= КАТАЛИЗ =

УДК 662.74:552

# ВЗАИМОСВЯЗЬ СТРУКТУРНО-ХИМИЧЕСКИХ ПАРАМЕТРОВ ОСТАТКА ГИДРОКОНВЕРСИИ ГУДРОНА И КАТАЛИТИЧЕСКИХ СВОЙСТВ НАНОРАЗМЕРНЫХ КАТАЛИЗАТОРОВ НА ОСНОВЕ СОЕДИНЕНИЙ Мо, Со, Ni, AI

## © Л. А. Зекель, Э. Э. Магомадов, А. М. Гюльмалиев, М. Х. Кадиева, А. Е. Батов\*, Х. М. Кадиев

Институт нефтехимического синтеза им. А. В. Топчиева РАН, 119991, г. Москва, Ленинский пр., д. 29 \* E-mail: batov@ips.ac.ru

## Поступила в Редакцию 13 мая 2019 г. После доработки 19 декабря 2019 г. Принята к публикации 14 декабря 2019 г.

На пилотной установке с проточным реактором изучена гидроконверсия остатка вакуумной дистилляции нефти (гудрона) при давлении водорода 7 МПа, температуре 445°С, объемной скорости подачи сырья 2 ч<sup>-1</sup> в присутствии суспензий наноразмерных частиц катализаторов, получаемых in situ в реакционной зоне из предварительно приготовленных в сырье обратных эмульсий водных растворов прекурсоров — солей молибдена, никеля, кобальта и алюминия. На основе данных элементного анализа и спектров ЯМР <sup>1</sup>Н определены структурные параметры остатков вакуумной дистилляции гидрогенизата. Установлена взаимосвязь структурно-химических показателей остатков, конверсии сырья, выхода кокса и состава катализаторов. Конверсия гудрона и структурный параметр ненасыщенности вакуумного остатка растут в ряду катализаторов Мо–Al, Ni, Мо–Co–Al, Mo, Mo–Co, Mo–Ni, Al.

Ключевые слова: гидроконверсия гудрона; ультрадисперсные каталитические системы; среднестатистическая структура; структурно-химические параметры; сульфидные катализаторы DOI: 10.31857/S0044461820030160

В гидрогенизационной переработке тяжелого углеводородного сырья (ТУС) все большее значение приобретают процессы гидрокрекинга в присутствии дисперсных катализаторов, представляющих собой суспензии наноразмерных частиц, равномерно распределенных в углеводородном сырье. Накопленные к настоящему времени экспериментальные данные показывают, что применение наноразмерных катализаторов на основе сульфидов переходных металлов позволяет добиться высокой глубины превращения тяжелого углеводородного сырья в дистиллятные продукты [1, 2]. После дистилляции гидрогенизата, получаемого в процессе гидроконверсии, образуется высококипящий вакуумный остаток (фракция с температурой начала кипения выше 500°С). В ряде исследований предлагается высокипящий остаток дистилляции гидрогенизата возвращать в процесс гидроконверсии, смешивать с сырьем и подвергать гидроконверсии, что позволяет получить дополнительное количество дистиллятных фракций и повысить конверсию [3, 4]. Поскольку сырье в процессе гидроконверсии подвергалось термическому воздействию, состав и свойства компонентов вакуумного остатка гидроконверсии будут отличаться от свойств тяжелых компонентов исходного сырья (смол, асфальтенов, полициклических ароматических углеводородов). Такие изменения в составе высококипящих фракций могут повлиять на их реакционную способность и эффективность дальнейшей переработки методом гидроконверсии.

Цель работы — изучение влияния состава наноразмерных катализаторов на основе соединений молибдена, никеля, кобальта и алюминия, получаемых *in situ* из обратных эмульсий водных растворов прекурсоров, на выход и состав продуктов гидроконверсии тяжелого углеводородного сырья, а также выявление взаимосвязи структурно-химических показателей вакуумного остатка гидроконверсии и свойств используемых катализаторов.

