РАДИКАЛЬНО ИНИЦИИРУЕМАЯ (СО)ПОЛИМЕРИЗАЦИЯ МЕТАКРИЛАТОВ В ПРИСУТСТВИИ МЕТАЛЛОКОМПЛЕКСОВ ЖЕЛЕЗА

© Р. Р. Галимуллин, Н. Н. Сигаева, Е. А. Глухов, Л. В. Спирихин, С. В. Колесов

Уфимский институт химии УФИЦ РАН, 450054, г. Уфа, пр. Октября, д. 71 E-mail: gip@anrb.ru

> Поступила в Редакцию 6 ноября 2018 г. После доработки 25 марта 2019 г. Принята к публикации 24 июня 2019 г.

Приведены данные о влиянии металлокомплексов железа: ферроцена, трикарбонила циклооктатетраена железа и дикарбонила димера циклопентадиенила железа — на гомо- и сополимеризацию метилметакрилата и н-бутилметакрилата, инициированных пероксидом бензоила. Показано, что лигандное окружение в металлокомплексах оказывает влияние на вид кинетических зависимостей при полимеризации метилметакрилата и н-бутилметакрилата. В присутствии металлокомплексов железа значения констант сополимеризации близки к единице, что определяет протекание азеотропной сополимеризации, при которой состав образующегося сополимера равен составу мономерной смеси, а распределение мономерных звеньев в цепи сополимера определяется по закону случая. В то же время присутствие металлоценов оказывает влияние на микроструктуру сополимеров и их молекулярно-массовые характеристики. Эти изменения объясняются формированием макромолекул как с участием свободных радикалов, так и формирующихся в присутствии металлокомплексов, координационных активных центров полимеризации.

Ключевые слова: *металлоцены; механизм реакции; микроструктура; полимеризация; сополимеризация* DOI: 10.1134/S0044461819090068

Получение полимеров с требуемыми характеристиками являлось и остается важной задачей химии высокомолекулярных соединений. Для решения этой задачи необходимо создать и разработать способы управления синтезом макромолекул.

Интенсивные исследования, проводящиеся во всем мире в течение последних десятилетий, показали, что многие задачи контролируемого синтеза полимеров могут быть решены с помощью процессов полимеризации и сополимеризации, протекающих в присутствии радикального инициатора и металлоорганических комплексных соединений [1–11], в том числе и металлоценов, способных влиять на кинетические закономерности, а следовательно, и на свойства синтезируемых материалов. Накоплен большой экспериментальный материал о влиянии различных факторов на процесс контролируемой радикальной (со)полимеризации в присутствии металлоценов [12–14]. Также представлены результаты теоретических расчетов кинетики протекания этих процессов и механизма формирования активных центров [14]. Использование инициирующих систем, включающих совместно с радикальным инициатором металлоцены или металлокомплексы, является одним из путей, позволяющих проводить радикальную полимеризацию в контролируемом режиме. Ключевой момент этого механизма — образование в присутствии металлоценов наряду с радикальными координационно-ненасыщенных активных центров полимеризации, на которых реализуется не радикальный, а координационный рост цепи [14]. Однако недостаток систематических исследований по влиянию различных металлоценовых систем на процесс радикальной (со)полимеризации тормозит прогресс развития исследований в этом направлении. В то же время возможности, открывающиеся при этом по созданию макромолекул с заданными характеристиками (молекулярные массы, молекулярно-массовое распределение, топологии и т. д.), а также разнообразие и сложность процессов контролирования радикальной полимеризации обусловливают неослабевающий интерес к проведению исследований в этом направлении.

Данная работа посвящена изучению влияния ряда комплексов железа на процесс радикально инициированной гомо- и сополимеризации метилметакрилата и н-бутилметакрилата (мономеров, близких по реакционной способности) и выявлению влияния на их активность регуляторов роста цепи на основе комплексных соединений железа.

Экспериментальная часть

Использовали мономеры — метилметакрилат (MMA) и н-бутилметакрилат (БМА) фирмы Fluka. Перед полимеризацией их очищали от стабилизатора

отмывкой 10%-ным раствором КОН, промывали водой до нейтрального значения pH промывных вод, сушили над CaCl₂ и дважды перегоняли в вакууме. Чистоту мономеров контролировали рефрактометрически и методом спектроскопии ЯМР ¹Н. Инициатор — пероксид бензоила (ПБ) дважды перекристаллизовывали из метанола и сушили при комнатной температуре в вакууме до постоянной массы, т. пл. 108°С. В качестве каталитической добавки использовали дициклопентадиенил железа (ФЦ — ферроцен) (C₅H₅)₂Fe, дикарбонил димера циклопентадиенила железа (ДДЦЖ) Fe₂(CO)₄(C₅H₅)₂ и трикарбонил циклооктатетраена железа (ТЦЖ) Fe(CO)₃(C₈H₈) фирмы Aldrich, США. Структура соединений комплексов железа:

