нм), μ — молярная масса мономерного звена акриламидного полимера (кг·моль⁻¹), $b = 1.54 \cdot 10^{-10}$ — длина связи С–С в основной цепи макромолекулы (м), $\varphi = 109^\circ$ — валентный угол между ковалентными связями основной цепи, V_k — объем макромолекулярного клубка (м³) [9].

$$R_{\rm h} = \left(\frac{3[\eta]M}{10\pi N_{\rm A}}\right)^{\frac{1}{3}},\tag{5}$$

где R_h — гидродинамический радиус (м); π — математическая константа, выражающая отношение длины окружности к длине ее диаметра.

Авторы [9] предложили рассчитывать плотность флокул, используя модифицированное уравнение Стокса. Принимая во внимание сферичность флокул, равную 0.8, и то, что флокулы оседают в ламинарном режиме, эффективную плотность флокулы (г·см⁻³) можно рассчитать по формуле

$$\rho = \frac{135\mu_{\rm w}V_{\rm s}}{4gd_{\rm f}^2},\tag{6}$$

где $d_{\rm f}$ — диаметр флокул (см), $V_{\rm s}$ — скорость оседания частиц (см·с⁻¹), $\mu_{\rm w}$ — динамическая вязкость среды (H·с·м⁻²), g — ускорение свободного падения.

Обсуждение результатов

Эффективность флокулирующего действия зависит от химической природы, состава (содержание ионогенных групп), концентрации флокулянтов, а также от состава растворителя, использованного для растворения полимеров. Увеличение концентрации полимера приводит к росту флокулирующего эффекта независимо от способа приготовления (рис. 1). Это объясняется увеличением макромолекулярных фрагментов, участвующих в мостикообразовании. Увеличение точек контакта макромолекул и частиц каолина приводит к формированию крупных агрегатов, которые теряют устойчивость, осаждение частиц происходит с более высокой скоростью.

В дисперсии с хлоридом натрия (рис. 1, a) и хлоридом калия (рис. 1, δ) наиболее высокий флокулирующий эффект проявляет неионогенный полиакриламид, приготовленный с использованием соответствующих солевых растворов. Использование водных растворов полимеров приводит к снижению флокулирующего эффекта: в случае использования ПА и AC20 — в среднем 1.3 раза, для AC40 — в 1.5 раза. Вероятно, при переходе от водной к солевой среде происходит резкое изменение конформаци-

Рис. 1. Флокулирующий эффект в зависимости от концентрации полимера в дисперсии. *а* — хлорид натрия, *б* — хлорид калия.

онного состояния макромолекул. Сжатие макромолекулярного клубка приводит к снижению адсорбции полимера на поверхности каолина, что ведет к уменьшению флокулирующего эффекта. Более низкая вязкость раствора хлорида калия по сравнению с раствором хлорида натрия способствует более быстрому осаждению флокул и увеличению флокулирующего эффекта при использовании полиакриламида и анионных сополимеров акриламида в среде KC1.

Флокулирующий эффект возрастает в ряду полимеров $AC40_B \rightarrow AC40_C \rightarrow AC20_B \rightarrow AC20_C \rightarrow \Pi A_B \rightarrow$ $\rightarrow \Pi A_c$ (рис. 1). Увеличение содержания ионогенных групп приводит к снижению скорости осаждения частиц независимо от способа приготовления флокулянта. В водных дисперсиях глины при флокуляции глинистых частиц анионными сополимерами электростатическое отталкивание между отрицательно заряженными частицами и анионными группами макромолекул приводит к тому, что адсорбция происходит за счет малого количества контактов полимера с поверхностью. Взаимное отталкивание ионогенных групп разворачивает фрагменты макромолекулы, что способствует взаимодействию полимера с частицами, флокуляция сопровождается увеличением размера флокул [10]. В солевой среде взаимодействие анионных групп сополимеров с ионами низкомолекулярного электролита приводит к нейтрализации заряда макромолекулы и сжатию макромолекулярного клубка. Таким образом, взаимодействие частиц глины с анионным сополимером уменьшается.