#### Экспериментальная часть

В качестве сырья использовали остаток вакуумной дистилляции нефти (гудрон) (табл. 1). Гидроконверсию проводили в присутствии суспензий наноразмерных частиц катализаторов, получаемых *in situ* в зоне реакции из предварительно приготовленных в сырье обратных эмульсий водных растворов прекурсоров — солей молибдена, никеля, кобальта и алюминия. Исходные соли металлов имели квалификацию х.ч.

| Состав и своиства гудрона                      |                        |  |  |  |  |
|------------------------------------------------|------------------------|--|--|--|--|
| Показатель                                     | Значение<br>показателя |  |  |  |  |
| Плотность при 20°С, кг $\cdot$ м <sup>-3</sup> | 1003                   |  |  |  |  |
| Вязкость при 80°С, мм $^{2} \cdot c^{-1}$      | 1340                   |  |  |  |  |
| Элементный состав, %                           |                        |  |  |  |  |
| С                                              | 85.9                   |  |  |  |  |
| Н                                              | 10.1                   |  |  |  |  |
| S                                              | 3.5                    |  |  |  |  |
| Ν                                              | 0.5                    |  |  |  |  |
| 0                                              | 0                      |  |  |  |  |
| Коксуемость по Конрадсону, мас%                | 16.2                   |  |  |  |  |
| Содержание металлов, ppm:                      |                        |  |  |  |  |
| ванадий                                        | 181                    |  |  |  |  |
| никель                                         | 55                     |  |  |  |  |
| Групповой состав, мас%:                        |                        |  |  |  |  |
| парафино-нафтеновые углеводороды               | 14.8                   |  |  |  |  |
| ароматические углеводороды                     | 41.4                   |  |  |  |  |
| СМОЛЫ                                          | 30.4                   |  |  |  |  |
| асфальтены                                     | 13.4                   |  |  |  |  |

Таблица 1 Состав и свойства гудрона Для получения катализаторов, содержащих один активный металл (Mo, Ni, Al), использовали водные растворы парамолибдата аммония (ПМА), 0.045 г·мл<sup>-1</sup> (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>·4H<sub>2</sub>O (катализатор «Mo»), 0.124 г·мл<sup>-1</sup> Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (катализатор «Ni»), 0.174 г·мл<sup>-1</sup> Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O (катализатор «Al»).

Для получения суспензий поликомпонентных катализаторов, содержащих Мо и Ni (катализатор «Мо–Ni») и Мо и Со (катализатор «Мо–Co»), смешивали водные растворы Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O или Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O с концентрацией солей 0.094 г·мл<sup>-1</sup> и раствор 0.057 г·мл<sup>-1</sup> (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>·4H<sub>2</sub>O в объемном соотношении 1:1 непосредственно перед введением в сырье. Атомное соотношение Mo:Ni(Co) = 1:1 или весовое отношение металлов: молибдена — 62.1%, никеля или кобальта — 37.9%.

Приготовление прекурсоров катализаторов, содержащих Мо, Ni и Al (катализатор «Мо–Ni–Al») и Мо, Со и Al (катализатор «Мо–Co–Al»), проводили путем смешения водных растворов 0.174 г·мл<sup>-1</sup> Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O (раствор 1), 0.094 г·мл<sup>-1</sup> Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O [или Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O] (раствор 2) и 0.057 г·мл<sup>-1</sup> (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>·4H<sub>2</sub>O (раствор 3). Смешивали растворы 1 и 2, затем добавляли раствор 3. Объемное соотношение растворов 1, 2 и 3 в итоговом растворе было равно 2:1:1. Растворы смешивали непосредственно перед добавлением к сырью. Такая методика приготовления смесевого раствора позволяла предотвратить образование осадков в результате гидролиза солей металлов.