Дициклопентадиенил железа (C₅H₅)₂Fe (ФЦ)

Дикарбонил димера циклопентадиенила железа Fe₂(CO)₄(C₅H₅)₂ (ДДЦЖ)

Трикарбонил циклооктатетраена железа Fe(CO)₃(C₈H₈) (ТЦЖ)

Кроме того, в статье приводятся данные работы [12] с использованием следующих комплексов железа:

Гомополимеризацию проводили до глубоких степеней превращения, кинетику реакции изучали дилатометрически, затворная жидкость — глицерин [15]. Для подготовки системы мономер–инициатор к полимеризации в массе исходную смесь объемом 5 мл помещали в ампулу (диаметр 12 мм) и дегазировали раствор трехкратным повторением циклов замораживание–вакуумирование–размораживание. После этого ампулу запаивали, помещали в термостат, точность установки температуры ±0.1°. Образец выдерживали в термостате при температуре 50 или 60°С до дости-

$$x = \frac{\Delta V}{V_0 k} \cdot 100\%,$$

где x — конверсия (%), V_0 — первоначальный объем мономера (мл), ΔV — его изменение (мл), k — коэф-фициент контракции [15].

Сополимеризацию проводили в массе при различных концентрациях каталитической добавки и пероксида бензоила и температурах полимеризации 50 или 60°С. Кинетику процесса изучали на начальных степенях превращения гравиметрическим методом. Стеклянные ампулы (диаметр 12 мм) заполняли полимеризационной смесью, объем которой 5 мл, замораживали в жидком азоте и откачивали до остаточного давления 0.01 мм рт. ст. Операции замораживания и откачивания проводили трижды, после чего ампулу запаивали и помещали в термостат, температура в котором поддерживалась с точностью ± 0.1°. Для определения времени прерывания сополимеризации ставилось несколько ампул, в которых время от времени визуально контролировалась вязкость раствора. Затем отбирался образец с подходящей конверсией.

После достижения нужной степени конверсии (не более 8%) ампулу быстро охлаждали и вскрывали. Реакционную смесь выливали в пятикратный избыток метанола при перемешивании. Очистку сополимера проводили трехкратным переосаждением из толуола в метанол. Очищенные сополимеры сушили в вакууме при комнатной температуре до постоянной массы.

ЯМР-спектроскопические исследования сополимеров проводили на приборе Brucker AV 500. Готовили растворы сополимеров в CDCl₃, в качестве внутреннего стандарта использовали тетраметилсилан. Измерения проводили при температуре 25°С. Записывали спектры ЯМР ¹Н. Для расчета констант сополимеризации по результатам элементного анализа и анализа ЯМР-спектров ¹Н полученных образцов находили состав сополимеров [16–18].

Микроэлементный анализ образцов проводили на приборе EURO EA 3000, предназначенном для высокоточного микроопределения С, Н в твердых и жидких образцах. В основе действия прибора лежит принцип динамического сжигания во вспышке с последующим хроматографическим разделением образующихся газообразных продуктов сгорания. Навеска вещества (1-2 мг) берется на микровесах Sartorius Mp2 в оловянную капсулу и автоматически вводится в реактор для сжигания. Синхронно с образцом подается кислород O₂. В результате экзотермического окисления оловянной капсулы достигается температура 1600–1800°С. Расширение реакционных газов N₂, CO₂, H₂O, SO₂ происходит во встроенной газохроматографической системе, детектирование производится высокочувствительным детектором по теплопроводности. Газ-носитель — гелий. Расчет количественного содержания обеспечивается специальным программным пакетом Callidus. После того как по результатам устанавливали содержание углерода в сополимере, проводили расчет составов сополимеров согласно соотношению

$$60m_1 + (1 - m_1) \cdot 67.61 = A, m_2 = 1 - m_1,$$

где m_1, m_2 — содержание метилметакрилата и н-бутилметакрилата в сополимере соответственно (%); A — содержание углерода, полученного по данным элементного анализа (%).

В расчетах состава по данным ЯМР-спектроскопии использовали площади пиков групп –OCH₂– (δ = 3.9–4.0 м. д.) и –OCH₃– (δ = 3.5–3.7 м. д.):

$$m_1 = \frac{H_1}{n_1}, \quad m_2 = \frac{H_2}{n_2}$$

Рис. 1. Спектр ЯМР ¹Н сополимера ММА–БМА, полученного на инициирующей системе [Φ Ц] = [Π Б] = 1·10⁻³ моль·л⁻¹, $T_{\Pi O \pi}$ = 60°C, MMA/БМА = 90/10 в CDCl₃.

где H_1 и H_2 — значения площадей пиков групп –OCH₃ и –OCH₂– соответственно, n_1 и n_2 — количество протонов групп –OCH₃ и –OCH₂– [16–18].

Спектр одного из полученных образцов приведен на рис. 1. Оба метода дали хорошее совпадение результатов.