В табл. 2 приведен рассчитанный по экспериментальным данным эффективный объем макромолекул ПА, AC20, AC40. Видно, что эффективный объем макромолекул ПА, AC20, AC40, приготовленных в солевых растворах хлорида калия, выше по сравнению с объемом в растворах полимеров, приготовленных в воде и разбавленных солевым раствором (соответственно солевые и водные растворы полимеров). Меньшие значения эффективного объема макромолекул ПА объясняются более низкой молекулярной массой полимера и отсутствием ионогенных групп, взаимное отталкивание которых способствует увеличению V_{эф}.

Усиление гидрофобных взаимодействий в солевой среде между неполярными фрагментами полимерной цепи полиакриламида в меньшей степени влияет на эффективный объем макромолекул по сравнению с электростатическими взаимодействиями полиэлектролитов: эффективный объем макромолекул ПА в растворах хлорида натрия практически равен $V_{эф}$ AC40; эффективный объем макромолекул AC20 в растворе NaCl выше по сравнению с AC40 и ПАА (табл. 2).

Макромолекулярные клубки в водных растворах при низкой концентрации полимера имеют развернутую и рыхлую структуру, при переходе из водного раствора в солевой существуют две области: одна область обогащена ионами соли, другая — макромолекулами полимера. Между областями возникает осмотическое давление, что способствует выравниванию концентраций растворенных веществ. В случае

	V _{эф} , дм ³ ·10 ¹⁹							
Концентрация полимера <i>c</i> , г·л ⁻¹	солевой раствор полимера		водный раствор полимера					
	KCl	NaCl	KCl	NaCl				
ПА								
0.25	34.6	55.2	24.4	36.8				
0.5	34.5	56.9	24.0	35.7				
0.7	33.2	54.0	23.7	34.5				
1.0	32.0	51.8	23.4	32.9				
AC20								
0.25	64.0	89.8	46.9	64.9				
0.5	56.8	77.3	46.5	61.1				
0.7	54.9	74.4	45.1	58.7				
1.0	53.7		43.8	55.8				
AC40								
0.25	61.2	62.6	39.9	47.3				
0.5	59.3	62.3	39.0	46.0				
0.7	54.6	60.3	38.1	45.4				
1.0	53.1	57.9	37.4	45.1				

Таблица 2

Эффективный объем макромолекул полимеров в зависимости от способа приготовления раствора

анионных сополимеров акриламида сжатие макромолекулярного клубка при изменении ионной силы среды происходит за счет двух основных факторов: взаимодействия ионогенных групп и катионов солей и гидрофобных взаимодействий. Процесс в первую очередь затрагивает группы на поверхности полимерного клубка, которые отвечают за адсорбцию полимера на частицах каолина. В случае неионогенного полиакриламида сжатие макромолекулярного клубка происходит в основном за счет усиления гидрофобных взаимодействий, т. е. структура молекулы в меньшей степени подвержена конформационным изменениям, вследствие чего ПА обладает более высокой флокулирующей активностью в солевых растворах по сравнению с анионными сополимерами. При приготовлении солевых растворов происходит равномерное распределение ионов соли по всему объему раствора, включая сольватные оболочки макромолекул. В таком случае макромолекулы полимера не испытывают эффекта сжатия при попадании в солевую среду из водной, и функциональные группы, находящиеся

на поверхности макромолекулярного клубка, могут более эффективно адсорбироваться на глинистых частицах.

Результаты исследования гидродинамических свойств позволяют объяснить увеличение флокулирующей активности акриламидных полимеров, приготовленных в концентрированном растворе солей (KCl, NaCl 3.4 моль· π^{-1}), по сравнению с водным раствором полимеров при одинаковом содержании флокулянта в дисперсии. В табл. 3 приведены рассчитанные по данным вискозиметрии гидродинамические характеристики макромолекул флокулянтов: концентрация кроссовера c^* , гидродинамический радиус макромолекул R_h , константа Хаггинса K_x .