Для получения эмульсий в нагретый до 80°С гудрон порционно вводили растворы прекурсоров и перемешивали роторно-кавитационным диспергатором при скорости вращения ротора 15 000–20 000 мин<sup>-1</sup>. Оптимальная длительность диспергирования, установленная по результатам анализа дисперсного состава эмульсий, составляла 40 мин. Содержание водных растворов прекурсоров в эмульсии составляло 2 об%. Суммарное количество металлов на сырье во всех опытах составляло 0.05 мас%. В условиях гидроконверсии гудрона из прекурсоров молибдена, никеля и кобальта формируются суспензии наноразмерных частиц сульфидов металлов [2], а из нитрата алюминия — Al<sub>2</sub>O<sub>3</sub> [5].

Эксперименты гидроконверсии проводили на установке с проточным реактором при давлении водорода 7 МПа, температуре 445°С, объемной скорости подачи сырья 2 ч<sup>-1</sup>. Гидрогенизат подвергали атмосферно-вакуумной дистилляции с получением фракций н.к.–180°С, 180–350°С, 350–500°С и остатка фракции 500°С+. Состав фракций исследовали стандартными методами. Остаток 500°С+ дополнительно исследовали методом ЯМР на протонах с использованием прибора Bruker AVANCE 400. Глубину конверсии сырья (*Y*) рассчитывали по уравнению

$$Y = 100(M_{500(\text{H})} - M_{500(\text{K})})/M_{500(\text{H})},$$
 (1)

где  $M_{500(H)}$  и  $M_{500(K)}$  — массы фракции 500°C+ в сырье и продуктах гидроконверсии соответственно.

Теоретические основы применения структурных параметров для оценки свойств и состава органических продуктов изложены в работах [6–8]. Суть метода заключается в том, что вместо конкретного вещественного состава углеводородного сырья используется его «среднестатистическая структура», определяемая на основе экспериментальных данных элементного состава, спектров ЯМР <sup>13</sup>С или ЯМР <sup>1</sup>Н с использованием фундаментальных представлений о строении веществ. Для расчета структурных параметров использовали данные элементного состава фракций 500°C+, приведенные в табл. 2. По данным элементного состава, используя округленные значения атомных масс, определяли число г-атомов:

$$x = C/12, y = H/1, m = N/14,$$
  
 $n = O/16 \text{ M } z = S/32, \text{ r-atom}/100 \text{ r},$  (2)

где C, H, N, O и S — содержания элементов во фракции 500°C+ (%).

Помимо значений x, y, m, n, z для расчета структурных параметров использовали результаты исследований ЯМР <sup>1</sup>Н. Далее в соответствии с методикой, приведенной в [8], составляли матричное уравнение, из которого вычисляли компоненты вектора показателей «среднестатистической структуры» на единицу массы сырья: молекулярную массу (M); сумму всех химических связей  $\sigma$ - и  $\pi$ -типа ( $N_{\text{связи}}$ ); сумму всех атомов

#### Таблица 2

Результаты гидроконверсии гудрона в присутствии дисперсных катализаторов Условия опыта: P = 7 MПa,  $T = 445 ^{\circ}\text{C}$ , объемная скорость подачи сырья 2 ч<sup>-1</sup>, соотношение H<sub>2</sub>/сырье = 1000 нл/кг, суммарное содержание катализаторов в сырье — 0.05% (в пересчете на металлы)