Микроструктуру сополимера определяли с помощью метода спектроскопии ЯМР ¹Н. Содержание триад рассчитывали по интегральной высоте сигнала α -метильной группы при $\delta = 1.17$, 0.98 и 0.79 м. д. для *гетеро-*, *изо-* и *синдио-*триад соответственно (рис. 1).

Эффективные константы сополимеризации r_1 и r_2 определяли для начальных степеней превращения, рассчитывали методом Майо–Льюиса, Файнмана– Росса и Келена–Тюдоша [19].

Молекулярные характеристики (M_w , M_n и M_w/M_n) полученных сополимеров определяли методом гельпроникающей хроматографии на жидкостном хроматографе Shimadzu LC-20AD System (элюент тетрагидрофуран, скорость потока 0.5 мл·мин⁻¹). Использовали детектор Shimadzu RID-10A, вискозиметр (детектор) PSS ETA-2010. Систему колонок — три колонки SDV (стиролдивинильный сополимер) в диапазоне MM 1000A-100 000A-10 000 000A калибровали по полистирольным стандартам с $M_w/M_n \leq 1.2$.

Обсуждение результатов

Была исследована кинетика полимеризации метилметакрилата и н-бутилметакрилата в присутствии в качестве инициатора пероксида бензоила, а в качестве каталитической добавки ФЦ, ДДЦЖ и ТЦЖ — комплексных соединений железа (ЖК), в целом — инициирующих систем ПБ-ФЦ, ПБ-ДДЦЖ и ПБ-ТЦЖ. Комплексные соединения железа уже несколько десятков лет успешно применяются в процессах контролируемой радикальной полимеризации. Этому способствует сочетание их высокой эффективности и низкой себестоимости. Полуметаллоценовые комплексы железа, содержащие карбонильные группы, используются при полимеризации несопряженных мономеров. Исследуемые соединения, с одной стороны, имеют однотипное строение и содержат в своем составе циклопентадиенильный или циклооктатетраенильный фрагменты, а с другой — отличаются друг от друга наличием в составе карбонильной группы или присутствием бидентатного заместителя мостиковой структуры. Поэтому представляло интерес проверить влияние различий и сходства строения данных соединений на процесс (со)полимеризации в плане проявления радикально-координационного механизма.

Кинетические кривые полимеризации БМА и ММА представлены на рис. 2–4. Видно, что для обоих мономеров присутствие комплексов железа оказывает влияние как на скорость процесса, так и на вид кинетических зависимостей по сравнению с полимеризацией только под влиянием пероксида бензоила. Кроме того, комплексы железа в зависимости от их состава на активность мономеров воздействуют различным образом. Так, присутствие ферроцена и ДДЦЖ дополнительно к пероксиду бензоила вызывает увеличение начальной скорости полимеризации БМА настолько, что процесс заканчивается, не достигая 100% конверсии (рис. 2, кривые *1* и *5*). При полимеризации ММА это наблюдается только при использовании системы ПБ–ДДЦЖ (рис. 3,

Рис. 2. Кинетика полимеризации БМА в присутствии инициирующих систем: *4* — ПБ; ЖК–ПБ: *1*, *2* — ФЦ; *3*, *5* — ДДЦЖ; *6* — ТЦЖ. [ПБ] = [ЖК]·10⁻³ (моль·л⁻¹): 2.0 (3), 1.0 (*1*, *2*, *4*–6). *T*_{пол} (°С): 60 (*1*, *3*–6), 50 (*2*).

кривая 3). Как было показано в работе [12], рост скорости полимеризации в присутствии металлоценов (МЦ) связан с формированием комплекса пероксид бензоила-металлоцен-мономер, распад которого характеризуется значительно меньшими величинами энергии активации.

Исследование взаимодействия ФЦ с ПБ экспериментально [20] и с помощью квантово-химических расчетов, проведенных в работе [14], позволило установить возможность формирования структуры комплексов с переносом заряда (КПЗ), образующихся за счет одновременного взаимодействия обеих карбонильных групп ПБ с атомами водорода циклопентадиенильных колец. Очевидно, что в данном случае из-за быстрого разложения комплекса пероксид бензоила-металлоцен-мономер происходит полное расходование ПБ, что и приводит к прекращению реакции полимеризации. Таким образом, даже в случае мономеров с близкой реакционной способностью в полимеризации распад формирующихся комплексов протекает с разной скоростью. Увеличение концентрации инициирующей группы в полимеризационной системе ПБ-ДДЦЖ (рис. 2, кривая 3), как и уменьшение температуры полимеризации в системе ПБ-ФЦ (рис. 2, кривая 2), приводит к достижению 100% конверсии мономера (рис. 2, 4).