Известно, что для растворов полимеров характерно существование трех концентрационных областей: разбавленных растворов, в которых среднее расстояние между макромолекулами существенно превышает размеры полимерного клубка, полуразбавленных, когда клубки перекрываются и взаимодействуют друг с

	Солевой раствор полимера			Водный раствор полимера с добавлением раствора солей				
Растворитель	концентрация кроссовера <i>с</i> *, г∙л ⁻¹	константа Хаггинса <i>K</i> x	гидродинамический радиус макромолекул <i>R</i> _h , нм	концентрация кроссовера <i>с</i> *, г·л ⁻¹	константа Хаггинса <i>K</i> x	гидродинамический радиус макромолекул <i>R</i> _h , нм		
ПА								
KC1	1.5	0.5	106.3	2.4	0.7	87.5		
NaCl	1.0	0.5	121.3	1.6	0.6	99.7		
AC20								
KC1	1.2	0.7	121.5	1.7	1.0	110.2		
NaCl	0.8	0.5	141.9	1.2	0.7	122.9		
AC40								
KC1	1.4	1.1	115.2	2.1	1.3	102.6		
NaCl	1.3	0.9	120.0	1.7	1.1	109.0		

Таблица 3 Гидродинамические характеристики макромолекул флокулянтов

другом, образуя флуктуационную сетку зацеплений, и концентрированных, в которых макромолекулы формируют сетчатую структуру [7]. В области разбавленных растворов молекулы движутся трансляционно, происходит перемещение макромолекулы как независимой единицы. Переход от разбавленного раствора к полуразбавленному характеризует концентрация кроссовера (c^*). Гидродинамические характеристики макромолекул R_h , K_x , $V_{эф}$ рассчитаны для концентраций полимеров ниже c^* (разбавленный режим).

В водных растворах полимеров переход к полуразбавленному режиму происходит при более высоких концентрациях, что обусловлено снижением гидродинамического радиуса макромолекул (табл. 3). Отрицательная гидратация ионов калия, способствующая усилению гидрофобных взаимодействий неполярных фрагментов полимерных цепей полиакриламида, приводит к увеличению концентрации кроссовера в растворах хлорида калия по сравнению с растворами хлорида натрия. Влияние природы катиона на гидродинамический радиус и как следствие на концентрацию кроссовера снижается с увеличением содержания ионогенных групп. Так, значение c^* для AC20 и AC40 в растворах хлорида калия в среднем в 1.5 и 1.1 раза выше, чем в растворах хлорида натрия.

Константа Хаггинса характеризует взаимодействие макромолекул полимера с растворителем, и чем она ниже, тем лучшим в термодинамическом плане является растворитель для данного вещества [7]. Из данных табл. 3 видно, что для анионных сополимеров AC20 и AC40 лучшим растворителем является раствор хлорида натрия концентрацией 3.4 моль л⁻¹: при таких условиях макромолекулы более развернуты и имеют наибольший гидродинамический радиус. Для растворов полиакриламида, полученных при растворении полимера в водном растворе хлорида натрия и калия, взаимодействие макромолекул с растворителем (раствор соли) одинаковое и выше, чем при растворении в воде.

Таким образом, флокуляция солевой дисперсии глины при прочих одинаковых условиях зависит от способа приготовления растворов флокулянтов. Растворы полимеров, приготовленные с использованием концентрированных солевых растворов хлоридов калия и натрия, состав которых соответствует составу жидкой фазы солевой дисперсии, обеспечивают более высокую эффективность флокуляции по сравнению с растворами полимеров, приготовленными на воде. Полученные результаты объясняются различием конформационного состояния макромолекул: при растворении полимеров в солевых растворах эффективный объем и гидродинамический радиус макромолекул больше, чем в воде, что способствует адсорбции макромолекул на частицах глины и улучшает флокуляцию.