|                                                         | Катализатор         |       |       |       |      |          |          |       |
|---------------------------------------------------------|---------------------|-------|-------|-------|------|----------|----------|-------|
| Показатель                                              | без<br>катализатора | Мо    | Mo-Ni | Мо-Со | Al   | Al–Mo–Co | Al-Mo-Ni | Al–Mo |
| Выход гидрогенизата, мас%                               | 93.7                | 98.7  | 98.31 | 98.9  | 89.6 | 98.9     | 99.1     | 99.2  |
| Плотность гидрогенизата при 20°С,<br>кг·м <sup>-3</sup> | 955                 | 965   | 935   | 965   | 903  | 940      | 957      | 933   |
| Выход газообразных продуктов, мас%                      | 1.73                | 0.77  | 0.89  | 0.81  | 1.3  | 0.9      | 0.7      | 0.59  |
| Фракция НК-180°С:                                       |                     |       |       |       |      |          |          |       |
| выход, мас%                                             | 17.7                | 14.1  | 18.1  | 16.8  | 19.3 | 14.2     | 16.9     | 14.7  |
| содержание олефинов, мас%                               | 30.1                | 24.02 | 23.98 | 28.4  | 25.8 | 26.4     | 25.0     | 26.3  |
| Фракция 180-350°С:                                      |                     |       |       |       |      |          |          |       |
| выход, мас%                                             | 21.4                | 23.1  | 20    | 20.1  | 22.2 | 17.9     | 14.5     | 17.3  |
| Содержание олефинов, мас%                               | 26.3                | 24.73 | 23.77 | 30.2  | 23.4 | 23.5     | 28.9     | 24.1  |
| Фракция 350–500°С, выход, мас%                          | 24.8                | 26.8  | 29.2  | 28.1  | 20.9 | 34.4     | 33       | 29.1  |
| Фракция 500°С+, выход, мас%                             | 29.8                | 34.7  | 31.01 | 33.9  | 27.2 | 32.4     | 34.7     | 38.1  |
| Элементный состав, %:                                   |                     |       |       |       |      |          |          |       |
| Ν                                                       | 1.13                | 1.09  | 1.08  | 1.21  | 1.14 | 1.19     | 1.21     | 1.16  |
| С                                                       | 85.9                | 86.1  | 85.6  | 86.0  | 86.1 | 85.9     | 85.6     | 85.3  |
| Н                                                       | 8.19                | 8.62  | 8.26  | 8.44  | 7.7  | 8.59     | 8.70     | 8.94  |
| S                                                       | 4.02                | 3.46  | 3.82  | 3.85  | 4.26 | 3.54     | 3.52     | 3.51  |
| 0                                                       | 0.76                | 0.73  | 1.24  | 0.50  | 0.80 | 0.78     | 0.97     | 1.09  |
| Параметр ненасыщенности б                               | 6.25                | 5.81  | 6.08  | 5.98  | 6.73 | 5.80     | 5.66     | 5.36  |
| $\rm H_{ap}$ по данным ЯМР $^{1}\rm H,$ г-атом/1000 г   |                     | 10.8  | 11.6  | 11.8  | 12.5 | 10.2     | 8.74     | —     |
| Выход кокса, мас%                                       | 4.57                | 0.53  | 0.8   | 0.29  | 9.1  | 0.19     | 0.2      | 0.21  |
| Конверсия фракции 500°С+ У, %                           | 66.1                | 61.4  | 65.5  | 62.3  | 69.8 | 64.0     | 61.5     | 57.6  |

 $(N_{\text{атом}}, \text{г-атом});$  число общих циклов, включая нафтеновые и ароматические, независимо от количества атомов в цикле ( $\gamma$ ); сумму всех ординарных  $\sigma$ -связей ( $N_{\sigma}$ ); сумму всех ароматических углеродов ( $C_{\text{ар}}$ ); сумму всех атомов водорода, связанных с ароматическими кольцами ( $H_{\text{ар}}$ );  $\delta$  — параметр ненасыщенности структуры, рассчитываемый по уравнению [6]

$$\delta = \frac{C}{6} - H + \frac{N}{14},\tag{3}$$

где С, Н и N — содержание элементов (%).

Отметим, что кроме выхода и вещественного состава отдельных фракций критериями оценки эффективности каталитической системы являются выход фракции 500°С+ и выход продуктов уплотнения (кокса).

### Обсуждение результатов

Результаты гидроконверсии гудрона в проточном реакторе в присутствии наноразмерных катализато-

ров на основе Мо, Со, Ni, Al представлены в табл. 2 и 3 и на рис. 1–3.

По сравнению с опытом без катализатора использование каталитических систем, содержащих MoS<sub>2</sub>, приводит к снижению коксообразования (табл. 2). Аналогичная закономерность была установлена в автоклавных экспериментах при гидроконверсии остатков вакуумной дистилляции нефти [9] и природных битумов [10] в присутствии наноразмерных катализаторов на основе MoS<sub>2</sub>.