Напротив, рост концентрации инициирующей системы ПБ–ТЦЖ вызывает уменьшение скорости полимеризации как для ММА (рис. 4), так и для БМА (рис. 5). При этом процесс протекает значительно

Рис. 3. Кинетика полимеризации ММА в присутствии инициирующих систем: *4* — ПБ*; ЖК–ПБ: *1* — ФЦ*, *2* — Fe(C₅H₄Ac)(C₅H₅)*, *3* — Fe(C₅Me₅)₂*, *5* — ДДЦЖ, *6* — ТЦЖ.

Рис. 4. Кинетика полимеризации ММА в присутствии инициирующих систем: $I, 2 - \Pi B^*; 3, 4 - \Pi B - T \amalg W;$ $[\Pi B] = [T \amalg W] = 1 \cdot 10^{-3} \text{ моль} \cdot \pi^{-1}.$ $T_{\text{пол}} (^{\circ}\text{C}): 60 (1, 3); 50 (2, 4).$ * Данные работы [12].

медленнее, чем для других исследованных систем. В данном случае замена циклопентадиенильных колец в окружении атомов железа на циклооктатетраенильное кольцо приводит к уменьшению скорости полимеризации. Следовательно, изменение строения металлокомплекса железа оказывает влияние не только на скорость процесса полимеризации MMA и БМА, но и на зависимость скорости от концентрации вводимого комплекса железа.

Рис. 5. Кинетика полимеризации БМА в присутствии инициирующих систем: ПБ (1), ПБ–ТЦЖ (2–6).

$$T_{\text{пол}} = 60^{\circ}\text{C}.$$

[ПБ] = [ТЦЖ]·10⁻³ (моль·л⁻¹): 0.1 (2), 0.25 (3), 0.5 (4), 1.0 (1, 5), 2.0 (6).

Присутствие металлокомплексов железа в составе инициирующей системы не ограничивается влиянием на начальную скорость полимеризации. Как следует из кинетических зависимостей, практически полностью исчезают признаки гель-эффекта (рис. 6, кривые 3-6), который проявляется только в присутствии ПБ (рис. 6, кривая 2) и ПБ-ФЦ при температуре 50°С (рис. 6, кривая 1). Отсутствие гель-эффекта и его сглаживание свидетельствуют о том, что в данных условиях реакция квадратичного обрыва цепи протекает по линейному закону либо вообще не происходит. Следовательно, комплексы железа влияют не только на стадию инициирования, но и на стадии роста цепи и ограничения цепи. Объяснить это можно с точки зрения концепции радикально-координационной полимеризации, подробно изложенной в работе [14], а именно ростом цепи как на радикальных, так и на координационных активных центрах. При определенных условиях (концентрация, температура) доля формирующихся координационных активных центров становится достаточной для подавления влияния радикальных центров, и процесс протекает в контролируемом режиме.

Исследовалось влияние комплексов железа на сополимеризацию двух активных мономеров: ММА и БМА. Найдено, что зависимости состава сополимера от состава исходной смеси мономеров при сополимеризации в присутствии комплексов железа как при 60, так и 50°С практически совпадают с составами исходных смесей мономеров (табл. 1), т. е. в этом случае

Рис. 6. Дифференциальные кривые полимеризации БМА в присутствии инициирующих систем: 2 — ПБ; ЖК–ПБ: 1, 3 — ФЦ; 4, 5 — ДДЦЖ; 6 — ТЦЖ. [ПБ] = [ЖК]·10⁻³ (моль·л⁻¹): 2.0 (4), 1.0 (1–3, 5, 6). $T_{пол}$ (°С): 60 (2–6), 50 (1).

протекает азеотропная сополимеризация, при которой состав образующегося сополимера равен составу мономерной смеси, а распределение мономерных звеньев в цепи сополимера определяется по закону случая [21], так же как и при свободно-радикальной сополимеризации [21, 22].

В табл. 2 приведены рассчитанные значения эффективных констант сополимеризации для исследуемых систем. Из представленных данных следует, что значения r_1 и r_2 близки к единице в случае инициирования только ПБ. Это и обусловливает статистический состав сополимеров. В присутствии ЖК константы сополимеризации также близки к единице и также имеет место азеотропная сополимеризация и статистическое распределение мономерных звеньев в цепи сополимеров. При этом относительная активность