Плотность образующихся в солевой дисперсии флокул влияет на скорость осаждения. На рис. 2 при-

Рис. 2. Изображение флокул каолина, полученных в системе с ПА (двукратное увеличение).

ведено изображение каолинитовых флокул, которые были получены в глинисто-солевых дисперсиях с содержанием дисперсной фазы 0.5% (концентрация полимера 0.2%). В дисперсиях хлорида натрия размер флокул (см) составил 0.26, 0.28, 0.32, в дисперсиях хлорида калия — 0.22. 0.24, 0.32 соответственно для ПА, АС20 и АС40. На рис. 3 приведены показатели плотности флокул в зависимости от длины сегмента Куна (L_c), который характеризует подвижность звеньев полимерной цепи. Полимеры с данным показателем менее 10 нм относятся к гибкоцепным [11]. Как следует из рис. 3, макромолекулы полимеров в растворах хлоридов натрия и калия можно отнести к гибкоцепным полимерам. Снижение гибкости полимерной цепи уменьшает количество контактов групп полимера с частицами каолина, что приводит к уменьшению плотности флокул.

Флокулирующий эффект в отношении солевой дисперсии глины выше в случае использования неионогенного полимера (ПА) по сравнению с анионными сополимерами. Плотность флокул выше в растворах хлорида калия, чем хлорида натрия, а также при флокуляции неионогенным полиакриламидом и уменьшается с увеличением ионогенных групп в макромолекулах АС. Высокая концентрация соли в дисперсии приводит к экранированию поверхностных зарядов макромолекул сополимеров. Вероятно, в случае АС40 электростатическое отталкивание между карбоксилатными группами и каолином сохраняется в большей степени по сравнению с АС20, это позволяет фрагментам макромолекулы разворачиваться и взаимодействовать с частицами каолина, что подтверждается увеличением размеров флокул с ростом содержания ионогенных групп. При увеличении размеров флокул и уменьшении их плотности скорость осаждения уменьшается, что приводит к снижению флокулирующего эффекта.

В процессе переработки сильвинитовой руды используется концентрированный раствор смеси хлоридов калия и натрия с соотношением солей, соответствующим составу руды. Полученные результаты влияния способа растворения полимеров на их флокулирующую способность представляют не только научный, но и практический интерес в свя-

Рис. 3. Плотность флокул в зависимости от показателя гибкости полимера. Дисперсионная среда и растворитель для полимеров (3.4 моль·л⁻¹): a -хлорид натрия, $\delta -$ хлорид калия.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Давлюд Дарья Николаевна, ORCID: https://orcid. org/0000-0001-6308-9418

Воробьева Елена Викторовна, д.х.н., доцент, ORCID: https://orcid.org/0000-0003-0609-4151

Лаевская Елена Васильевна, к.т.н., ORCID: https:// orcid.org/0000-0002-9008-269X

Чередниченко Денис Викторович, к.х.н., ORCID: https://orcid.org/0000-0002-7042-1738