Хотя содержание сульфида молибдена в использованных каталитических системах изменяется от 31 (катализаторы Mo–Ni–Al и Mo–Co–Al) до 100% (катализатор Mo), выходы дистилятных фракций имеют близкие значения. На рис. 2 показана связь выхода фракции 500°C+ и содержания в ее составе водорода ( $H_{oбщ}$ ), из которого следует, что для рассмотренных каталитических систем эта зависимость линейная. Содержание водорода  $H_{oбщ}$  во фракции 500°C+ повышается с ростом конверсии. Полученный результат согласуется с известными представления-



a — катализатор Мо-суспензия наноразмерных частиц MoS<sub>2</sub>,  $\delta$  — катализатор Al-суспезия наноразмерных частиц Al<sub>2</sub>O<sub>3</sub>, e — катализатор Mo-Ni-Al.

#### Таблица 3

Результаты расчета структурно-химических показателей ( на 1000 г) гудрона и остатка гидроконверсии гудрона 500°С+ в присутствии различных катализаторов

| Структурно-химический показатель      | Катализатор |        |        |        |        |          |          |
|---------------------------------------|-------------|--------|--------|--------|--------|----------|----------|
|                                       | сырье       | Мо     | Mo–Ni  | Мо-Со  | Al     | Mo–Co–Al | Mo–Ni–Al |
| С <sub>полн</sub> , г-атом            | 71.11       | 71.77  | 71.32  | 71.71  | 71.74  | 71.57    | 71.36    |
| Сар, г-атом                           | 20.77       | 34.08  | 35.77  | 35.44  | 39.51  | 33.69    | 32.23    |
| С <sub>ал</sub> , г-атом              | 50.34       | 37.68  | 35.55  | 36.27  | 32.24  | 37.87    | 39.13    |
| Н <sub>полн</sub> , г-атом            | 107.70      | 86.20  | 82.60  | 84.40  | 77.00  | 85.90    | 87.00    |
| Н <sub>ар</sub> , г-атом              | 7.02        | 10.84  | 11.50  | 11.87  | 12.52  | 10.15    | 8.74     |
| Н <sub>ал</sub> , г-атом              | 100.68      | 75.36  | 71.10  | 72.53  | 64.48  | 75.75    | 78.26    |
| N, г-атом                             | 0.32        | 0.76   | 0.79   | 0.83   | 0.82   | 0.86     | 0.84     |
| О, г-атом                             | 0.00        | 0.46   | 0.77   | 0.31   | 0.50   | 0.49     | 0.61     |
| S, г-атом                             | 1.08        | 1.08   | 1.19   | 1.20   | 1.33   | 1.11     | 1.1      |
| N <sub>атом</sub> , г-атом            | 180.21      | 159.85 | 156.68 | 158.45 | 151.39 | 159.92   | 160.91   |
| М, а. е. м.                           | 1000        | 1000   | 1000   | 1000   | 1000   | 1000     | 1000     |
| σ-Связь/моль                          | 187.24      | 172.27 | 169.20 | 170.65 | 165.09 | 172.12   | 173.08   |
| π-Связь/моль                          | 10.38       | 17.04  | 17.88  | 17.72  | 19.75  | 16.85    | 16.10    |
| N <sub>св</sub> , все связи на 1 моль | 197.63      | 189.32 | 187.08 | 188.38 | 185.05 | 188.96   | 189.19   |
| Параметр ненасыщен-<br>ности б        | 3.484       | 5.81   | 6.08   | 5.98   | 6.73   | 5.80     | 5.66     |
| γ−1, колец/моль                       | 8.03        | 13.01  | 13.53  | 13.20  | 14.90  | 13.20    | 13.16    |
| Ароматические кольца, колец/моль      | 4.87        | 9.62   | 11.50  | 9.78   | 11.49  | 9.77     | 9.74     |