		Состав исход	ной смеси, %	си, % Состав сополимеров		Выход	
ЖК-ШБ	<i>Т</i> _{пол} , °С	$M_1(MMA)$	<i>М</i> ₂ (БМА)	<i>m</i> ₁	<i>m</i> ₂	сополимера, %	
ФЦ–ПБ	60	10.0	90.0	10.2	89.8	8.9	
		30.0	70.0	28.6	71.4	9.3	
		50.0	50.0	49.1	50.9	6.5	
		70.0	30.0	68.0	32.0	7.0	
		90.0	10.0	89.0	11.0	7.1	
	50	10.0	90.0	11.2	88.8	5.8	
		30.0	70.0	29.0	71.0	6.2	
		50.0	50.0	48.5	51.5	5.5	
		70.0	30.0	70.3	29.7	4.3	
		90.0	10.0	89.5	10.5	6.0	
ДДЦЖ–ПБ	60	10.0	90.0	10.7	89.3	5.9	
		30.0	70.0	28.6	71.4	3.8	
		50.0	50.0	48.5	51.5	0.9	
		70.0	30.0	68.7	31.3	2.9	
		90.0	10.0	88.5	11.5	2.8	
	50	10.0	90.0	9.0	91.0	4.5	
		30.0	70.0	28.2	71.8	5.0	
		50.0	50.0	49.9	50.1	2.5	
		70.0	30.0	68.3	31.7	1.8	
		90.0	10.0	89.4	10.6	3.9	
ТЦЖ–ПБ	60	10.0	90.0	10.9	89.1	3.1	
		30.0	70.0	28.7	71.3	3.6	
		50.0	50.0	52.3	47.7	1.9	
		90.0	10.0	88.2	11.8	3.1	
	50	30.0	70.0	29.1	70.9	4.0	
		50.0	50.0	48.2	51.8	3.9	
		70.0	30.0	67.6	32.4	0.1	
		90.0	10.0	88.2	11.8	3.3	
ПБ	60	20.0	80.0	18.8	81.2	2.2	
		50.0	50.0	48.2	51.8	2.9	
		80.0	20.0	78.9	21.1	2.6	

Таблица 1

Зависимость состава сополимера от состава исходной смеси мономеров [ПБ] = [ЖК]= 1 · 10⁻³ моль · л⁻¹

$[\Pi B] = [ЖK] = 1 \cdot 10^{-3} \text{ моль} \cdot \pi^{-1}$						
ЖК–ПБ	$T_{\text{пол}}, ^{\circ}\text{C}$	r_1	<i>r</i> ₂	$r_1 \cdot r_2$		
ФЦ–ПБ	60	0.89	1.00	0.89		
	50	0.88	0.89	0.78		
ДДЦЖ–ПБ	60	0.83	0.92	0.76		
	50	0.95	1.09	1.03		
ТЦЖ–ПБ	60	0.81	0.86	0.70		
	50	0.82	0.95	0.78		
ПБ	70*	0.96	1.03	0.99		
	60	0.94	1.08	1.02		

Таблица 2 Относительные активности ММА (r_1) и БМА (r_2) при сополимеризации на инициирующей системе [ПБ] = [ЖК] = $1 \cdot 10^{-3}$ моль $\cdot \pi^{-1}$

* Данные работы [22].

БМА несколько выше активности ММА. Температура полимеризации не оказывает влияния на значения констант относительных активностей в случае использования только пероксида бензоила (табл. 2). При введении в полимеризационную систему комплексов железа изменение температуры полимеризации приводит к изменению относительной активности мономеров, причем БМА в большей степени, чем ММА.

Присутствие комплексов железа в полимеризационной системе оказывает значительное влияние на микроструктуру получаемых сополимеров (табл. 3). Видно, что увеличивается содержание синдиотактических структур по сравнению с сополимеризацией под действием только ПБ. Этот факт нельзя объяснить ничем иным, кроме как участием в полимеризации кроме радикальных еще и координационных активных центров.

Молекулярные массы (MM) сополимеров по сравнению с MM, полученными полимеризацией, инициированной только ПБ, приблизительно в 2–3 раза меньше (табл. 4). Это связано с большей начальной скоростью полимеризации в присутствии металлокомплексов. Но надо учитывать и тот факт, что значения ММ получены для небольших конверсий мономера, с увеличением же конверсии мономера будет происходить постепенный рост ММ за счет участия координационных центров в безобрывной полимеризации [23] и приближаться к значениям ММ, получаемым для сополимеризации только в присутствии ПБ.

Таким образом, исследованные комплексы железа, не оказывая сколь-либо существенного влияния на состав сополимеров, влияют на их микроструктуру. Это свидетельствует о том, что как на радикальных, так и на координационных активных центрах сополимеризация протекает практически с равной вероятностью вхождения в цепь сомономеров, несмотря на различие в их кинетической активности в

	T of	Содержание звеньев, %				
ЖК-ПЬ	I _{пол} , ч	синдио-	гетеро-	<i>U30-</i>		
ФЦ–ПБ	60	65.2	31.6	3.2		
	50	66.0	31.4	2.6		
ДДЦЖ–ПБ	60	62.8	33.4	3.8		
	50	64.1	30.6	5.3		
ТЦЖ–ПБ	60	64.1	33.0	2.9		
	50	65.5	31.0	3.5		
ПБ	60	56.0	42.0	2.0		

Таблица 3

N (00.10			···· · · · · · · · · · · · · · · · · ·	
микроструктура	сополимеро	B MIMA:DMA =	= 90:10, пол	ученных в п	рисутствии	систем л	(K-11D