Воробьев Павел Викторович, к.х.н., ORCID: https://orcid.org/0000-0002-3888-4468

Список литературы

- [1] Воробьев П. Д., Крутько Н. П., Воробьева Е. В., Чередниченко Д. В., Басалыга И. И. // Коллоид. журн. 2007. Т. 69. № 5. С. 592–596 [Vorob'ov P. D., Krut'ko N. P., Vorob'ova E. V., Cherednichenko D. V., Basalyga I. I. // Russ. Colloid J. 2007. V. 69. N 5. P. 552–556].
- [2] Куренков В. Ф., Снигирев С. В., Дервоедова Е. А., Чуриков Ф. И. // ЖПХ. 1999. Т. 72. № 11. С. 1892– 1896 [Kurenkov V. F., Snigirev S. V., Dervoedova E. A., Churikov F. I. // Russ. J. Appl. Chem. 1999. V. 72. N 11. P. 2007–2011].
- [3] Куренков В. Ф. // Соросовский образоват. журн. 1997. № 7. С. 57–63.
- [4] Kurenkov V. F., Hartan H.-G., Lobanov F. I. // Химия и комп. модел. Бутлеровские сообщ. 2002. Т. 3. № 11. С. 31-40.
- [5] Soldatov V. S. // Reactive and Functional Polymers. 1998. V. 38. P. 73–112.
- [6] Glasgow L. A. // Chem. Eng. Prog. 1989. V. 85. P. 51–55.
- [7] Давлюд Д. Н., Воробьева Е. В., Лаевская Е. В., Крутько Н. П., Воробьев П. Д., Чередниченко Д. В.
 // Докл. Нац. АН Беларуси. 2017. Т. 61. № 4. С. 69– 76.
- [8] Манжай В. Н., Климова Н. Л. // Изв. Том. политехн. ун-та. 2006. Т. 309. № 6. С. 85–87.
- [9] Tambo N., Watanabe Y. // Water Res. 1979. V. 13.
 P. 409–419.
- [10] Nasser M. S., James A. E. // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2007. V. 301. P. 311–322.
- [11] Давлюд Д. Н., Воробьева Е. В., Лаевская Е. В., Крутько Н. П., Воробьев П. Д., Матрунчик Ю. В. // Вес. Нац. АН Беларусі. Сер. хім. навук. 2018. Т. 54. № 3. С. 329–337.

зи с возможностью их использования для разделения глинисто-солевых дисперсий. Так, проведенные в производственных условиях исследования по флокуляции солевых дисперсий глины полиакриламидом показали, что ПА_с вызывает более эффективное осаждение частиц дисперсной фазы солевой дисперсии и обеспечивает меньшую влажность глинистого осадка по сравнению с ПА_в. Введение солевых растворов флокулянта в солевую дисперсию глины способствует формированию мостичных контактов между частицами и макромолекулами, что приводит к более полному вовлечению частиц во флокулы.

Выводы

Эффективность флокуляции солевых (хлориды калия и натрия) дисперсий глины полиакриламидом и анионными сополимерами акриламида увеличивается при условии растворения флокулянта в солевых растворах, соответствующих по составу жидкой фазе глинистой дисперсии. Показано, что использование солевых растворов флокулянтов приводит к повышению флокулирующего эффекта в случае использования полиакриламида и сополимера АС20 в среднем в 1.3 раза, АС40 — в 1.5 раза по сравнению с водными растворами флокулянтов.

Результаты исследования гидродинамических свойств растворов флокулянтов показали, что при введении солевых растворов полимера в солевую дисперсию глины более развернутая конформация макромолекул способствует взаимодействию глинистых частиц с макромолекулами, что приводит к улучшению флокуляции по сравнению с введением водных растворов полимеров в солевую дисперсию. Увеличение гибкости полимерных цепей (уменьшение сегмента Куна) приводит к увеличению плотности флокул из глинистых частиц с полиакриламидом в 1.9 и 1.4 раза в среде NaCl и в 1.7 и 1.3 раза в среде КCl по сравнению с анионными сополимерами AC20 и AC40 соответственно.

Показано увеличение флокулирующего эффекта в отношении солевой дисперсии глины в ряду полимеров $AC40_B \rightarrow AC40_c \rightarrow AC20_B \rightarrow AC20_c \rightarrow \Pi A_B \rightarrow$ $\rightarrow \Pi A_c$. Проведенные в производственных условиях исследования по флокуляции солевых дисперсий глины полиакриламидом показали, что ΠA_c вызывает более эффективное осаждение частиц дисперсной фазы солевой дисперсии и обеспечивает меньшую влажность глинистого осадка по сравнению с ΠA_B .