ми о механизме гидроконверсии ТУС в присутствии дисперсных катализаторов [11, 12]. Вклад в процесс превращения тяжелых компонентов сырья вносят реакции термического крекинга и каталитического гидрокрекинга [11, 12]. Происходит термическая деструкция высокомолекулярных компонентов сырья асфальтенов, смол, полициклических ароматических углеводородов с образованием легких алифатических и тяжелых полициклических радикальных фрагментов. Алифатические фрагменты стабилизируются путем рекомбинации и частичного присоединения водорода с образованием компонентов газа и легких дистиллятных фракций, покидающих реакционную зону. Тяжелые радикальные фрагменты, присутствующие в жидкой фазе реактора, в отсутствие активного водорода полимеризуются с образованием твердой фазы — продуктов уплотнения (кокса). В присутствии катализаторов, проявляющих активность в реакциях гидрирования, происходит стабилизация тяжелых радикальных фрагментов путем присоединения водорода [13]. Таким образом, выход тяжелой фракции 500°C+ и содержание в ней водорода определяются свойствами катализаторов. Действие катализаторов можно проследить, сопоставляя результаты опытов без катализатора и с катализаторами.

Катализатор, полученный из нитрата алюминия и представляющий собой суспензию наноразмерных частиц Al<sub>2</sub>O<sub>3</sub>, не обладает гидрирующими свойствами (табл. 2, рис. 2). Минимальное содержание водорода в остатке, которое ниже, чем в опыте без катализатора, и максимальный выход кокса (9.1%) позволяют предполагать высокую активность катализатора



Рис. 2. Связь выхода фракции 500°С+ и содержания в ее составе водорода  $H_{oбщ}$  ( $H_{oбщ} = H_{ap} + H_{an}$ ).



Рис. 3. Связь структурных параметров остатка гидроконверсии (фракция 500°С+) и выхода кокса на различных каталитических системах.

параметр ненасыщенности δ, 2 — содержание водорода (мас%), 3 — выход кокса (мас%).

при термической деструкции сырья, что согласуется с известными данными о каталитической активности оксида алюминия в реакциях крекинга [14, 15]. Наличие кислотных центров на поверхности оксида алюминия и высокая сорбционная способность по отношению к асфальтенам приводят к увеличению выхода кокса. Следует отметить, что установленную взаимосвязь между выходом фракции 500°C+ и содержанием в ее составе водорода можно использовать при тестировании новых каталитических систем для гидроконверсии тяжелого нефтяного сырья.

Выход кокса связан со структурными параметрами фракции 500°С+: при максимальном выходе кокса в присутствии Al<sub>2</sub>O<sub>3</sub> параметр ненасыщенности б также имеет максимальное значение, а содержание водорода H<sub>общ</sub> — минимальное (рис. 3).



Рис. 4. Зависимость конверсии гудрона и выхода фракции 500°C+ от ее структурного параметра ненасыщенности δ.

В этом случае структура фракции 500°C+ более «ароматиризована» и склонна к образованию надмолекулярной структуры — продуктов уплотнения.

На рис. 4 показана связь структурного параметра ненасыщенности  $\delta$  и двух основных показателей гидроконверсии: конверсии (Y) и выхода фракции 500°С+. Видно, что между ними имеются выраженные линейные зависимости ( $R^2 > 0.9$ ). Отсюда следует, что с помощью структурно-химических параметров (в данном случае  $\delta$ ) можно прогнозировать технологические показатели гидроконверсии для тестирования новой каталитической системы. В связи с этим данные табл. 3, где приведены результаты расчета структурно-химических показателей фракций 500°С+ гидроконверсии гудрона на различных каталитических системах, позволяют глубже раскрыть химизм структурных превращений сырья.

На рис. 5, *a*,  $\delta$  по данным табл. 3 построены зависимости некоторых структурно-химических показателей от параметра ненасыщенности  $\delta$ . С ростом  $\delta$ линейно возрастают H<sub>ap</sub> и C<sub>ap</sub> число  $\pi$ -связей, а также



Рис. 5. Зависимости структурно-химических показателей фракций 500°С+ от параметра ненасыщенности  $\delta$ .  $1 - H_{ap}$  (г-атом),  $2 - C_{ap}$  (г-атом),  $3 - \pi$ -связь/моль,  $4 - \gamma - 1$  (колец/моль),  $5 - C_{a\pi}$  (г-атом),  $6 - H_{a\pi}$  (г-атом),  $7 - \sigma$ -связь/моль.