ЖК	<i>Т</i> пол, °С	Соотношение ММА/БМА	$M_{ m n}$ ·10 ⁵	$M_{ m w}$ ·10 ⁵	$M_{ m w}/M_{ m n}$
ддцж	60	10:90	1.94	4.26	2.20
		50:50	1.79	3.84	2.15
		90:10	1.20	2.60	2.17
	50	10:90	0.64	1.18	1.84
		50:50	0.75	1.26	1.68
		90:10	1.76	3.71	2.11
ПБ	60	20:80	5.03	8.95	1.78
		50:50	4.83	8.28	1.71
		80:20	4.50	7.69	1.71

Таблица 4 Молекулярные характеристики сополимеров ММА и БМА, полученных на инициирующей системе [ПБ] = [ЖК] = 1·10⁻³ моль·л⁻¹

процессе гомополимеризации. Возможность формирования координационных центров при гомополимеризации ММА в присутствии ФЦ и их строение были показаны ранее в работе [13] на основании квантово-химических расчетов. Так, при изучении реакций комплексообразования макрорадикалов (R•) полиметилметакрилата (ПММА) с ферроценом было найдено, что взаимодействие R[•] с большей вероятностью происходит не через атом углерода, имеющего неспаренный электрон, а через атом кислорода карбонильной группы [12, 13, 24]. Расчеты показали, что ферроцен может присоединять по Ср-кольцу R. (Ср — циклопентадиенильная группа), в результате чего образуется аддукт CpFe[•](C₅H₅R). Далее при взаимодействии с ММА и ПММА радикалами этот аддукт приводит к образованию комплексных центров полимеризации.

Для н-бутилметакрилата можно допустить формирование активного центра того же типа, поскольку он лишь незначительно отличается по строению от MMA. Замена метильного радикала на н-бутильный радикал в молекуле акрилата не вносит существенного изменения в структуру координационных активных центров, и их наличие не изменяет относительную кинетическую активность мономеров. Однако удлинение алкильного радикала в молекуле акрилата оказывает существенное влияние на расположение метакрилатных звеньев в метакрилатных триадах сополимера.

Выводы

Приведенные в статье данные о влиянии комплексов железа — ферроцена, трикарбонила циклооктатетраена железа и дикарбонила димера циклопентадиенила железа на процессы радикальной гомополимеризации метилметакрилата и н-бутилметакрилата, инициированных пероксидом бензоила, свидетельствуют о том, что присутствие комплексных соединений железа оказывает влияние как на скорость процесса, так и на вид кинетических зависимостей по сравнению с полимеризацией только под влиянием пероксида бензоила. Несмотря на близость мономеров по реакционной способности, в зависимости от состава комплесов железа проявляются различия в их влиянии. Так, использование комплексов железа различного строения приводит к изменению скорости процесса и вида кинетических зависимостей при гомополимеризации метилметакрилата и н-бутилметакрилата. Что касается сополимеризации этих мономеров, то в присутствии использованных в работе комплексов железа составы получаемых сополимеров практически совпадают с составами исходных смесей мономеров, т. е. имеет место азеотропная сополимеризация и статистическое распределение мономерных звеньев в цепи сополимеров. Замена метильного радикала на н-бутильный в молекуле метакрилата не оказывает существенного влияния на вероятность вхождения мономеров в цепь сополимера. Однако присутствие металлокомплексов влияет на микроструктуру сополимеров и их молекулярно-массовые характеристики. Эти изменения объясняются формированием макромолекул с участием как свободных радикалов, так и формирующихся в присутствии металлокомплексов координационных активных центров. Варьирование структуры комплексов железа не вносит существенного изменения в кинетическую активность координационного центра, и вклад координационных центров не влияет на относительную кинетическую активность мономеров.

Однако изменение микроструктуры сополимеров свидетельствует о том, что в присутствии металлокомплексов изменяется стереорегулирующая способность координационных центров.

Благодарности

Анализы выполнены на оборудовании ЦКП «Химия» УфИХ УФИЦ РАН.

Финансирование работы

Работа выполнена по программе фундаментальных научных исследований государственных академий на 2013–2020 гг. (государственное задание № АААА-А17-117011910026-3 и № АААА-А17-117011910027-0).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Галимуллин Руслан Ринатович, аспирант УфИХ УФИЦ РАН, ORCID: https://orcid.org/0000-0002-5497-8712

Сигаева Наталия Николаевна, д.х.н., в.н.с. УфИХ УФИЦ РАН, ORCID: https://orcid.org/0000-0003-4949-557Х

Глухов Евгений Аркадьевич, к.х.н., с.н.с. УфИХ УФИЦ РАН, ORCID: https://orcid.org/0000-0002-3892-8539

Спирихин Леонид Васильевич, к.х.н., зав. лаб. ФХМА УфИХ УФИЦ РАН, ORCID: https://orcid. org/0000-0002-3163-882X

Колесов Сергей Викторович, д.х.н., зав. лаб. стереорегулярных полимеров УфИХ УФИЦ РАН, ORCID: https://orcid.org/0000-0001-5790-3452.