#### Выводы

В результате проведенных исследований установлена взаимосвязь показателей гидроконверсии гудрона на различных каталитических системах со структурно-химическими параметрами остатка вакуумной дистилляции гидрогенизата (фракции 500°C+). Это позволяет оценить, с одной стороны, каталитические свойства применяемой новой каталитической системы относительно других тестовых катализаторов, с другой — направление изменения структурных параметров и характер протекающих химических процессов. Учитывая, что в опыте гидроконверсии исследованного сырья без катализатора для фракции  $500^{\circ}$ C+  $\delta$  = 6.25, можно полагать, что при  $\delta$  < 6.25 возможно использование наноразмерных катализаторов в процессах гидроконверсии, а при  $\delta > 6.25$  при крекинге тяжелого нефтяного сырья.

### Финансирование работы

Работа выполнена в рамках государственного задания Института нефтехимического синтеза РАН.

#### Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

#### Информация об авторах

Зекель Леонид Абрамович, к.т.н., ORCID: https:// orcid.org/0000-0003-3336-5367

*Магомадов Эльдар Элиевич*, к.х.н., ORCID: https:// orcid.org/0000-0003-3020-2618

*Агаджан Мирза-оглы Гюльмалиев*, д.х.н., ORCID: https://orcid.org/0000-0003-2458-6686

*Кадиева Малкан Хусаиновна*, к.х.н., ORCID: https:// orcid.org/0000-0001-9964-4516

*Батов Александр Евгеньевич*, к.х.н., ORCID: https://orcid.org/0000-0003-0802-4077

*Кадиев Хусаин Магамедович*, к.х.н., ORCID: https://orcid.org/0000-0001-8705-114X

### Список литературы

[1] Кадиев Х. М., Хаджиев С. Н., Кадиева М. Х. Синтез и применение наночастиц полифункционально-

го катализатора для гидроконверсии природного битума // Нефтехимия. 2013. Т. 53. № 5. С. 337– 348. https://doi.org/10.7868/S0028242113050031 [*Kadiev Kh. M., Khadzhiev S. N., Kadieva M. Kh.* Synthesis and use of polyfunctional catalyst nanoparticles for hydroconversion of natural bitumen // Petrol. Chem. 2013. V. 53. N 5. P. 298–308. https:// doi.org/10.1134/S0965544113050034].

- [2] Хаджиев С. Н., Кадиев Х. М., Кадиева М. Х. Синтез и свойства наноразмерных систем в качестве катализаторов гидроконверсии тяжелого нефтяного сырья // Нефтехимия. 2014. Т. 54. № 5. С. 327–351. https:// doi.org/10.7868/S0028242114050062 [Khadzhiev S. N., Kadiev Kh. M., Kadieva M. Kh. Synthesis and properties of nanosized systems as efficient catalysts for hydroconversion of heavy petroleum feedstock// Petrol. Chem. 2014. V. 54. N 5. P. 323–346. https:// doi.org/10.1134/S0965544114050065].
- [3] Bellussi G., Rispoli G., Landoni A., Millini R., Molinari D., Montanari E., Moscotti D., Pollesel P. Hydroconversion of heavy residues in slurry reactors: Developmentsand perspectives // J. Catal. 2013. V. 308. P. 189–200.

https://doi.org/10.1016/j.jcat.2013.07.002

- [4] Bellussi G., Rispoli G., Molinari D., Landoni A., Pollesel P., Panariti N., Millini R., Montanari E. The role of MoS<sub>2</sub> nano-slabs in the protection of solid cracking catalysts for the total conversion of heavy oils to good quality distillates // Catal. Sci. & Technol. 2013. N 3. P.176–182. https://doi.org/:10.1039/c2cy20448g
- [5] Khadzhiev S. N., Kadiev Kh. M., Yampolskaya G. P., Kadieva M. Kh. Trends in the synthesis of metal oxide nanoparticles through reverse microemulsions in hydrocarbon media // Advances in Colloid and Interface Sci. 2013. V. 197–198. P. 132–145. https:// doi.org/10.1016/j.cis.2013.05.003
- [6] Гюльмалиев А. М., Головин Г. С., Гладун Т. Г. Теоретические основы химии угля. М.: Изд-во Москов. гос. горн. ун-та, 2003. С. 237–238.
- [7] Кадиев Х. М., Гюльмалиев А. М., Хаджиев С. Н., Кадиева М. Х. Применение структурного параметра для прогноза свойств высокомолекулярных органических соединений // Нефтехимия. 2010. Т. 50. № 6. С 476–479 [Kadiev Kh. M., Gyul'maliev A. M., Khadzhiev S. N., Kadieva M. Kh. Use of the structure parameter for predicting the properties of highmolecular-mass organic compounds //Petrol. Chem. 2010. V. 50. N 6. P. 468–471.

https://doi.org/ 10.1134/S0965544110060101].

[8] Яркова Т. А., Гюльмалиев А. М. Метод определения среднестатистических структурных показателей органических веществ различного состава // Химия твердого топлива. 2018. № 2. С. 17–21. https:// doi.org/10.7868/S0023117718020044 [Yarkova T. A., Gyul'maliev A. M. Method for the determination of the average structural characteristics of different organic substances // Solid Fuel Chem. N 2. P. 73-77. https:// doi.org/ 10.3103/S036152191802012X].

[9] Du H., Li M., Liu D., Ren Y., Duan Y. Slurry-phase hydrocracking of heavy oil and model reactant: Effect of dispersed Mo catalyst // Appl. Petrochem. Res. 2015. V. 5. P. 89–98.
https://doi.org/10.1007/s12202.014.0002.8

https://doi.org/10.1007/s13203-014-0092-8

- [10] Jeon S. G., Na J.-G., Ko C. H., Yi K. B., Rho N. S., Park S. B. Preparation and application of an oil-soluble CoMo bimetallic catalyst for the hydrocracking of oil sands bitumen // Energy & Fuels. 2011. V. 25. P. 4256–4260. https://doi.org/10.1021/ef200703t
- [11] Del Bianco A., Panariti N., Di Carlo S., Beltrame P. L., Carnitii P. New developments in deep hydroconversion of heavy oil residues with dispersed catalysts. 2. Kinetic aspects of reaction // Energy & Fuels. 1994. V. 8. N 3. P. 593–597. https://doi.org/10.1021/ef00045a013
- [12] Panariti N., Del Bianco A., Del Piero G., Marchionna M., Carniti P. Petroleum residue

upgrading with dispersed catalysts: Part 1. Catalysts activity and selectivity // Appl. Catal. A: General. 2000. V. 204. P. 203–213.

https://doi.org/10.1016/S0926-860X(00)00531-7

- [13] Bano S., Ahmad S. W., Woo S. I., Saleem F. Heavy oil hydroprocessing: Effect of nanostructured morphologies of MoS<sub>2</sub> as catalyst // Reaction Kinetics, Mechanisms and Catalysis. 2015. V. 114. N 2. P. 473– 487. https://doi.org/10.1007/s11144-014-0822-z
- [14] *Trejo F., Rana M. S., Ancheyta J.* CoMo/MgO–Al<sub>2</sub>O<sub>3</sub> supported catalysts: An alternative approach to prepare HDS catalysts // Catal. Today. 2008. V. 130 (2–4). P. 327–336.

https://doi.org/10.1016/j.cattod.2007.10.105

 [15] Ancheyta J., Rana M.S., Furimsky E. Hydroprocessing of heavy petroleum feeds: Tutorial // Catal. Today. 2005. V. 109. P. 3–15. https://doi.org/10.1016/j.cattod.2005.08.025