Список литературы

- Matyjaszewski K., Wei M., Xia J., McDermott N. E. Controlled/«Living» Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by Iron Complexes // Macromolecules. 1997. V. 30. N 26. P. 8161–8164. DOI: https://doi.org/10.1021/ma971010w
- [2] Ye Da-Keng, Liu De-Hai, Li Gui-Hua, Meng Ling-Zhi, Liu Dao-Yu. Studies on titanium organic compounds: VIII. Mechanism of vinyl polymerization in the presence of titanocene dichloride // Acta Chem. Sinica. 1985. V. 3. N 2. P. 142–147. DOI: https://doi. org/10.1002/cjoc.19850030209

- [3] Гришин Д. Ф., Щепалова А. А., Телегина Е. В. Игнатов С. К., Разуваев А. Г., Семенычева Л. Л. Радикальная полимеризация стирола и метилметакрилата в присутствии дициклопентадиенилтитанхлорида: Экспериментальное исследование и квантово-химическое моделирование процесса // Высокомолекуляр соединения. 2005. Т. 47А. № 6. С. 943–951 [Grishin D. F., Shchepalov A. A., Telegina E. V., Ignatov S. K., Razuvaev A. G., Semenycheva L. L. Free-radical polymerization of styrene and methyl methacrylate in the presence of dicyclopentadienyltitanium dichloride: Experimental study and quantum-chemical modeling // J. Polym. Sci. Ser. A. 2005. V. 47. N 6. P. 574–581].
- [4] Котлова Е. С., Павловская М. В., Гришин И. Д., Семейкин О. В., Устынюк Н. А., Гришин Д. Ф. η⁵-Циклопентадиенил-η²-стиролдикарбонилмарганец в инициировании радикальной полимеризации виниловых мономеров // Высокомолекуляр. соединения. 2011. Т. 53Б. № 3. С. 456–464 [Kotlova E. S., Pavlovskaya M. V., Grishin I. D., Semeikin O. V., Ustynyuk N. A., Grishin D. F. η⁵-cyclopentadienylη²-styrenedicarbonylmanganese for initiation of freeradical polymerization of vinyl monomers // J. Polym. Sci. Ser. B. 2011. V. 53. N 3–4. P. 108–115. DOI: https://doi.org/10.1134/S1560090411030055].
- [5] Гришин Д. Ф., Котлова Е. С., Гришин И. Д. Особенности радикальной полимеризации акрилонитрила в присутствии карбонильных комплексов железа // Высокомолекуляр. соединения. 2013. Т. 55Б. № 8. С. 1115–1121. DOI: 10.7868/ S0507547513070040 [Grishin D. F., Kotlova E. S., Grishin I. D. Features of acrylonitrile radical polymerization in the presence of iron carbonyl complexes // J. Polym. Sci. Ser. B. 2013. V. 55. N 7–8. P. 460–466. DOI: https://doi.org/10.1134/S1560090413070038].
- [6] Jeon H. J., Youk J. H. Synthesis of poly(vinyl acetate)b-polystyrene and poly(vinyl alcohol)-b-polystyrene copolymers by a combination of cobalt-mediated radical polymerization and RAFT polymerization // Macromolecules. 2010. V. 43. N 5. P. 2184-2189. DOI: https://doi.org/10.1021/ma902434z
- Hurgten M., Detrembleur C., Christine J., Debuigne A. Insight into Organometallic-Mediated Radical Polymerization // Polym. Rev. 2011. N 51. P. 188–213. DOI: https://doi.org/10.1080/15583724.2011.566401
- [8] Pan X., Malhotra N., Zhang J. Photoinduced Fe-Based Atom Transfer Radical Polymerization in the Absence of Additional Ligands, Reducing Agents, and Radical Initiators // Macromolecules. 2015. V. 48. N 19. P. 6948–6954. DOI: https://doi.org/10.1021/acs. macromol.5b01815
- [9] Pan X., Lamson M., Yan J. I., Matyjaszewski K. Photoinduced Metal-Free Atom Transfer Radical Polymerization of Acrylonitrile // ACS Macro Lett. 2015. N4.P. 192–196. DOI: https://doi.org/10.1021/mz500834g

- [10] Wang P, Wang H., Dong Q., Bai R. Cobalt-mediated radical copolymerization of chlorotrifluoroethylene and vinyl acetate // Polymers. 2019. V. 11. N 1. P. 101– 112. DOI: https://doi.org/10.3390/polym11010101
- [11] Al-Majid A. M., Shamsana W. S., Al-Odayna A. B., Nahra F., Aouak T., Nolan S. P. A new initiating system based on [(SiMes)Ru(PPh₃)(Ind)Cl₂] combined with azo-bis-isobutyronitrile in the polymerization and copolymerization of styrene and methyl methacrylate // Designed Monomers and Polymers. 2016. V. 20. N 1. P. 167–176. DOI: https://doi.org/10.1080/15685 551.2016.1231049
- [12] Сигаева Н. Н., Фризен А. К., Насибуллин И. И., Ермолаев Н. Л., Колесов С. В. Металлоценовый катализ в координационно-радикальной полимеризации метилметакрилата // Кинетика и катализ. 2012. Т. 53. № 4. С. 491–498 [Sigaeva N. N., Friesen A. K., Nasibullin I. I., Ermolaev N. L., Kolesov S. V. Metallocene catalysis in the complexradical polymerization of methyl methacrylate // Kinetics and Catal. 2012. V. 53. N 4. P. 470–476. DOI: https://doi.org/10.1134/S1560090412040057].
- [13] Колесов С. В., Насибуллин И. И., Фризен А. К., Сигаева Н. Н., Галкин Е. Г. Закономерности постполимеризации в системе виниловый мономер-металлоцен-радикальный инициатор // Высокомолекуляр. соединения. 2015. Т. 57Б. № 2. С. 83-89. DOI: https://doi.org/10.7868/ S2308113915020060 [Kolesov S. V., Nasibullin I. I., Frizen A. K., Sigaeva N. N., Galkin E. G. Regularities of postpolymerization in a vinyl monomer-metallocene-radical initiator system // J. Polym. Sci. Ser. B. 2015. V. 57. N 2. P. 71-76. DOI: https://doi. org/10.1134/S1560090415020062].
- [14] Колесов С. В., Сигаева Н. Н., Глухов Е. А., Насибуллин И. И., Фризен А. К. О двух направлениях роста цепей при полимеризации метилметакрилата и стирола в присутствии металлоценов // Успехи совр. естествознания. 2016. № 3. С. 33–38.
- [15] Гладышев Г. П., Попов В. А. Радикальная полимеризация при глубоких степенях полимеризации. М.: Наука, 1974. С. 80–81.
- [16] Bovey F. A. Polymer NMR spectroscopy. VI. Methyl methacrylate-styrene and methyl methacrylateα-methylstyrene copolymers // J. Polym. Sci.

1962. V. 62. N 173. P. 197–209. DOI: 10.1002/ pol.1962.1206217315

- [17] Бови Ф. А. ЯМР высокого разрешения макромолекул / Пер. с англ. под ред. И. Я. Слонима. М.: Химия, 1977. С. 218–230 [Bovey F. A. High resolution NMR of macromolecules. New York; London, 1972].
- [18] Слоним И. Я., Любимов А. Н. Ядерный магнитный резонанс в полимерах. М.: Химия, 1966. С. 263–273.
- [19] Берлин А. А., Вольфсон С. А., Ениколопян Н. С. Кинетика полимеризационных процессов. М.: Химия, 1978. С. 190–204.
- [20] Насибуллин И. И., Сафиуллин Р. Л., Сигаева Н. Н., Якупова Л. Р., Колесов С. В. Влияние металлоценов на распад пероксида бензоила // Кинетика и катализ. 2015. Т. 56. № 1. С. 77–81. DOI: 10.7868/ S0453881114060124 [Nasibullin I. I., Safiullin R. L., Sigaeva N. N., Yakupova L. R., Kolesov S. V. Effect of metallocenes on benzoyl peroxide decomposition // Kinetics and Catal. 2015. V. 56. N 1. P. 71–75. DOI: 10.1134/S0023158414060123].
- [21] Семчиков Ю. Д. Высокомолекулярные соединения. М.: Академия, 2008. С. 288–333.
- Brar A. S., Kapur G. S. Sequence Determination in Styrene–Methyl Methacrylate Copolymers by ¹³C NMR Spectroscopy // J. Polym. 1988. V. 20. N 9. P. 811–817. DOI: 10.1295/polymj.20.371
- [23] Сигаева Н. Н., Фризен А. К., Насибуллин И. И., Ермолаев Н. Л., Колесов С. В. Особенности инициирования комплексно-радикальной полимеризации метилметакрилата в присутствии металлоценов // Высокомолекуляр. соединения. 2012. Т. 54А. № 4. С. 597–604 [Sigaeva N. N., Friesen A. K., Nasibullin I. I., Ermolaev N. L., Kolesov S. V. Initiation of complex-radical polymerization of methyl methacrylate in the presence of metallocenes // J. Polym. Sci. Ser. B. 2012. V. 54. N 4. P. 197–204 DOI: 10.1134/S1560090412040057].
- [24] Ulitin N. V., Tereshchenko K. A., Friesen A. K., Shiyan D. A., Takhautdinova A. V., Kolesov S. V., Khursan S. L. Modeling of elementary reactions and kinetics of radical-initiated methyl methacrylate polymerization in the presence of ferrocene // Int. J. Chem. Kinet. 2018. V. 50. P. 742–756. DOI: 10.1002/ kin.21209